Introduction and Rationale: Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update these data. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged product. Contents: Spatial data Attribute table for merged rasters Technical validation data Number and proportion of mismatched pixels Number and proportion of unresolved pixels Producer's and User's accuracy values and coverage of reference data Resources in this dataset:Resource Title: Attribute table for merged rasters. File Name: CombinedRasterAttributeTable_CDLNVC.csvResource Description: Raster attribute table for merged raster product. Class names and recommended color map were taken from USDA-NASS Cropland Data Layer and LANDFIRE National Vegetation Classification. Class values are also identical to source data, except classes from the CDL are now negative values to avoid overlapping NVC values. Resource Title: Number and proportion of mismatched pixels. File Name: pixel_mismatch_byyear_bycounty.csvResource Description: Number and proportion of pixels that were mismatched between the Cropland Data Layer and National Vegetation Classification, per year from 2012-2021, per county in the conterminous United States.Resource Title: Number and proportion of unresolved pixels. File Name: unresolved_conflict_byyear_bycounty.csvResource Description: Number and proportion of unresolved pixels in the final merged rasters, per year from 2012-2021, per county in the conterminous United States. Unresolved pixels are a result of mismatched pixels that we could not resolve based on surrounding agricultural land (no agriculture with 90m radius).Resource Title: Producer's and User's accuracy values and coverage of reference data. File Name: accuracy_datacoverage_byyear_bycounty.csvResource Description: Producer's and User's accuracy values and coverage of reference data, per year from 2012-2021, per county in the conterminous United States. We defined coverage of reference data as the proportional area of land cover classes that were included in the reference data published by USDA-NASS and LANDFIRE for the Cropland Data Layer and National Vegetation Classification, respectively. CDL and NVC classes with reference data also had published accuracy statistics. Resource Title: Data Dictionary. File Name: Data_Dictionary_RasterMerge.csv
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Dataset description-br /- This dataset is a recalculation of the Copernicus 2015 high resolution layer (HRL) of imperviousness density data (IMD) at different spatial/territorial scales for the case studies of Barcelona and Milan. The selected spatial/territorial scales are the following: * a) Barcelona city boundaries * b) Barcelona metropolitan area, Àrea Metropolitana de Barcelona (AMB) * c) Barcelona greater city (Urban Atlas) * d) Barcelona functional urban area (Urban Atlas) * e) Milan city boundaries * f) Milan metropolitan area, Piano Intercomunale Milanese (PIM) * g) Milan greater city (Urban Atlas) * h) Milan functional urban area (Urban Atlas)-br /- In each of the spatial/territorial scales listed above, the number of 20x20mt cells corresponding to each of the 101 values of imperviousness (0-100% soil sealing: 0% means fully non-sealed area; 100% means fully sealed area) is provided, as well as the converted measure into squared kilometres (km2). -br /- -br /- -br /- Dataset composition-br /- The dataset is provided in .csv format and is composed of: -br /- _IMD15_BCN_MI_Sources.csv_: Information on data sources -br /- _IMD15_BCN.csv_: This file refers to the 2015 high resolution layer of imperviousness density (IMD) for the selected territorial/spatial scales in Barcelona: * a) Barcelona city boundaries (label: bcn_city) * b) Barcelona metropolitan area, Àrea metropolitana de Barcelona (AMB) (label: bcn_amb) * c) Barcelona greater city (Urban Atlas) (label: bcn_grc) * d) Barcelona functional urban area (Urban Atlas) (label: bcn_fua)-br /- _IMD15_MI.csv_: This file refers to the 2015 high resolution layer of imperviousness density (IMD) for the selected territorial/spatial scales in Milan: * e) Milan city boundaries (label: mi_city) * f) Milan metropolitan area, Piano intercomunale milanese (PIM) (label: mi_pim) * g) Milan greater city (Urban Atlas) (label: mi_grc) * h) Milan functional urban area (Urban Atlas) (label: mi_fua)-br /- _IMD15_BCN_MI.mpk_: the shareable project in Esri ArcGIS format including the HRL IMD data in raster format for each of the territorial boundaries as specified in letter a)-h). -br /- Regarding the territorial scale as per letter f), the list of municipalities included in the Milan metropolitan area in 2016 was provided to me in 2016 from a person working at the PIM. -br /- In the IMD15_BCN.csv and IMD15_MI.csv, the following columns are included: * Level: the territorial level as defined above (a)-d) for Barcelona and e)-h) for Milan); * Value: the 101 values of imperviousness density expressed as a percentage of soil sealing (0-100%: 0% means fully non-sealed area; 100% means fully sealed area); * Count: the number of 20x20mt cells corresponding to a certain percentage of soil sealing or imperviousness; * Km2: the conversion of the 20x20mt cells into squared kilometres (km2) to facilitate the use of the dataset.