100+ datasets found
  1. u

    GIS Clipping and Summarization Toolbox

    • verso.uidaho.edu
    • data.nkn.uidaho.edu
    Updated Mar 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justin Welty; Michelle Jefferies; Robert Arkle; David Pilliod; Susan Kemp (2022). GIS Clipping and Summarization Toolbox [Dataset]. https://verso.uidaho.edu/esploro/outputs/dataset/GIS-Clipping-and-Summarization-Toolbox/996762913201851
    Explore at:
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    Idaho EPSCoR, EPSCoR GEM3
    Authors
    Justin Welty; Michelle Jefferies; Robert Arkle; David Pilliod; Susan Kemp
    Time period covered
    Mar 9, 2022
    Description

    Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset.

    Toolbox Use
    License
    Creative Commons-PDDC
    Recommended Citation
    Welty JL, Jeffries MI, Arkle RS, Pilliod DS, Kemp SK. 2021. GIS Clipping and Summarization Toolbox: U.S. Geological Survey Software Release. https://doi.org/10.5066/P99X8558

  2. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  3. N

    Land Cover Raster Data (2017) – 6in Resolution

    • data.cityofnewyork.us
    • s.cnmilf.com
    • +2more
    application/rdfxml +5
    Updated Dec 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Technology and Innovation (OTI) (2018). Land Cover Raster Data (2017) – 6in Resolution [Dataset]. https://data.cityofnewyork.us/Environment/Land-Cover-Raster-Data-2017-6in-Resolution/he6d-2qns
    Explore at:
    xml, json, csv, tsv, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Office of Technology and Innovation (OTI)
    Description

    A 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks)

    For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub.

    To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md

  4. a

    Steep Slopes Raster Data

    • hub.arcgis.com
    • data-islandcountygis.opendata.arcgis.com
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Island County GIS (2018). Steep Slopes Raster Data [Dataset]. https://hub.arcgis.com/documents/2848fcad4bd649a38477424c1ea133cf
    Explore at:
    Dataset updated
    Jun 26, 2018
    Dataset authored and provided by
    Island County GIS
    License

    https://maps.islandcountywa.gov/WebFiles/DataDownloads/Metadata/steepslopes.htmlhttps://maps.islandcountywa.gov/WebFiles/DataDownloads/Metadata/steepslopes.html

    Description

    Data were derived from 2014 6" resolution Island County lidar data using ArcGIS and Spatial Analyst Tools. The resulting raster was then converted to polygons. Polygons spanning elevation differences <10' were deleted.

  5. Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso...

    • envidat.ch
    json, not available +1
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ionuț Iosifescu Enescu (2025). Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso with Shaded Relief and Water) [Dataset]. http://doi.org/10.16904/envidat.68
    Explore at:
    not available, json, xmlAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Swiss Federal Institute for Forest, Snow and Landscape Research
    Authors
    Ionuț Iosifescu Enescu
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Switzerland
    Dataset funded by
    WSL
    Description

    The attached data are some large GIS raster files (GeoTIFFs) made with Natural Earth data. Natural Earth is a free vector and raster map data @ naturalearthdata.com. The data used for creating these large files was the "Cross Blended Hypso with Shaded Relief and Water". Data was concatenated to achieve larger and larger files. Internal pyramids were created, in order that the files can be opened easily in a GIS software such as QGIS or by a (future) GIS data visualisation module integrated in EnviDat. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com

  6. g

    Georeferenced Population Datasets of Mexico (GEO-MEX): Raster Based GIS...

    • gimi9.com
    • data.nasa.gov
    • +4more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georeferenced Population Datasets of Mexico (GEO-MEX): Raster Based GIS Coverage of Mexican Population [Dataset]. https://gimi9.com/dataset/data-gov_georeferenced-population-datasets-of-mexico-geo-mex-raster-based-gis-coverage-of-mexican-p/
    Explore at:
    Area covered
    Mexico
    Description

    The Raster Based GIS Coverage of Mexican Population is a gridded coverage (1 x 1 km) of Mexican population. The data were converted from vector into raster. The population figures were derived based on available point data (the population of known localities - 30,000 in all). Cell values were derived using a weighted moving average function (Burrough, 1986), and then calculated based on known population by state. The result from this conversion is a coverage whose population data is based on square grid cells rather than a series of vectors. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Instituto Nacional de Estadistica Geografia e Informatica (INEGI).

