Facebook
Twitterhttps://creativecommons.org/licenses/publicdomain/https://creativecommons.org/licenses/publicdomain/
https://spdx.org/licenses/CC-PDDChttps://spdx.org/licenses/CC-PDDC
Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset
Facebook
TwitterThis is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
Twitter6 inch resolution raster image of New York City, classified by landcover type. High resolution land cover data set for New York City. This is the 6 inch version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.
Facebook
TwitterDOWNLOAD RASTER IMAGERYRS-FRIS Version 5.4 is a remote-sensing based forest inventory for WA DNR State Trust lands. Predictions are derived from three-dimensional photogrammetric point cloud data (DAP), field measurements, and statistical models. RS-FRIS 5.4 was constructed using remote sensing data collected in 2021 and 2022, and incorporates depletions for selected completed harvest types through 2025-08-31.
Facebook
TwitterA 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks)
For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub.
To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The attached data are some large GIS raster files (GeoTIFFs) made with Natural Earth data. Natural Earth is a free vector and raster map data @ naturalearthdata.com. The data used for creating these large files was the "Cross Blended Hypso with Shaded Relief and Water". Data was concatenated to achieve larger and larger files. Internal pyramids were created, in order that the files can be opened easily in a GIS software such as QGIS or by a (future) GIS data visualisation module integrated in EnviDat. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com
Facebook
TwitterThis dynamic image service provides access to the USGS 7.5 minute quadrangles for the Commonwealth of Kentucky. The source data is the Kentucky Raster Graphics (KRG) dataset created by the Commonwealth. The KRGs are a higher-resolution derivative of the USGS 7.5 minute topographic quadrangle data commonly known as DRGs, or Digital Raster Graphics.
Facebook
Twitterhttps://maps.islandcountywa.gov/WebFiles/DataDownloads/Metadata/steepslopes.htmlhttps://maps.islandcountywa.gov/WebFiles/DataDownloads/Metadata/steepslopes.html
Data were derived from 2014 6" resolution Island County lidar data using ArcGIS and Spatial Analyst Tools. The resulting raster was then converted to polygons. Polygons spanning elevation differences <10' were deleted.
Facebook
TwitterThe Raster Based GIS Coverage of Mexican Population is a gridded coverage (1 x 1 km) of Mexican population. The data were converted from vector into raster. The population figures were derived based on available point data (the population of known localities - 30,000 in all). Cell values were derived using a weighted moving average function (Burrough, 1986), and then calculated based on known population by state. The result from this conversion is a coverage whose population data is based on square grid cells rather than a series of vectors. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Instituto Nacional de Estadistica Geografia e Informatica (INEGI).
Facebook
TwitterSentinel-2 Level-1C imagery with on-the-fly renderings for visualization. This imagery layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.Sentinel-2 imagery can be applied across a number of industries, scientific disciplines, and management practices. Some applications include, but are not limited to, land cover and environmental monitoring, climate change, deforestation, disaster and emergency management, national security, plant health and precision agriculture, forest monitoring, watershed analysis and runoff predictions, land-use planning, tracking urban expansion, highlighting burned areas and estimating fire severity.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean Sea Temporal CoverageThis layer includes a rolling collection of Sentinel-2 imagery acquired within the past 14 months.This layer is updated daily with new imagery.The revisit time for each point on Earth is every 5 days.The number of images available will vary depending on location. Product LevelThis service provides Level-1C Top of Atmosphere imagery.Alternatively, Sentinel-2 Level-2A is also available. Image Selection/FilteringThe most recent and cloud free images are displayed by default.Any image available within the past 14 months can be displayed via custom filtering.Filtering can be done based on attributes such as Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More… Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn Ratio, NDVI Colormap. Multispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available. NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request. Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS, or alternatively access EarthExplorer or the Copernicus Data Space Ecosystem to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.
Facebook
TwitterSummary of Methods for Developing Ecological Units in Southern California
Allan Hollander and Emma Underwood, University of California Davis.
1) Compiling GIS layers. These data were compiled from a variety of sources and resolutions (Table 1) for the southern California study area (see Methods_figure_1.png for the study area). The original resolution of these raster layers ran from 10 meters to 270 meters, and resampling was conducted so all analyses were performed at a 30 meter raster resolution. We decided not to include vegetation in the data stack as the aim was to capture biophysical characteristics and vegetation will reflect current landscape history and land use patterns (e.g. fire history, type conversion from shrubland, or agricultural use). Lakes and reservoirs were omitted from the subsequent analysis. Data compiled:
a) Soil suborders. This was a discretely-classified raster layer with 22 soil suborder classes included in the southern California region. This was derived ...
Facebook
TwitterThis template is used to compute urban growth between two land cover datasets, that are classified into 20 classes based on the Anderson Level II classification system. This raster function template is used to generate a visual representation indicating urbanization across two different time periods. Typical datasets used for this template is the National Land Cover Database. A more detailed blog on the datasets can be found on ArcGIS Blogs. This template works in ArcGIS Pro Version 2.6 and higher. It's designed to work on Enterprise 10.8.1 and higher.References:Raster functionsWhen to use this raster function templateThe template is useful to generate an intuitive visualization of urbanization across two images.Sample Images to test this againstNLCD2006 and NLCD2011How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual representation of urban sprawl across two images. Applicable geographiesThe template is designed to work globally.