-br /- -br /- -br /- Further information on the Dataset-br /- This dataset is the result of a combination between different databases of different types and that have been downloaded from different sources. Below, I describe the main steps in data management that resulted in the production of the dataset in an Esri ArcGIS (ArcMap, Version 10.7) project.-br /- 1. The high resolution layer (HRL) of the imperviousness density data (IMD) for 2015 has been downloaded from the official website of Copernicus. At the time of producing the dataset (April/May 2021), the 2018 version of the IMD HRL database was not yet validated, so the 2015 version was chosen instead. The type of this dataset is raster. 2. For both Barcelona and Milan, shapefiles of their administrative boundaries have been downloaded from official sources, i.e. the ISTAT (Italian National Statistical Institute) and the ICGC (Catalan Institute for Cartography and Geology). These files have been reprojected to match the IMD HRL projection, i.e. ETRS 1989 LAEA. 3. Urban Atlas (UA) boundaries for the Greater Cities (GRC) and Functional Urban Areas (FUA) of Barcelona and Milan have been checked and reconstructed in Esri ArcGIS from the administrative boundaries files by using a Eurostat correspondence table. This is because at the time of the dataset creation (April/May 2021), the 2018 Urban Atlas shapefiles for these two cities were not fully updated or validated on the Copernicus Urban Atlas website. Therefore, I had to re-create the GRC and FUA boundaries by using the Eurostat correspondence table as an alternative (but still official) data source. The use of the Eurostat correspondence table with the codes and names of municipalities was also useful to detect discrepancies, basically stemming from changes in municipality names and codes and that created inconsistent spatial features. When detected, these discrepancies have been checked with the ISTAT and ICGC offices in charge of producing Urban Atlas data before the final GRC and FUA boundaries were defined.-br /- Steps 2) and 3) were the most time consuming, because they required other tools to be used in Esri ArcGIS, like spatial joins and geoprocessing tools for shapefiles (in particular dissolve and area re-calculator in editing sessions) for each of the spatial/territorial scales as indicated in letters a)-h). -br /- Once the databases for both Barcelona and Milan as described in points 2) and 3) were ready (uploaded in Esri ArcGIS, reprojected and their correctness checked), they have been ‘crossed’ (i.e. clipped) with the IMD HRL as described in point 1) and a specific raster for each territorial level has been calculated. The procedure in Esri ArcGIS was the following: * Clipping: Arctoolbox - Data management tools - Raster - Raster Processing - Clip. The ‘input’ file is the HRL IMD raster file as described in point 1) and the ‘output’ file is each of the spatial/territorial files. The option "Use Input Features for Clipping Geometry (optional)” was selected for each of the clipping. * Delete and create raster attribute table: Once the clipping has been done, the raster has to be recalculated first through Arctoolbox - Data management tools - Raster - Raster properties - Delete Raster Attribute Table and then through Arctoolbox - Data management tools - Raster - Raster properties - Build Raster Attribute Table; the "overwrite" option has been selected. -br /- -br /- Other tools used for the raster files in Esri ArcGIS have been the spatial analyst tools (in particular, Zonal - Zonal Statistics). As an additional check, the colour scheme of each of the newly created raster for each of the spatial/territorial attributes as per letters a)-h) above has been changed to check the consistency of its overlay with the original HRL IMD file. However, a perfect match between the shapefiles as per letters a)-h) and the raster files could not be achieved since the raster files are composed of 20x20mt cells.-br /- The newly created attribute tables of each of the raster files have been exported and saved as .txt files. These .txt files have then been copied in the excel corresponding to the final published dataset.
This dataset contains the common Map Unit attributes for each polygon within the gSSURGO database plus NRCS derived attributes from a data summary table called the National Valu Added Look Up (valu) Table #1. It is comprised of 57 pre-summarized or "ready to map" derived soil survey geographic database attributes including soil organic carbon, available water storage, crop productivity indices, crop root zone depths, available water storage within crop root zone depths, drought vulnerable soil landscapes, and potential wetland soil landscapes. Related metadata values for themes are included. These attribute data are pre-summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. These themes were prepared to better meet the mapping needs of users of soil survey information and can be used with both SSURGO and Gridded SSURGO (gSSURGO) datasets. Gridded SSURGO (gSSURGO) Database is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a State-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.VALU Table Content:The map unit average Soil Organic Carbon (SOC) values are given in units of g C per square meter for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), o-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average Available Water Storage (AWS) values are given in units of millimeters for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), 0-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average National Commodity Crop Productivity Index (NCCPI) values (low index values indicate low productivity and high index values indicate high productivity) are provided for major earthy components. NCCPI values are included for corn/soybeans, small grains, and cotton crops. Of these crops, the highest overall NCCPI value is also identified. Earthy components are those soil series or higher level taxa components that can support crop growth. Major components are those soil components where the majorcompflag = 'Yes' in the SSURGO component table. A map unit percent composition for earthy major components is provided. See Dobos, R. R., H. R. Sinclair, Jr, and M. P. Robotham. 2012. National Commodity Crop Productivity Index (NCCPI) User Guide, Version 2. USDA-NRCS. Available at: ftp://ftp-fc.sc.egov.usda.gov/NSSC/NCCPI/NCCPI_user_guide.pdfThe map unit average root zone depth values for commodity crops are given in centimeters for major earthy components. Criteria for root-limiting soil depth include: presence of hard bedrock, soft bedrock, a fragipan, a duripan, sulfuric material, a dense layer, a layer having a pH of less than 3.5, or a layer having an electrical conductivity of more than 12 within the component soil profile. If no root-restricting zone is identified, a depth of 150 cm is used to approximate the root zone depth (Dobos et al., 2012). The map unit average available water storage within the root zone depth for major earthy components value is given in millimeters.Drought vulnerable soil landscapes comprise those map units that have available water storage within the root zone for commodity crops that is less than or equal to 6 inches (152 mm) expressed as "1" for a drought vulnerable soil landscape map unit or "0" for a nondroughty soil landscape map unit or NULL for miscellaneous areas (includes water bodies).The potential wetland soil landscapes (PWSL version 1) information is given as the percentage of the map unit (all components) that meet the criteria for a potential wetland soil landscape. See table column (field) description for criteria details. If water was determined to account for 80 or greater percent of a map unit, a value of 999 was used to indicate a water body. This is not a perfect solution, but is helpful to identifying a general water body class for mapping.The map unit sum of the component percentage representative values is also provided as useful metadata. For all valu table columns, NULL values are presented where data are incomplete or not available. How NoData or NULL values and incomplete data were handled during VALU table SOC and AWS calculations:The gSSURGO calculations for SOC and AWS as reported in the VALU table use the following data checking and summarization rules. The guiding principle was to only use the official data in the SSURGO database, and not to make assumptions in case there were some data entry errors. However, there were a few exceptions to this principle if there was a good reason for a Null value in a critical variable, or to accommodate the data coding conventions used in some soil surveys.Horizon depths considerations:If the depth to the top of the surface horizon was missing, but otherwise the horizon depths were all okay, then the depth to the top of the surface horizon (hzdept_r) was set to zero.If the depth to the bottom of the last horizon was missing, and the horizon represented bedrock or had missing bulk density, the depth to the bottom was set to equal to the depth to the top of the same horizon (hzdepb_r = hzdept_r), effectively giving the