89 datasets found
  1. c

    Landcover Raster Data (2010) – 3ft Resolution

    • s.cnmilf.com
    • data.cityofnewyork.us
    • +3more
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). Landcover Raster Data (2010) – 3ft Resolution [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/landcover-raster-data-2010-3ft-resolution
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    High resolution land cover data set for New York City. This is the 3ft version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, _location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.

  2. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  3. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  4. Natural Earth: Public Domain Vector and Raster Data

    • data.wu.ac.at
    zip
    Updated Oct 10, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Geospatial Data (2013). Natural Earth: Public Domain Vector and Raster Data [Dataset]. https://data.wu.ac.at/schema/datahub_io/M2QwNTAwYzEtMWQ3Yy00NDE4LWEyNTAtYWY5MTZjZDIyZmFh
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 10, 2013
    Dataset provided by
    Open Geospatial Consortiumhttps://www.ogc.org/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

    Large scale data, 1:10m

    The most detailed. Suitable for making zoomed-in maps of countries and regions. Show the world on a large wall poster.

    Medium scale data, 1:50m

    Suitable for making zoomed-out maps of countries and regions. Show the world on a tabloid size page.

    Small scale data, 1:110m

    Suitable for schematic maps of the world on a postcard or as a small locator globe.

  5. e

    Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso...

    • envidat.ch
    json, not available +1
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ionuț Iosifescu Enescu (2025). Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso with Shaded Relief and Water) [Dataset]. http://doi.org/10.16904/envidat.68
    Explore at:
    not available, json, xmlAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Swiss Federal Institute for Forest, Snow and Landscape Research WSL
    Authors
    Ionuț Iosifescu Enescu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    WSL
    Description

    The attached data are some large GIS raster files (GeoTIFFs) made with Natural Earth data. Natural Earth is a free vector and raster map data @ naturalearthdata.com. The data used for creating these large files was the "Cross Blended Hypso with Shaded Relief and Water". Data was concatenated to achieve larger and larger files. Internal pyramids were created, in order that the files can be opened easily in a GIS software such as QGIS or by a (future) GIS data visualisation module integrated in EnviDat. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com

  6. d

    Land Cover Raster Data (2017) – 6in Resolution

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). Land Cover Raster Data (2017) – 6in Resolution [Dataset]. https://catalog.data.gov/dataset/land-cover-raster-data-2017-6in-resolution
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    A 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks) For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub. To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md

  7. S

    Spatial distribution data set of wetlands in Baiyangdian Basin

    • scidb.cn
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan Xin; Niu Zhenguo (2021). Spatial distribution data set of wetlands in Baiyangdian Basin [Dataset]. http://doi.org/10.11922/sciencedb.00561
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 20, 2021
    Dataset provided by
    Science Data Bank
    Authors
    Yan Xin; Niu Zhenguo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Baiyangdian
    Description

    As one of the plain wetland systems in northern China, Baiyangdian Wetland plays a key role in ensuring the water resources security and good ecological environment of Xiong'an New Area. Understanding the current situation of Baiyangdian Wetland ecosystem is also of great significance for the construction of the New Area and future scientific planning. Based on the 10-meter spatial resolution sentinel-2B image provided by ESA in September 2017, combined with Google Earth high resolution satellite image (resolution 0.23m), the wetland ecosystem network distribution map and river network distribution map of in Baiyangdian basin in 2017 were drawn by artificial visual interpretation and machine automatic classification, which can provide reference for the wetland connectivity (including hydrological connectivity and landscape connectivity) in Baiyangdian basin. The spatial distribution data set of Baiyangdian Wetland includes vector data and raster data: (1) Baiyangdian basin boundary data (.shp); Baiyangdian basin river channel data (. shp); (2) Baiyangdian basin land use / cover classification data (including the classification data of Baiyangdian basin and the river 3 km buffer) (.tif); Baiyangdian basin constructed wetland and natural wetland distribution map (. shp); Baiyangdian basin slope map (. tif). The boundary of Baiyangdian basin in this dataset comes from the basic geographic information map of Baiyangdian basin provided by Zhou Wei and others. The DEM is the GDEM digital elevation data with 30m resolution. The original image data of wetland remote sensing classification comes from the sentinel-2B remote sensing image on September 20, 2017 provided by ESA. This data set uses the second, third, fourth and eighth bands of the 10m resolution in the image. The preprocessing operations such as radiometric calibration, mosaic and mosaic are carried out in SNAP and ArcGIS 10.2 software, and the supervised classification is carried out in ENVI software. The data used for river channel extraction is based on Google Earth high resolution satellite images. The research and development steps of this dataset include: preprocessing sentinel-2B image, establishing wetland classification system and selecting samples, drawing the latest wetland ecosystem network distribution map of Baiyangdian basin by support vector machine classification; based on Google Earth high-resolution satellite image (resolution 0.23m), this paper uses LocaSpaceViewer software to identify and extract river channels by manual visual interpretation. For the river channels with embankment, identify and draw along the embankment; for the river channels without embankment, distinguish according to the spectral difference between the river channels and the surrounding land use types and empirical knowledge, mark the uncertain areas, and conduct field investigation in the later stage, which can ensure that the identified river channels have been extracted. The identified river channels include the main river channel, each classified river channel, abandoned river channel, etc., and all rivers are continuous. It can effectively identify the channel and ensure the accuracy of extraction. According to the river network map of Baiyangdian basin obtained by manual visual interpretation, the total length of the river in Baiyangdian basin is about 2440 km, and the total area is 514 km2. Among them, there are 177 km2 river channels in mountainous area, with a length of 866 km, distributed in northeast-southwest direction, mostly at the junction of forest land and cultivated land; there are 337 km2 river channels in plain area, with a length of 1574 km. The Baiyangdian basin is divided into eight land use / cover types: river, flood plain, lake, marsh, ditch, cultivated land, forest land and construction land. The remote sensing monitoring results show that the wetland area of Baiyangdian basin accounted for 13.90% in 2017. Among all the wetland types, the area of marsh is the largest, followed by the area of flood plain, ditch accounts for about 1%, and the proportion of lake and river is less than 0.5%. Combined with the land use / cover classification map and the distribution of slope and elevation, it can be seen that nearly 60% of the area of forest land is distributed in 10 ° to 30 ° mountain area, and the rest of the land use / cover types are mainly distributed in 0 ° to 2 ° area. The elevation statistics show that nearly 80% of the lakes and large reservoirs are distributed in the height of 100 m to 300 m, the distribution of marsh is relatively uniform, mainly in the higher altitude area of 20 m to 300 m, the types of construction land, flood area and cultivated land are mainly concentrated in the area of 20 m to 100 m, and rivers and ditches are mainly concentrated in the area of 0 m to 100 m. Based on the classification results of land use / cover within the river, it can be found that the main land use type is wetland. Specifically, the types of marsh, flood area and lake are the most, while the types of ditch and river are less. With the increase of the buffer area, the proportion of non-wetland type gradually increased, while the proportion of wetland type gradually decreased. The main wetland types in 1-3km buffer zone on both sides of the river are marsh and flood zone. It is worth noting that nearly one third of the River belongs to cultivated land, that is, the river occupation is serious. In terms of area, about 1 / 3 rivers and 3 / 4 lakes are distributed in the river course. Most of the water bodies in the river course are controlled by human beings, but the marsh area in the river course only accounts for about 3% of the marsh area in the whole river course. In this study, 8 types of land features including river, flood plain, lake, marsh, ditch, cultivated land, forest land and construction land were selected. The total number of samples was 5199, of which 67% was used for supervised classification and 33% for accuracy verification of confusion matrix. The overall accuracy of support vector machine (SVM) classification results in Baiyangdian basin is 84.25%, and kappa coefficient is 0.82. River occupation will not only directly reduce the connectivity of wetlands in the basin, but also cause some environmental and economic problems such as water pollution. However, if the connectivity of wetlands is reduced, the ecological and environmental functions of wetlands will be destroyed, which will pose a great threat to the water security of the basin. Taking Baiyangdian basin as a whole, improving the connectivity of wetlands and enhancing the ecological and environmental functions of wetlands in the basin will help to improve the water ecological and environmental security of Xiong'an New Area and Baiyangdian basin.