Facebook
TwitterVegetative Difference Image gives an easy to interpret visual representation of vegetative increase/decrease across 2 time periods.This raster function template is used to generate a visual product. The results cannot be used for analysis. This templates generates an NDVI in the backend, hence it requires your imagery to have the red and near infrared bands. In the resulting image, greens indicate increase in vegetation, while the magenta indicates decrease in vegetationReferences:Raster functionsWhen to use this raster function templateThis template is particularly useful when trying to intuitively visualize the increase or decrease in vegetation over two time periods. How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. This index supports many satellite sensors, such as Landsat-8, Sentinel-2, Quickbird, IKONOS, Geoeye-1, and Pleiades-1.Applicable geographiesThe template uses a standard vegetation which is designed to work globally.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rasters assocaited with elevation (from the National elevation dataset), slope (created from the elevation dataset using ArcGIS), a Shannon diversity index as a metric of landscape fragmentation (created from the forest/shrub layer using Fragstats), distance to all roads (created in ArcGIS using a road TIGER shapefile), distance to forest/shrubs (created using NLCD 2016 data), human population density (created using data from the US Census Bureau). All rasters are at a 90m resolution.
Facebook
Twitterhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.23708/TCK6IHhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.23708/TCK6IH
This dataset holds the map “Carte du recouvrement ligneux de la réserve de Lamto" published by Gautier, L. in 1990. We georeferenced the scanned paper map using ground control points derived from Google Maps. The dataset contains the scanned map, the ground control points and the raster layer of the georeferenced map.
Facebook
TwitterEight Landsat TM and three SPOT satellite scenes were used to determine earth cover categories for this 9,300,000 hectare (23,000,000 acre) study area. Seven major classes and seventeen minor classes were classified. Datafiles (GIS Raster) are provided separately for download.
Facebook
TwitterBasic raster layers from the MCM-LTER spatial data holdings have been exported and symbolized. The dataset files offered here include: 30m DEM made from USGS Topo map SPOT Satellite Image 39-558 LANDSAT 7 Satellite Image Note - the SPOT and LANDSAT layers are not MCM-LTER data products.  These resources were updated last in 2007, for more up-to-date layers, and potentially, higher resolution layers, please visit the Polar Geospatial Center and other affine geospatial data clearinghouses.Â
Facebook
TwitterAn index of TIFs received from the Rural Water Association. The TIFs are comparable to the Unconsolidated Aquifers and the Surficial Geologic Matetrials shapefiles. Data exists for the following towns: Ancram, Austerlitz, Chatham, Claverack, Copake, Germantown, Ghent, Hillsdale, Stuyvesant, and Taghkanic.
TIF Data current as of March 2016.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The map of potential natural vegetation of eastern Africa (V4A) gives the distribution of potential natural vegetation in Ethiopia, Kenya, Tanzania, Uganda, Rwanda, Burundi, Malawi and Zambia.
The map is based on national and local vegetation maps constructed from botanical field surveys - mainly carried out in the two decades after 1950 - in combination with input from national botanical experts. Potential natural vegetation (PNV) is defined as “vegetation that would persist under the current conditions without human interventions”. As such, it can be considered a baseline or null model to assess the vegetation that could be present in a landscape under the current climate and edaphic conditions and used as an input to model vegetation distribution under changing climate.
Vegetation types are defined by their tree species composition, and the documentation of the maps thus includes the potential distribution for more than a thousand tree and shrub species, see the documentation (https://vegetationmap4africa.org/species.html)
The map distinguishes 48 vegetation types, divided in four main vegetation groups: 16 forest types, 15 woodland and wooded grassland types, 5 bushland and thicket types and 12 other types. The map is available in various formats. The online version (https://vegetationmap4africa.org/vegetation_map.html) and for PDF versions of the map, see the documentation (https://vegetationmap4africa.org/documentation.html). Version 2.0 of the potential natural vegetation map and the woody species selection tool was published in 2015 (https://vegetationmap4africa.org/docs/versionhistory/). The original data layers include country-specific vegetation types to maintain the maximum level of information available. This map might be most suitable when carrying out analysis at the national or sub-national level.
When using V4A in your work, cite the publication: Lillesø, J-P.B., van Breugel, P., Kindt, R., Bingham, M., Demissew, S., Dudley, C., Friis, I., Gachathi, F., Kalema, J., Mbago, F., Minani, V., Moshi, H., Mulumba, J., Namaganda, M., Ndangalasi, H., Ruffo, C., Jamnadass, R. & Graudal, L. 2011, Potential Natural Vegetation of Eastern Africa (Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia). Volume 1: The Atlas. 61 ed. Forest & Landscape, University of Copenhagen. 155 p. (Forest & Landscape Working Papers; 61 - as well as this repository using the DOI .
The development of V4A was mainly funded by the Rockefeller Foundation and supported by University of Copenhagen
If you want to use the potential natural vegetation map of eastern Africa for your analysis, you can download the spatial data layers in raster format as well as in vector format from this repository
A simplified version of the map can be found on Figshare . That version aggregates country specific vegetation types into regional types. This might be the better option when doing regional-level assessments.
Facebook
Twitterhttps://creativecommons.org/licenses/publicdomain/https://creativecommons.org/licenses/publicdomain/
https://spdx.org/licenses/CC-PDDChttps://spdx.org/licenses/CC-PDDC
Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset