In 2022, about 37.7 percent of the U.S. population who were aged 25 and above had graduated from college or another higher education institution, a slight decline from 37.9 the previous year. However, this is a significant increase from 1960, when only 7.7 percent of the U.S. population had graduated from college. Demographics Educational attainment varies by gender, location, race, and age throughout the United States. Asian-American and Pacific Islanders had the highest level of education, on average, while Massachusetts and the District of Colombia are areas home to the highest rates of residents with a bachelor’s degree or higher. However, education levels are correlated with wealth. While public education is free up until the 12th grade, the cost of university is out of reach for many Americans, making social mobility increasingly difficult. Earnings White Americans with a professional degree earned the most money on average, compared to other educational levels and races. However, regardless of educational attainment, males typically earned far more on average compared to females. Despite the decreasing wage gap over the years in the country, it remains an issue to this day. Not only is there a large wage gap between males and females, but there is also a large income gap linked to race as well.
Overall educational attainment measures the highest level of education attained by a given individual: for example, an individual counted in the percentage of the measured population with a master’s or professional degree can be assumed to also have a bachelor’s degree and a high school diploma, but they are not counted in the population percentages for those two categories. Overall educational attainment is the broadest education indicator available, providing information about the measured county population as a whole.
Only members of the population aged 25 and older are included in these educational attainment estimates, sourced from the U.S. Census Bureau American Community Survey (ACS).
Champaign County has high educational attainment: over 48 percent of the county's population aged 25 or older has a bachelor's degree or graduate or professional degree as their highest level of education. In comparison, the percentage of the population aged 25 or older in the United States and Illinois with a bachelor's degree in 2023 was 21.8% (+/-0.1) and 22.8% (+/-0.2), respectively. The population aged 25 or older in the U.S. and Illinois with a graduate or professional degree in 2022, respectively, was 14.3% (+/-0.1) and 15.5% (+/-0.2).
Educational attainment data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Educational Attainment for the Population 25 Years and Over.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (29 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (6 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018). U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).
In 2023, there were *** institutions of higher education in the state of California. Of these *** institutions, *** were four-year institutions and *** were two-year institutions. California had the most higher education institutions of any state in that year.
In 2020, the Mexican states with the highest average of academic years were Mexico City with 11.48, Nuevo León with 10.74 and Querétaro with 10.48 years. In contrast, the states with the lowest standard school years were Oaxaca with 8.12 and Chiapas 7.78 years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
US: School Enrollment: Preprimary: Female: % Gross data was reported at 68.891 % in 2015. This records a decrease from the previous number of 70.205 % for 2014. US: School Enrollment: Preprimary: Female: % Gross data is updated yearly, averaging 63.943 % from Dec 1981 (Median) to 2015, with 17 observations. The data reached an all-time high of 70.447 % in 1996 and a record low of 51.131 % in 1981. US: School Enrollment: Preprimary: Female: % Gross data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Gross enrollment ratio is the ratio of total enrollment, regardless of age, to the population of the age group that officially corresponds to the level of education shown. Preprimary education refers to programs at the initial stage of organized instruction, designed primarily to introduce very young children to a school-type environment and to provide a bridge between home and school.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
This map shows the predominant highest level of education for the population age 25+ in the United States. This is shown by county and and census tracts throughout the US. The categories are grouped as:Less than High SchoolHigh SchoolAssociate's DegreeSome CollegeBachelor's Degree or HigherThe data shown is current-year American Community Survey (ACS) data from the US Census. The data is updated each year when the ACS releases its new 5-year estimates. For more information about this data, visit this page.To learn more about when the ACS releases data updates, click here.
In 2021, the District of Columbia had the most highly educated population in the United States, with **** percent of residents over the age of 25 having a Bachelor's degree or higher. Massachusetts followed closely behind, with **** percent of residents having completed a Bachelor's degree or higher. For the United States as a whole, this figure stood at **** percent of the population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set shows the number of labour force by educational attainment for all states in Malaysia. The statistics is derived from Labour Force Survey (LFS) which is conducted every month using household approach.
Labour force refers to those who during the reference week of LFS, are in the 15-64 years age group and who are either employed or unemployed.