  8. d

    Lidar-derived closed depression vector data and density raster in karst...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Lidar-derived closed depression vector data and density raster in karst areas of Monroe County, West Virginia [Dataset]. https://catalog.data.gov/dataset/lidar-derived-closed-depression-vector-data-and-density-raster-in-karst-areas-of-monroe-co
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Monroe County, West Virginia
    Description

    Monroe County in southeastern West Virginia hosts world-class karst within carbonate units of Mississippian and Ordovician age. Lidar-derived elevation data acquired in late December of 2016 were used to create a 3-meter resolution working digital elevation model (DEM), from which surface depressions were identified using a semi-automated workflow in ArcGIS®. Depressions in the automated inventory were systematically checked by a geologist within a grid of 1.5 square kilometer tiles using aerial imagery, lidar-derived imagery, and 3D viewing of the lidar imagery. Distinguishing features such as modification by human activities or hydrological significance (stream sink, ephemerally ponded, etc.) were noted wherever relevant to a particular depression. Relative confidence in depression identification was provided and determined by whether the depression was visible in the lidar imagery, aerial imagery, or both. Statistics on the geometric morphometry of each depression were calculated including perimeter, area, depth, length of major and minor elliptical axes, and azimuth of the major axis. Center points were created for each surface depression and were used to create a point density raster. The density raster displays the number of closed depression points per square kilometer.

  9. Z

    Potential Natural Vegetation of Eastern Africa (Burundi, Ethiopia, Kenya,...

    • data.niaid.nih.gov
    • zenodo.org
    Updated May 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dudley, Cornell (2024). Potential Natural Vegetation of Eastern Africa (Burundi, Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia): raster and vector GIS files for each country [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11125644
    Explore at:
    Dataset updated
    May 10, 2024
    Dataset provided by
    Ruffo, Christopher
    Moshi, Heriel
    Dudley, Cornell
    Kalema, James
    Friis, Ib
    Minani, Vedaste
    Demissew, Sebsebe
    Lillesø, Jens-Peter Barnekow
    Namaganda, Mary
    Mbago, Frank
    Bingham, Mike
    Kindt, Roeland
    Ndangalasi, Henry
    van Breugel, Paulo
    Gachathi, Francis
    Graudal, Lars
    Mulumba, John
    Jamnadass, Ramni
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Malawi, Ethiopia, Africa, East Africa, Tanzania, Zambia, Burundi, Rwanda, Kenya, Uganda
    Description

    The map of potential natural vegetation of eastern Africa (V4A) gives the distribution of potential natural vegetation in Ethiopia, Kenya, Tanzania, Uganda, Rwanda, Burundi, Malawi and Zambia.

    The map is based on national and local vegetation maps constructed from botanical field surveys - mainly carried out in the two decades after 1950 - in combination with input from national botanical experts. Potential natural vegetation (PNV) is defined as “vegetation that would persist under the current conditions without human interventions”. As such, it can be considered a baseline or null model to assess the vegetation that could be present in a landscape under the current climate and edaphic conditions and used as an input to model vegetation distribution under changing climate.

    Vegetation types are defined by their tree species composition, and the documentation of the maps thus includes the potential distribution for more than a thousand tree and shrub species, see the documentation (https://vegetationmap4africa.org/species.html)

    The map distinguishes 48 vegetation types, divided in four main vegetation groups: 16 forest types, 15 woodland and wooded grassland types, 5 bushland and thicket types and 12 other types. The map is available in various formats. The online version (https://vegetationmap4africa.org/vegetation_map.html) and for PDF versions of the map, see the documentation (https://vegetationmap4africa.org/documentation.html). Version 2.0 of the potential natural vegetation map and the woody species selection tool was published in 2015 (https://vegetationmap4africa.org/docs/versionhistory/). The original data layers include country-specific vegetation types to maintain the maximum level of information available. This map might be most suitable when carrying out analysis at the national or sub-national level.