horizon zero thickness (and thus zero SOC or AWS), but not blocking calculation of other horizons in the profile due to horizon depth errors.Other types of horizon depth errors were considered uncorrectable, and led to all horizon depths for the component being set to a NoData value, effectively eliminating the component from the analysis. The errors included gaps or overlaps in the horizon depths of the soil profile, other cases of missing data for horizon depths, including missing data for the bottom depth of the last horizon if the soil texture information did not indicate bedrock and a bulk density value was coded. The SOC or AWS values were effectively set to zero for components eliminated in this way, so the values at the map unit level could be an underestimate for some soils.Horizon rock fragment considerations:Part of the algorithm for calculating the SOC requires finding the volume of soil that is not rock. This requires three SSURGO variables that indicate rock fragments (fraggt10_r, frag3to10_r, and sieveno10_r). If the soil is not organic, and any of these are missing, then the ratio of the volume of soil fines to the total soil volume was set to “NoData†, and the SOC results were coded as “NoData†and effectively set to zero for the horizon. If the soil is organic, then it may be logical that no measurement of rock fragments was made, and default values for the “zero rock†situation was assumed for these variables (i.e., fraggt10_r = 0, frag3to10_r = 0, sieveno10_r = 100). Organic soils were identified by an “O†in the horizon designator or the texture code represented “Peat†, “Muck†or “Decomposed Plant Material†. If all three of the fragment variables were present, but indicated more than 100% rock, then 100% rock was assumed (zero volume of soil and thus zero for SOC). The rock fragment variables do not influence the AWS calculation because rock content is already accounted for in the available water capacity (awc_r) variable at the horizon level.Horizon to component summary:To summarize data from the horizon level to the component level, the evaluation proceeded downward from the surface. If a valid value for AWS could not be calculated for any horizon, then the result for that horizon and all deeper horizons was set to NoData. The same rule was separately applied to the SOC calculation, so it was possible to have results for SOC but not AWS, or vice versa.Component to mapunit summary:To summarize data from the component level to the map unit level, the component percentages must be valid. There are tests both of the individual component percentage (comppct_r) data, and also of the sum of the component percentages at the map unit level (mu_sum_comppct_r). For the gSSURGO VALU table, the following rules were applied for the individual components: 1) The comppct_r must be in the range from 0 to 100, inclusive. 2) Individual components with a comppct_r that was Null (nothing coded) were ignored. A zero comppct_r value excludes
This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Drainage_Class.Soils vary widely in their ability to retain or drain water. The rate at which water drains into the soil has a direct effect on the amount and timing of runoff, what crops can be grown, and where wetlands form. In soils with low drainage rates water will pond on the soil's surface. Poorly drained soils are desirable when growing crops like rice where the fields are flooded for cultivation but other crops need better drained soils.Dataset SummaryPhenomenon Mapped: Drainage Class of SoilsUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: July 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for drainage class is derived from the gSSURGO map unit aggregated attribute table field Drainage Class - Dominant Condition (drclassdcd).The layer has an attribute field for Drainage Class and a description field for use in pop-ups. The eight values of drainage class with corresponding attribute table index value are defined by the NRCS Soil Survey Manual as:0. Excessively drained: Water is removed very rapidly. The occurrence of internal free water commonly is very rare or very deep. The soils are commonly coarse-textured and have very high hydraulic conductivity or are very shallow.1. Somewhat excessively drained: Water is removed from the soil rapidly. Internal free water occurrence commonly is very rare or very deep. The soils are commonly coarse-textured and have high saturated hydraulic conductivity or are very shallow.2. Well drained: Water is removed from the soil readily but not rapidly. Internal free water occurrence commonly is deep or very deep; annual duration is not specified. Water is available to plants throughout most of the growing season in humid regions. Wetness does not inhibit growth of roots for significant periods during most growing seasons. The soils are mainly free of the deep to redoximorphic features that are related to wetness.3. Moderately well drained: Water is removed from the soil