Educational attainment refers to the highest level in which a person has completed schooling or is currently attending school in a public or private educational institution that provides formal education and is categorised as follows:
a. No formal education Refers to persons who have never attended school in any of the educational institutions that provide formal education.
b. Primary Refers to those whose highest level of education attained is from Standard 1 to 6 or equivalent.
c. Secondary Refers to those whose highest level of education attained is from Form 1 to 5 (including remove class), General Certificate of Education (GCE) O Level or equivalent. This includes basic skill programmes in specific trades and technical skills institutions whereby the training period is at least six months.
d. Tertiary Refers to those whose highest level of education is above Form 5.
W.P. Labuan is gazzeted as a Federal Territory in 1984 while W.P. Putrajaya is gazzeted as a Federal Territory in 2001. The statistics for W.P. Putrajaya for 2001-2010 is treated as part of Selangor. Statistics for W.P. Putrajaya is available separately since 2011 onwards.
LFS was not conducted during the years 1991 and 1994.
This layer shows education level for adults (25+) by race by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of adults age 25+ who have a bachelor's degree or higher as their highest education level. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, C15002I (Not all lines of these ACS tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set shows the number of employed persons by educational attainment for all states in Malaysia. The statistics is derived from Labour Force Survey (LFS) which is conducted every month using household approach.
Employed persons are those between the working age of 15-64 years old who at any time during the reference week of LFS had worked at least one hour for pay, profit or family gain (as an employer, employee, own-account worker or unpaid family worker).
Educational attainment refers to the highest level in which a person has completed schooling or is currently attending school in a public or private educational institution that provides formal education and is categorised as follows:
a. No formal education Refers to persons who have never attended school in any of the educational institutions that provide formal education.
b. Primary Refers to those whose highest level of education attained is from Standard 1 to 6 or equivalent.
c. Secondary Refers to those whose highest level of education attained is from Form 1 to 5 (including remove class), General Certificate of Education (GCE) O Level or equivalent. This includes basic skill programmes in specific trades and technical skills institutions whereby the training period is at least six months.
d. Tertiary Refers to those whose highest level of education is above Form 5.
W.P. Labuan is gazzeted as a Federal Territory in 1984 while W.P. Putrajaya is gazzeted as a Federal Territory in 2001. The statistics for W.P. Putrajaya for 2001-2010 is treated as part of Selangor. Statistics for W.P. Putrajaya is available separately since 2011 onwards.
LFS was not conducted during the years 1991 and 1994.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Expenditures: Total Average Annual Expenditures by Highest Education: Less Than College Graduate: Total (CXUTOTALEXPLB1402M) from 2012 to 2023 about no college, secondary schooling, secondary, average, expenditures, education, and USA.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This dataset reports the Worker Population Ratio (WPR) by usual status (ps+ss) for individuals aged 15 years and above, based on their highest educational attainment across different states and union territories. Collected through the PLFS, this dataset supports the analysis of workforce engagement by education level on a state-by-state basis. For 2023-24, Chandigarh's entire area has been considered urban for this survey. Before 2019-20, Ladakh was part of Jammu and Kashmir, and since 2020-21, Daman and Diu have been merged with Dadra and Nagar Haveli to form the union territory of Dadra and Nagar Haveli and Daman and Diu.
This map shows high school graduations within the US by graduation rate. This is shown by county, state, and country from the 2022 County Health Rankings. The national average of students who graduate high school is 86%.The data comes from the County Health Rankings 2022 layer. The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. "By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."Counties are ranked within their state on both health outcomes and health factors. Counties with a lower (better) health outcomes ranking than health factors ranking may see the health of their county decline in the future, as factors today can result in outcomes later. Conversely, counties with a lower (better) factors ranking than outcomes ranking may see the health of their county improve in the future.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: School Enrollment: Secondary: Female: % Gross data was reported at 97.698 % in 2015. This records an increase from the previous number of 96.379 % for 2014. United States US: School Enrollment: Secondary: Female: % Gross data is updated yearly, averaging 94.920 % from Dec 1972 (Median) to 2015, with 32 observations. The data reached an all-time high of 98.104 % in 1998 and a record low of 60.766 % in 1972. United States US: School Enrollment: Secondary: Female: % Gross data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Gross enrollment ratio is the ratio of total enrollment, regardless of age, to the population of the age group that officially corresponds to the level of education shown. Secondary education completes the provision of basic education that began at the primary level, and aims at laying the foundations for lifelong learning and human development, by offering more subject- or skill-oriented instruction using more specialized teachers.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES EDUCATIONAL ATTAINMENT - DP02 Universe - Total households Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 Educational attainment data are tabulated for people 18 years old and over. Respondents are classified according to the highest degree or the highest level of school completed. The question included instructions for persons currently enrolled in school to report the level of the previous grade attended or the highest degree received.