    When using V4A in your work, cite the publication: Lillesø, J-P.B., van Breugel, P., Kindt, R., Bingham, M., Demissew, S., Dudley, C., Friis, I., Gachathi, F., Kalema, J., Mbago, F., Minani, V., Moshi, H., Mulumba, J., Namaganda, M., Ndangalasi, H., Ruffo, C., Jamnadass, R. & Graudal, L. 2011, Potential Natural Vegetation of Eastern Africa (Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia). Volume 1: The Atlas. 61 ed. Forest & Landscape, University of Copenhagen. 155 p. (Forest & Landscape Working Papers; 61 - as well as this repository using the DOI .

    The development of V4A was mainly funded by the Rockefeller Foundation and supported by University of Copenhagen

    If you want to use the potential natural vegetation map of eastern Africa for your analysis, you can download the spatial data layers in raster format as well as in vector format from this repository

    A simplified version of the map can be found on Figshare . That version aggregates country specific vegetation types into regional types. This might be the better option when doing regional-level assessments.

  10. i

    Template for Raster data in ISO19139

    • gis.ices.dk
    • data.europa.eu
    Updated Jan 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Template for Raster data in ISO19139 (2020). Template for Raster data in ISO19139 [Dataset]. https://gis.ices.dk/geonetwork/geonetwork/api/records/7e20e148-39ff-4540-abb7-38b40726416c
    Explore at:
    www:download-1.0-http--downloadAvailable download formats
    Dataset updated
    Jan 15, 2020
    Dataset authored and provided by
    Template for Raster data in ISO19139
    Area covered
    Earth
    Description

    Read the abstract and supplemental information provided in the Vector template for more details.

  11. Data for workshop: "Introduction to Geospatial Raster and Vector Data with...

    • figshare.com
    zip
    Updated Oct 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Nattino (2023). Data for workshop: "Introduction to Geospatial Raster and Vector Data with Python" - Wildfires in Rhodes [Dataset]. http://doi.org/10.6084/m9.figshare.24270796.v4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 9, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Francesco Nattino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Support dataset for the workshop: "Introduction to Geospatial Raster and Vector Data with Python", from the Carpentries Incubator. The focus will be the wildfires that affected Rhodes in July 2023.

  12. e

    SM 1:5000 cadastral component raster data - Jevíčko 6-7

    • data.europa.eu
    Updated Oct 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). SM 1:5000 cadastral component raster data - Jevíčko 6-7 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-jevi67
    Explore at:
    Dataset updated
    Oct 14, 2021
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  13. a

