This packaged data collection contains all of the outputs from our primary model, including the following data layers: Habitat Cores (vector polygons) Least-cost Paths (vector lines) Least-cost Corridors (raster) Least-cost Corridors (vector polygon interpretation) Modeling Extent (vector polygon) Please refer to the embedded spatial metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in shapefile (.shp) or raster GeoTIFF (.tif) formats.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This zip file contains geodatabases with raster mosaic datasets. The raster mosaic datasets consist of georeferenced tiff images of mineral potential maps, their associated metadata, and descriptive information about the images. These images are duplicates of the images found in the georeferenced tiff images zip file. There are four geodatabases containing the raster mosaic datasets, one for each of the four SaMiRA report areas: North-Central Montana; North-Central Idaho; Southwestern and South-Central Wyoming and Bear River Watershed; and Nevada Borderlands. The georeferenced images were clipped to the extent of the map and all explanatory text, gathered from map explanations or report text was imported into the raster mosaic dataset database as ‘Footprint’ layer attributes. The data compiled into the 'Footprint' layer tables contains the figure caption from the original map, online linkage to the source report when available, and information on the assessed commodities accordin ...
Indeholder feks. transmissivitet i kalken, Lertykkelser og dybder til magasin. Se excelark ”dkm2019_Udstilling_GIS_logfile_dataverse.xlsx” for fuldstændig liste af filer i denne folder.
Indeholder feks. Nettonedbør, grundvandsdannelse til magasinlag, trykniveauer, vandhastighed, dybde til grundvandsspejl, udsivning fra grundvand til vandløb. Se excelark ” dkm2019_Udstilling_GIS_logfile_dataverse.xlsx” for fuldstændig liste af filer i denne folder.
This geodatabase includes spatial datasets that represent the Mississippian aquifer in the States of Alabama, Illinois, Indiana, Iowa, Kentucky, Maryland, Missouri, Ohio, Pennsylvania, Tennessee, Virginia and West Virginia. The aquifer is divided into three subareas, based on the data availability. In subarea 1 (SA1), which is the aquifer extent in Iowa, data exist of the aquifer top altitude and aquifer thickness. In subarea 2 (SA2), which is the aquifer extent in Missouri, data exist of the aquifer top and bottom aquifer surface altitudes. In subarea 3 (SA3), which is the aquifer area of the remaining States, no altitude or thickness data exist. Included in this geodatabase are: (1) a feature dataset "ds40MSSPPI_altitude_and_thickness_contours that includes aquifer altitude and thickness contours used to generate the surface rasters for SA1 and SA2, (2) a feature dataset "ds40MSSPPI_extents" that includes a polygon dataset that represents the subarea extents, a polygon dataset that represents the combined overall aquifer extent, and a polygon dataset of the Ft. Dodge Fault and Manson Anomaly, (3) raster datasets that represent the altitude of the top and the bottom of the aquifer in SA1 and SA2, and (4) georeferenced images of the figures that were digitized to create the aquifer top- and bottom-altitude contours or aquifer thickness contours for SA1 and SA2. The images and digitized contours are supplied for reference. The extent of the Mississippian aquifer for all subareas was produced from the digital version of the HA-730 Mississippian aquifer extent, (USGS HA-730). For the two Subareas with vertical-surface information, SA1 and SA2, data were retrieved from the sources as described below. 1. The aquifer-altitude contours for the top and the aquifer-thickness contours for the top-to-bottom thickness of SA1 were received in digital format from the Iowa Geologic Survey. The URL for the top was ftp://ftp.igsb.uiowa.edu/GIS_Library/IA_State/Hydrologic/Ground_Waters/ Mississippian_aquifer/mississippian_topography.zip. The URL for the thickness was ftp://ftp.igsb.uiowa.edu/GIS_Library/IA_State/Hydrologic/Ground_Waters/ Mississippian_aquifer/mississippian_isopach.zip Reference for the top map is Altitude and Configuration, in feet above mean sea level, of the Mississipian Aquifer modified from a scanned image of Map 1, Sheet 1, Miscellaneous Map Series 3, Mississippian Aquifer of Iowa by P.J. Horick and W.L. Steinhilber, Iowa Geological Survey, 1973; IGS MMS-3, Map 1, Sheet 1 Reference for the thickness map is Distribution and isopach thickness, in feet, of the Mississipian Aquifer, modified from a scanned image of Map 1, Sheet 2, Miscellaneous Map Series 3, Mississippian Aquifer of Iowa by P.J. Horick and W.L. Steinhilber, Iowa Geological Survey, 1973; IGS MMS-3, Map 1, Sheet 2 The altitude contours for the top and bottom of SA2 were digitized from georeferenced figures of altitude contours in U.S. Geological Survey Professional Paper 1305 (USGS PP1305), figure 6 (for the top surface) and figure 9 (for the bottom surface). The altitude contours for SA1 and SA2 were interpolated into surface rasters within a GIS using tools that create hydrologically correct surfaces from contour data, derive the altitude from the thickness (depth from the land surface), and merge the subareas into a single surface. The primary tool was an enhanced version of "Topo to Raster" used in ArcGIS, ArcMap, Esri 2014. ArcGIS Desktop: Release 10.2 Redlands, CA: Environmental Systems Research Institute. The raster surfaces were corrected in areas where the altitude of the top of the aquifer exceeded the land surface, and where the bottom of an aquifer exceeded the altitude of the corrected top of the aquifer.
Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 4.0 Combined Fee, Designation, Easement feature class in the full geodatabase inventory (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to prioritize overlapping designations, avoiding massive overestimation in protected area statistics, and simplified by the following PAD-US attributes to support user needs for raster analysis data: Manager Type, Manager Name, Designation Type, GAP Status Code, Public Access, and State Name. The rasterization process prioritized overlapping designations previously identified (GAP_Prity field) in the Vector Analysis file (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation (e.g. GAP Status Code 1 over 2).The 30-meter Image (IMG) grid Raster Analysis Files area extents were defined by the Census state boundary file used to clip the Vector Analysis File, the data source for rasterization ("PADUS4_0VectorAnalysis_State_Clip_CENSUS2022") feature class from ("PADUS4_0VectorAnalysisFile_OtherExtents_ClipCENSUS2022.gdb"). Alaska (AK) and Hawaii (HI) raster data are separated from the contiguous U.S. (CONUS) to facilitate analyses at manageable scales. Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types (with a legal protection mechanism) represented in some manner, while work continues to maintain updates, improve data quality, and integrate new data as it becomes available (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, protection status represents a point-in-time and changes in status between versions of PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://ngda-portfolio-community-geoplatform.hub.arcgis.com/pages/portfolio ), agencies are the best source of their lands data.
The downloadable ZIP file contains a georeferenced TIF. This data set is a mosaic of 69 individual DRGs georeferenced to the IDTM83 grid. The original Digital Raster Graphic (DRG) is a raster image of a scanned USGS topographic map including the collar information, georeferenced to the UTM grid. DRGs are useful as a source or background layer in a GIS and as a means to perform quality assurance on other digital products.
High resolution land cover data set for New York City. This is the 3ft version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.
The High Plains aquifer extends from approximately 32 to 44 degrees north latitude and 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2019. It was created using water-level measurements from 2,741 wells measured in both the predevelopment period (about 1950) and in 2019, the latest available static water level measured in 2015 to 2018 from 71 wells in New Mexico and using other published information on water-level change in areas with few water-level measurements. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000. Negative raster-cell values correspond to decline in water level and positive raster-cell values correspond to water-level rise.
This personal geodatabase contains raster images of sea surface temperature (SST) in the Gulf of Maine. These raster images are a composite of several years (1997-2005) binned by season or by month, and were calculated as means or as medians. For those images binned by month, all of the months for the time series were averaged together to make one mean image. For example, Jan '98, Jan '99, Jan...
This geodatabase includes spatial datasets that represent the High Plains aquifer in the States of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Included are: (1) polygon extents; datasets that represent the aquifer system extent, (2) raster datasets for the altitude of the top and bottom surfaces of the High Plains aquifer, (3) altitude contours of the top surface and of the bottom surface used to generate the surface rasters. The altitude contours are supplied for reference. The extent of the High Plains aquifer is from the digital dataset U.S. Geological Survey Data Series 543 (USGS DS 543), and as a references, the digital version of the aquifer extent presented in the Groundwater Atlas of the United States (the U.S. Geological Survey Hydrologic Atlas 730-D, -E, and -C, (USGS HA 730-D, -E, -C). The altitude contours for the top surface of the High Plains aquifer are from digital datasets of U.S. Geological Survey Open-File Report 99-263 (USGS OFR 99-263), using the 1980 water-level data. The altitude contours for the bottom surface of the High Plains aquifer are from the U.S. Geological Survey Open-File Report 98-393 (USGS OFR 98-393). The altitude of the bottom surface, or base, was originally from the High Plains Regional Aquifer-System Analysis study. The resultant top and bottom altitude values were interpolated into surface rasters within a GIS using tools that create hydrologically correct surfaces from contour data, derive the altitude from the thickness (depth from the land surface), and merge the subareas into a single surface. The primary tool was an enhanced version of "Topo to Raster" used in ArcGIS, ArcMap, Esri 2014. The raster surfaces were corrected for the areas where the altitude of an underlying layer of the aquifer exceeded the altitude of an overlying layer.