somewhat slowly during some periods of the year. Internal free water occurrence commonly is moderately deep and transitory through permanent. The soils are wet for only a short time within the rooting depth during the growing season, but long enough that most mesophytic crops are affected. They commonly have a moderately low or lower saturated hydraulic conductivity in a layer within the upper 1 m, periodically receive high rainfall, or both.4. Somewhat poorly drained: Water is removed slowly so that the soil is wet at a shallow depth for significant periods during the growing season. The occurrence of internal free water commonly is shallow to moderately deep and transitory to permanent. Wetness markedly restricts the growth of mesophytic crops, unless artificial drainage is provided. The soils commonly have one or more of the following characteristics: low or very low saturated hydraulic conductivity, a high water table, additional water from seepage, or nearly continuous rainfall.5. Poorly drained: Water is removed so slowly that the soil is wet at shallow depths periodically during the growing season or remains wet for long periods. The occurrence of internal free water is shallow or very shallow and common or persistent. Free water is commonly at or near the surface long enough during the growing season so that most mesophytic crops cannot be grown, unless the soil is artificially drained. The soil, however, is not continuously wet directly below plow-depth. Free water at shallow depth is usually present. This water table is commonly the result of low or very low saturated hydraulic conductivity of nearly continuous rainfall, or of a combination of these.6. Very poorly drained: Water is removed from the soil so slowly that free water remains at or very near the ground surface during much of the growing season. The occurrence of internal free water is very shallow and persistent or permanent. Unless the soil is artificially drained, most mesophytic crops cannot be grown. The soils are commonly level or depressed and frequently ponded. If rainfall is high or nearly continuous, slope gradients may be greater.7. Subaqueous Soils: These soils are under the surface of a body of water. (There are only a few of these in the entire dataset.)What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "drainage class" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "drainage class" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
This data set provides geoinformation data, natural and anthropogenic characteristics of 1386 catchments across Germany as part of the QUADICA data set. The attributes include information on topography, land cover, lithology, soils, climate, hydrology, population density and nutrient sources and heterogeneity. The calculated catchment attributes base on various publicly available and published resources referenced in the metadata of this repository. This repository combines the two existing CCDB repositories for the German catchments (Ebeling, 2021: https://doi.org/10.4211/hs.0fc1b5b1be4a475aacfd9545e72e6839; Ebeling & Dupas, 2021: https://doi.org/10.4211/hs.c7d4df3ba74647f0aa83ae92be2e294b). The provided geoinformation includes the delineated catchments, stations and the data used for delineation. The data set is decribed in detail in a corresponding paper "Water quality, discharge and catchment attributes for large-sample studies in Germany - QUADICA" by Ebeling et al. (https://doi.org/10.5194/essd-2022-6).
This repository includes:
1.) Data table with catchment attributes 2.) Metadata with the description of each catchment attribute and references to original publications and data resources. 3.) GIS-data: - Shapefile of delineated catchment polygons - Shapefile of stations. - Shapefile of modified station locations consistent with the flow accumulation raster using a 100m snapping distance. - Shapefile of modified river network after manual adaptations used for burning into DEM - Raster of DEM 100m - Raster of flow direction used for catchment delineation - Raster of flow accumulation 4.) Readme for further explanation of the included GIS data
Water quality and quantity data, as well as meteorological and N surplus time series are available in the "QUADICA - water quality, discharge and catchment attributes for large-sample studies in Germany" repository (https://doi.org/10.4211/hs.0ec5f43e43c349ff818a8d57699c0fe1). All repositories use the same unique identifier OBJECTID for each water quality station.
Note: the station locations (stations.shp) do not always fall within the delineated catchments as the catchment outlets were adapted (stations_mod.shp) according the stream network and the topographic flow accumulation grid.
Conditions: Please, reference both the original data publisher and this repository/corresponding paper Ebeling et al. for credits, when using the provided data. Note that the provided data were created with greatest care, but we cannot guarantee correctness of the data.