    Marine Download Merged INFOMAR/INSS Survey Data Irish Waters WGS84

    • hub.arcgis.com
    • opendata-geodata-gov-ie.hub.arcgis.com
    • +1more
    Updated Feb 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geological Survey Ireland (2024). Marine Download Merged INFOMAR/INSS Survey Data Irish Waters WGS84 [Dataset]. https://hub.arcgis.com/datasets/aae4fdb161924973870a4c1e47288831
    Explore at:
    Dataset updated
    Feb 12, 2024
    Dataset authored and provided by
    Geological Survey Ireland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This data shows areas where merged survey bathymetry and backscatter data exists and allows you to download the data. The data was collected between 2001 and 2021.Bathymetry is the measurement of how deep is the sea. Bathymetry is the study of the shape and features of the seabed. The name comes from Greek words meaning "deep" and “measure". Bathymetry is collected on board boats working at sea and airplanes over land and coastline. The boats use special equipment called a multibeam echosounder. A multibeam echosounder is a type of sonar that is used to map the seabed. Sound waves are emitted in a fan shape beneath the boat. The amount of time it takes for the sound waves to bounce off the bottom of the sea and return to a receiver is used to determine water depth. The strength of the sound wave is used to determine how hard the bottom of the sea is. In other words, backscatter is the measure of sound that is reflected by the seafloor and received by the sonar. A strong sound wave indicates a hard surface (rocks, gravel), and a weak return signal indicates a soft surface (silt, mud).LiDAR is another way to map the seabed, using airplanes. Two laser light beams are emitted from a sensor on-board an airplane. The red beam reaches the water surface and bounces back; while the green beam penetrates the water hits the seabed and bounces back. The difference in time between the two beams returning allows the water depth to be calculated. LiDAR is only suitable for shallow waters (up to 30m depth).This data shows areas which have data available for download in Irish waters. These are areas where several surveys have been merged together.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).This data is shown as polygons. Each polygon holds information on the data type (bathymetry or backscatter), format of data available for download (GEOTIFF, ESRI GRID), its resolution, projection, last update and provides links to download the data.The data available for download are raster datasets. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns.This data was collected using a boat or plane. Data is output in xyz format. X and Y are the location and Z is the depth or backscatter value. A software package converts it into gridded data. The grid cell size varies. Most of this data is available at 10m resolution. Each grid cell size is 10 meter by 10 meter. This means that each cell (pixel) represents an area of 10 meter squared.ESRI GRID datasets contain the depth value. This means you can click on a location and get its depth.GEOTIFFS are images of the data and only record colour values. We use software to create a 3D effect of what the seabed looks like. By using vertical exaggeration, artificial sun-shading (mostly as if there is a light source in the northwest) and colouring the depths using colour maps, it is possible to highlight the subtle relief of the seabed. The darker shading represents a deeper depths and lighter shading represents shallower depths.This data shows areas that have been surveyed. There are plans to fill in the missing areas between 2020 and 2026. The deeper offshore waters were mapped as part of the Irish National Seabed Survey (INSS) between 1999 and 2005. INtegrated Mapping FOr the Sustainable Development of Ireland's MArine Resource (INFOMAR) is mapping the inshore areas. (2006 - 2026).

  14. d

    Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-raster-analysis
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class in the full geodatabase inventory (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to prioritize overlapping designations, avoiding massive overestimation in protected area statistics, and simplified by the following PAD-US attributes to support user needs for raster analysis data: Manager Type, Manager Name, Designation Type, GAP Status Code, Public Access, and State Name. The rasterization process (see processing steps below) prioritized overlapping designations previously identified (GAP_Prity field) in the Vector Analysis File (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation (e.g. GAP Status Code 1 over 2). The 30-meter Image (IMG) grid Raster Analysis Files area extents were defined by the Census state boundary file used to clip the Vector Analysis File, the data source for rasterization ("PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class from ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb"). Alaska (AK) and Hawaii (HI) raster data are separated from the contiguous U.S. (CONUS) to facilitate analyses at manageable scales. Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types (with a legal protection mechanism) represented in some manner, while work continues to maintain updates, improve data quality, and integrate new data as it becomes available (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, protection status represents a point-in-time and changes in status between versions of PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.

  15. G

    Geospatial Data Provider Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geospatial Data Provider Report [Dataset]. https://www.datainsightsmarket.com/reports/geospatial-data-provider-492758
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The geospatial data provider market, currently valued at $3788 million in 2025, is poised for significant growth, exhibiting a Compound Annual Growth Rate (CAGR) of 6.1% from 2025 to 2033. This expansion is driven by the increasing adoption of location intelligence across diverse sectors. Enterprises leverage geospatial data for optimizing logistics, enhancing customer experiences, and improving operational efficiency. Government agencies utilize it for infrastructure planning, resource management, and disaster response. The rising prevalence of IoT devices and the demand for precise location-based services are further fueling market growth. The market is segmented by application (Enterprises, Government, Others) and data type (Vector Data, Raster Data), with the enterprise segment expected to dominate due to high investments in technology and data analytics. The increasing availability of high-resolution satellite imagery and advancements in data processing technologies are key trends shaping the market. However, challenges such as data security concerns, high initial investment costs, and the need for specialized expertise could potentially restrain market growth. The North American region, particularly the United States, is expected to hold a substantial market share due to the presence of major geospatial data providers and high technological advancements. Europe and Asia Pacific are also projected to witness significant growth, driven by increasing government initiatives and private sector investments in digital infrastructure. The competitive landscape is characterized by a mix of established players like Esri and emerging companies offering innovative solutions. The market will likely witness increased mergers and acquisitions, strategic partnerships, and technological innovations in the coming years, focusing on areas like AI-powered geospatial analytics and the integration of geospatial data with other data sources to deliver actionable insights. The continued evolution of cloud computing and advancements in big data analytics will significantly impact the market's growth trajectory in the forecast period.