https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use
DescriptionThis dataset is available for download from: Parcelization (File Geodatabase)Parcelization, a measure of size and density of parcels in a localized area, is a development feasibility factor that is used in evaluating substations’ ability to support new utility-scale resources in long-term energy planning. A statewide dataset of parcel boundaries are used to develop this index. The parcels are converted into a 90-meter raster, containing values of a unique identifier reflective of Parcel APN. A focal statistics tool is used to count the number of unique parcels within a 0.5 mile radius of each parcel. This output is provided here and is an intermediate output to the final parcelization map. Users who wish to use this information to produce the final map should overlay parcel boundary data and extract the mean raster value within each parcel. The map is limited to the area considered with solar technical resource potential after a minimum set of land-use screens (referred to as the Base Exclusions) has been applied. More information on the methods developing this dataset as well as the main use of this dataset in state electric system planning processes can be found in a recent CEC staff report and workshops supporting the resource-to-busbar mapping methodology for the 2024-2025 Transmission Planning Process.
This data set consists of GIS layers that describe the soils of the BOREAS SSA. The original data were submitted as vector layers that were gridded by BOREAS staff to a 30-meter pixel size in the AEAC projection. These data layers include the soil code (which relates to the soil name), modifier (which also relates to the soil name), and extent (indicating the extent that this soil exists within the polygon). There are three sets of these layers representing the primary, secondary, and tertiary soil characteristics. Thus, there is a total of nine layers in this data set along with supporting files. The data are stored in binary, image format files.
description: This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 30 meter cell size. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data. The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).; abstract: This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 30 meter cell size. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data. The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset consists of raster geotiff outputs of annual map projections of land use and land cover for the California Central Valley for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water availability, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These scenarios represent alternative plausible futures, capturing a range of climate variability, land management activities, and habitat restoration goals. We parameterized our models based on close interpretation of these four scenario narratives to best reflect stakeholder interests, adding a baseline Historical Business-As-Usual scenario (HBAU) for comparison. For these f ...
This dataset consists of hydrologically enforced digital elevation model rasters for each 4-digit Hydrologic Unit Code (HUC) area in Maine (0101, 0102, 0103, 0104, 0105, and 0106). The cell size of each raster is 10 meters, and the elevation values are expressed in centimeters. The elevation rasters may be used along with the accompanying data layers in this release to delineate watersheds within the HUC-4 areas.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset is a binary input representing irrigated areas (during 'wet' years) as a raster dataset. Parcels identified as being irrigated are assigned a value of 1 while non-irrigated areas are assigned a value of 0. This raster is one of 9 inputs used to calculate the "Normalized Importance Index."
Raster catalog for the 2004 BES Emerge imagery collection. This raster catalog allow seemless browsing of all 2004 tiles. In early August of 2004 Emerge acquired orthophotos in support of the Baltimore Ecosystem Study for four main areas in the vicinity of Baltimore: Baltimore City, Gwynns Falls Watershed, Baisman Run Watershed, and the Jennifer Branch Watershed (including the Cub Hill Watershed and the research tower). The imagery is 3-band color-infrared, and is best viewed by assigning band 1-2-3 to R-G-B. Band radiometry(nm): Band 1 (blue) 510 - 600nm, Band 2 (green) 600-700, Band 3 (NIR) 800 - 900 nm. Pixel size for the imagery is 0.6m. During orthorectification the imagery was resampled using bilinear interpolation. The imagery meets or exceeds National Mapping Accuracy Standards for 1:3,000 scale mapping (3-meter accuracy with 90% confidence...Emerge concludes that the accruacy is probably closer to 2-meter). The following prefixes are used in the naming of the image tiles: 25954 = Baisman Run 25955 = Jennifer Branch 25956 = Baltimore City 25957 = Gwynns Falls Acquisition dates: 25954 = 09 Aug 2004 25955 = 08 Aug 2004 25956 = 08 Aug 2004 25957 = 09 Aug 2004 This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
An ESRI GRID raster data model of the Mahogany bed structure was needed to perform overburden calculations in the Uinta Basin, Utah and Colorado as part of a 2009 National Oil Shale Assessment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wetlands in California are protected by several federal and state laws, regulations, and policies. This layer was extracted from the broader vegetation raster from the CA Nature project which was recently enhanced to include a more comprehensive definition of wetland. This wetlands dataset is used as an exclusion as part of the biological planning priorities in the CEC 2023 Land-Use Screens.
This layer is featured in the CEC 2023 Land-Use Screens for Electric System Planning data viewer.
For more information about this layer and its use in electric system planning, please refer to the Land Use Screens Staff Report in the CEC Energy Planning Library.
This packaged data collection contains all of the outputs from our primary model, including the following data layers: Habitat Cores (vector polygons) Least-cost Paths (vector lines) Least-cost Corridors (raster) Least-cost Corridors (vector polygon interpretation) Modeling Extent (vector polygon) Please refer to the embedded spatial metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in shapefile (.shp) or raster GeoTIFF (.tif) formats.