This dataset contains the common Map Unit attributes for each polygon within the gSSURGO database plus NRCS derived attributes from a data summary table called the National Valu Added Look Up (valu) Table #1. It is comprised of 57 pre-summarized or "ready to map" derived soil survey geographic database attributes including soil organic carbon, available water storage, crop productivity indices, crop root zone depths, available water storage within crop root zone depths, drought vulnerable soil landscapes, and potential wetland soil landscapes. Related metadata values for themes are included. These attribute data are pre-summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. These themes were prepared to better meet the mapping needs of users of soil survey information and can be used with both SSURGO and Gridded SSURGO (gSSURGO) datasets. Gridded SSURGO (gSSURGO) Database is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a State-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.VALU Table Content:The map unit average Soil Organic Carbon (SOC) values are given in units of g C per square meter for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), o-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average Available Water Storage (AWS) values are given in units of millimeters for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), 0-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average National Commodity Crop Productivity Index (NCCPI) values (low index values indicate low productivity and high index values indicate high productivity) are provided for major earthy components. NCCPI values are included for corn/soybeans, small grains, and cotton crops. Of these crops, the highest overall NCCPI value is also identified. Earthy components are those soil series or higher level taxa components that can support crop growth. Major components are those soil components where the majorcompflag = 'Yes' in the SSURGO component table. A map unit percent composition for earthy major components is provided. See Dobos, R. R., H. R. Sinclair, Jr, and M. P. Robotham. 2012. National Commodity Crop Productivity Index (NCCPI) User Guide, Version 2. USDA-NRCS. Available at: ftp://ftp-fc.sc.egov.usda.gov/NSSC/NCCPI/NCCPI_user_guide.pdfThe map unit average root zone depth values for commodity crops are given in centimeters for major earthy components. Criteria for root-limiting soil depth include: presence of hard bedrock, soft bedrock, a fragipan, a duripan, sulfuric material, a dense layer, a layer having a pH of less than 3.5, or a layer having an electrical conductivity of more than 12 within the component soil profile. If no root-restricting zone is identified, a depth of 150 cm is used to approximate the root zone depth (Dobos et al., 2012). The map unit average available water storage within the root zone depth for major earthy components value is given in millimeters.Drought vulnerable soil landscapes comprise those map units that have available water storage within the root zone for commodity crops that is less than or equal to 6 inches (152 mm) expressed as "1" for a drought vulnerable soil landscape map unit or "0" for a nondroughty soil landscape map unit or NULL for miscellaneous areas (includes water bodies).The potential wetland soil landscapes (PWSL version 1) information is given as the percentage of the map unit (all components) that meet the criteria for a potential wetland soil landscape. See table column (field) description for criteria details. If water was determined to account for 80 or greater percent of a map unit, a value of 999 was used to indicate a water body. This is not a perfect solution, but is helpful to identifying a general water body class for mapping.The map unit sum of the component percentage representative values is also provided as useful metadata. For all valu table columns, NULL values are presented where data are incomplete or not available. How NoData or NULL values and incomplete data were handled during VALU table SOC and AWS calculations:The gSSURGO calculations for SOC and AWS as reported in the VALU table use the following data checking and summarization rules. The guiding principle was to only use the official data in the SSURGO database, and not to make assumptions in case there were some data entry errors. However, there were a few exceptions to this principle if there was a good reason for a Null value in a critical variable, or to accommodate the data coding conventions used in some soil surveys.Horizon depths considerations:If the depth to the top of the surface horizon was missing, but otherwise the horizon depths were all okay, then the depth to the top of the surface horizon (hzdept_r) was set to zero.If the depth to the bottom of the last horizon was missing, and the horizon represented bedrock or had missing bulk density, the depth to the bottom was set to equal to the depth to the top of the same horizon (hzdepb_r = hzdept_r), effectively giving the horizon zero thickness (and thus zero SOC or AWS), but not blocking calculation of other horizons in the profile due to horizon depth errors.Other types of horizon depth errors