  16. A

    Gridded Soil Survey Geographic (gSSURGO-10) Database for the Conterminous...

    • data.amerigeoss.org
    • data.wu.ac.at
    html
    Updated Jul 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). Gridded Soil Survey Geographic (gSSURGO-10) Database for the Conterminous United States - 10 meter [Dataset]. https://data.amerigeoss.org/ro/dataset/groups/gridded-soil-survey-geographic-gssurgo-10-database-for-the-conterminous-united-states-10-m
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 28, 2019
    Dataset provided by
    United States
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format.

    The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.

    The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.

    The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).

  17. U

    Processing unit used in developing the raster layers for the Hydrologic...

    • data.usgs.gov
    • s.cnmilf.com
    • +3more
    Updated Nov 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristine Verdin (2021). Processing unit used in developing the raster layers for the Hydrologic Derivatives for Modeling and Analysis (HDMA) database -- Greenland [Dataset]. http://doi.org/10.5066/F7S180ZP
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Kristine Verdin
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2017
    Description

    This dataset contains the processing unit for Greenland from the Hydrological Derivatives for Modeling and Analysis (HDMA) database. The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seconds (the sma ...

  18. d

    Automated Reference Toolset (ART)—Data

    • dataone.org
    • data.usgs.gov
    • +3more
    Updated Jun 1, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Travis Nauman (2017). Automated Reference Toolset (ART)—Data [Dataset]. https://dataone.org/datasets/b357123c-4a19-49a2-9c0b-890f3766c0e4
    Explore at:
    Dataset updated
    Jun 1, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Travis Nauman
    Area covered
    Description

    These environmental raster covariate, geospatial vector data, and tabular data were compiled as input data for the Automated Reference Toolset (ART) algorithm.

  19. e

    SM 1:5000 cadastral component raster data - Kutná Hora 2-6

    • data.europa.eu
    Updated Oct 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). SM 1:5000 cadastral component raster data - Kutná Hora 2-6 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-kuth26
    Explore at:
    Dataset updated
    Oct 14, 2021
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  20. BOREAS Regional Soils Data in Raster Format and AEAC Projection - Dataset -...

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). BOREAS Regional Soils Data in Raster Format and AEAC Projection - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/boreas-regional-soils-data-in-raster-format-and-aeac-projection-fe792
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This data set was gridded by BORIS staff from a vector data set received from Canadian Soil Information System (CanSIS). The original data came in two parts that covered Saskatchewan and Manitoba. The data were gridded and merged into one data set of 84 files covering the BOReal Ecosystem-Atmosphere Study (BOREAS) region. The data were gridded into the Albers Equal-Area Conic (AEAC) projection. Because the mapping of the two provinces was done separately in the original vector data, there may be discontinuities in some of the soil layers because of different interpretations of certain soil properties.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cityofnewyork.us (2023). Landcover Raster Data (2010) – 3ft Resolution [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/landcover-raster-data-2010-3ft-resolution

Landcover Raster Data (2010) – 3ft Resolution

Explore at:
8 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 2, 2023
Dataset provided by
data.cityofnewyork.us
Description

High resolution land cover data set for New York City. This is the 3ft version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, _location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.

Search
Clear search
Close search
Google apps
Main menu