In 2024, Saxony achieved the best result in comparison with other German federal states, with a score of 76.6 points on the educational monitor scale. In contrast, Bremen scored -10.9 points, indicating that it had the highest level of educational poverty out of all the German states. The average for the whole of Germany was 35.2 points. Educational poverty is measured by the share of successful graduates from the vocational preparation year (Berufsvorbereitungsjahres - BVJ) and the size of risk groups in different subject areas. The educational monitor has the aim, according to the source, to work out the strengths and weaknesses of the education systems in individual federal states and document the changes over time. The study included several indicators that are assigned to 12 action areas and measure the quality, efficiency, and effectiveness of education systems.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This dataset contains the details about the number of states in each level of the PGI ranking. It gives an insight on how the performance of the states changed over a period of time.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This dataset provides the Labour Force Participation Rate (LFPR) according to usual status (ps+ss) for individuals aged 15 years and above, segmented by the highest level of education completed, across different states and union territories. Sourced from the PLFS, this data assists in understanding the relationship between educational attainment and labor force engagement. For 2023-24, Chandigarh's entire area has been considered urban for this survey. Before 2019-20, Ladakh was part of Jammu and Kashmir, and since 2020-21, Daman and Diu have been merged with Dadra and Nagar Haveli to form the union territory of Dadra and Nagar Haveli and Daman and Diu.
In the United States, the rate of obesity is lower among college graduates compared to those who did not graduate from college. For example, in 2023, around 27 percent of college graduates were obese, while 36 percent of those with some college or technical school were obese. At that time, rates of obesity were highest among those with less than a high school education, at around 37 percent. Income and obesity As with education level, there are also differences in rates of obesity in the United States based on income. Adults in the U.S. with an annual income of 75,000 U.S. dollars or more have the lowest rates of obesity, with around 29 percent of this population obese in 2023. On the other hand, those earning less than 15,000 U.S. dollars per year had the highest rates of obesity at that time, at 37 percent. One reason for this disparity may be a lack of access to fresh food among those earning less, as cheap food in the United States tends to be unhealthier. What is the most obese state? As of 2023, the states with the highest rates of obesity were West Virginia, Mississippi, and Arkansas. At that time, around 41 percent of adults in West Virginia were obese. The states with the lowest rates of obesity were Colorado, Hawaii, and Massachusetts. Still, around a quarter of adults in Colorado were obese in 2023. West Virginia and Mississippi are also the states with the highest rates of obesity among high school students. Children with obesity are more likely to be obese as adults and are at increased risk of health conditions such as asthma, type 2 diabetes, and sleep apnea.
U.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.
In 2022, about 37.7 percent of the U.S. population who were aged 25 and above had graduated from college or another higher education institution, a slight decline from 37.9 the previous year. However, this is a significant increase from 1960, when only 7.7 percent of the U.S. population had graduated from college. Demographics Educational attainment varies by gender, location, race, and age throughout the United States. Asian-American and Pacific Islanders had the highest level of education, on average, while Massachusetts and the District of Colombia are areas home to the highest rates of residents with a bachelor’s degree or higher. However, education levels are correlated with wealth. While public education is free up until the 12th grade, the cost of university is out of reach for many Americans, making social mobility increasingly difficult. Earnings White Americans with a professional degree earned the most money on average, compared to other educational levels and races. However, regardless of educational attainment, males typically earned far more on average compared to females. Despite the decreasing wage gap over the years in the country, it remains an issue to this day. Not only is there a large wage gap between males and females, but there is also a large income gap linked to race as well.