were considered uncorrectable, and led to all horizon depths for the component being set to a NoData value, effectively eliminating the component from the analysis. The errors included gaps or overlaps in the horizon depths of the soil profile, other cases of missing data for horizon depths, including missing data for the bottom depth of the last horizon if the soil texture information did not indicate bedrock and a bulk density value was coded. The SOC or AWS values were effectively set to zero for components eliminated in this way, so the values at the map unit level could be an underestimate for some soils.Horizon rock fragment considerations:Part of the algorithm for calculating the SOC requires finding the volume of soil that is not rock. This requires three SSURGO variables that indicate rock fragments (fraggt10_r, frag3to10_r, and sieveno10_r). If the soil is not organic, and any of these are missing, then the ratio of the volume of soil fines to the total soil volume was set to “NoData†, and the SOC results were coded as “NoData†and effectively set to zero for the horizon. If the soil is organic, then it may be logical that no measurement of rock fragments was made, and default values for the “zero rock†situation was assumed for these variables (i.e., fraggt10_r = 0, frag3to10_r = 0, sieveno10_r = 100). Organic soils were identified by an “O†in the horizon designator or the texture code represented “Peat†, “Muck†or “Decomposed Plant Material†. If all three of the fragment variables were present, but indicated more than 100% rock, then 100% rock was assumed (zero volume of soil and thus zero for SOC). The rock fragment variables do not influence the AWS calculation because rock content is already accounted for in the available water capacity (awc_r) variable at the horizon level.Horizon to component summary:To summarize data from the horizon level to the component level, the evaluation proceeded downward from the surface. If a valid value for AWS could not be calculated for any horizon, then the result for that horizon and all deeper horizons was set to NoData. The same rule was separately applied to the SOC calculation, so it was possible to have results for SOC but not AWS, or vice versa.Component to mapunit summary:To summarize data from the component level to the map unit level, the component percentages must be valid. There are tests both of the individual component percentage (comppct_r) data, and also of the sum of the component percentages at the map unit level (mu_sum_comppct_r). For the gSSURGO VALU table, the following rules were applied for the individual components: 1) The comppct_r must be in the range from 0 to 100, inclusive. 2) Individual components with a comppct_r that was Null (nothing coded) were ignored. A zero comppct_r value excludes
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Introduction and Rationale: Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update these data. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged product. Contents: Spatial data Attribute table for merged rasters Technical validation data Number and proportion of mismatched pixels Number and proportion of unresolved pixels Producer's and User's accuracy values and coverage of reference data Resources in this dataset:Resource Title: Attribute table for merged rasters. File Name: CombinedRasterAttributeTable_CDLNVC.csvResource Description: Raster attribute table for merged raster product. Class names and recommended color map were taken from USDA-NASS Cropland Data Layer and LANDFIRE National Vegetation Classification. Class values are also identical to source data, except classes from the CDL are now negative values to avoid overlapping NVC values. Resource Title: Number and proportion of mismatched pixels. File Name: pixel_mismatch_byyear_bycounty.csvResource Description: Number and proportion of pixels that were mismatched between the Cropland Data Layer and National Vegetation Classification, per year from 2012-2021, per county in the conterminous United States.Resource Title: Number and proportion of unresolved pixels. File Name: unresolved_conflict_byyear_bycounty.csvResource Description: Number and proportion of unresolved pixels in the final merged rasters, per year from 2012-2021, per county in the conterminous United States. Unresolved pixels are a result of mismatched pixels that we could not resolve based on surrounding agricultural land (no agriculture with 90m radius).Resource Title: Producer's and User's accuracy values and coverage of reference data. File Name: accuracy_datacoverage_byyear_bycounty.csvResource Description: Producer's and User's accuracy values and coverage of reference data, per year from 2012-2021, per county in the conterminous United States. We defined coverage of reference data as the proportional area of land cover classes that were included in the reference data published by USDA-NASS and LANDFIRE for the Cropland Data Layer and National Vegetation Classification, respectively. CDL and NVC classes with reference data also had published accuracy statistics. Resource Title: Data Dictionary. File Name: Data_Dictionary_RasterMerge.csv