  7. k

    Digital Raster Graphics Download

    • hub.kansasgis.org
    Updated Nov 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kansas State Government GIS (2020). Digital Raster Graphics Download [Dataset]. https://hub.kansasgis.org/maps/3910e86e3ed54ebebfc291d6f011fe78
    Explore at:
    Dataset updated
    Nov 6, 2020
    Dataset authored and provided by
    Kansas State Government GIS
    Area covered
    Description

    The Digital Raster Graphic (DRG) is a raster image of a scanned USGS topographic map. A DRG-Lam is useful as a source or background layer in a GIS, as a means to perform quality assurance on other digital products, and as a source for the collection and revision of DLG data. DRG-Lam's can also be merged with other digital data, e.g. DEM's or DOQ's, to produce a hybrid digital file. These DRGs were produced through an Innovative Partnership agreement between The Land Information Technology Company, Ltd., of Aurora, CO and the USGS.The full Kansas geospatial catalog is administered by the Kansas Data Access & Support Center (DASC) and can be found at the following URL: https://hub.kansasgis.org/

  8. d

    Landcover Raster Data (2010) – 6in Resolution

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). Landcover Raster Data (2010) – 6in Resolution [Dataset]. https://catalog.data.gov/dataset/landcover-raster-data-2010-6in-resolution
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    6 inch resolution raster image of New York City, classified by landcover type. High resolution land cover data set for New York City. This is the 6 inch version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.

  9. n

    NYRWA Raster Data Index:

    • data.gis.ny.gov
    Updated Mar 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShareGIS NY (2023). NYRWA Raster Data Index: [Dataset]. https://data.gis.ny.gov/datasets/nyrwa-raster-data-index-
    Explore at:
    Dataset updated
    Mar 20, 2023
    Dataset authored and provided by
    ShareGIS NY
    Area covered
    Description

    An index of TIFs received from the Rural Water Association. The TIFs are comparable to the Unconsolidated Aquifers and the Surficial Geologic Matetrials shapefiles. Data exists for the following towns: Ancram, Austerlitz, Chatham, Claverack, Copake, Germantown, Ghent, Hillsdale, Stuyvesant, and Taghkanic.

    TIF Data current as of March 2016.

  10. NZ Bay of Plenty DTM 25m (Raster)

    • hub.arcgis.com
    • data-niwa.opendata.arcgis.com
    Updated Jul 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Water and Atmospheric Research (2022). NZ Bay of Plenty DTM 25m (Raster) [Dataset]. https://hub.arcgis.com/documents/36cb18c3db034aafa16c578e952a16a0
    Explore at:
    Dataset updated
    Jul 25, 2022
    Dataset authored and provided by
    National Institute of Water and Atmospheric Research
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    New Zealand, Bay Of Plenty
    Description

    A bathymetry model of the Bay of Plenty (New Zealand) region in 25 m grid resolution. Bathymetry is compiled from multibeam and single-beam data sourced from surveys from NIWA and Land Information New Zealand (LINZ), as well as international surveys by vessels from United States of America and Germany.This is 25m Bay of Plenty Digital Terrain Model Raster File for download (ca 200 MB). You can download this file and use it in further analyses or for mapping.Alternatively, you can avoid the download if you prefer to stream the DTM as a web service from this URL https://niwa.maps.arcgis.com/home/item.html?id=3a1d7ee29dac42e3ba6ec4efeeafbacf using an ArcGIS Client application such as ArcGIS Pro, ArcGIS Maps for Office, a Web map viewer (browser) or Survey123, FieldMaps etc.This raster has been used for the production of:Lamarche, G., Guntz, M., Mackay, K., Pallentin, A., and Mackay, E., 2018. Bay of Plenty. NIWA Miscellaneous Chart Series 109._Item Page Created: 2022-07-25 04:00 Item Page Last Modified: 2025-04-05 21:46Owner: NIWA_OpenData

  11. f

    Georgia Digital Raster Graphic Hillshade (DRG243D)

    • gisdata.fultoncountyga.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Feb 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Information Technology Outreach Services (2018). Georgia Digital Raster Graphic Hillshade (DRG243D) [Dataset]. https://gisdata.fultoncountyga.gov/maps/e2a5708f82344936a3dc8163c6ff01c8
    Explore at:
    Dataset updated
    Feb 8, 2018
    Dataset authored and provided by
    Information Technology Outreach Services
    Area covered
    Description

    US Geologic Service (USGS) Digital Raster Graphics (1:24000 scale) for the State of Georgia, combined with a hillshade visualization of a 10 meter Digital Elevation Model (DEM). A DRG is an image of a USGS standard series topographic map scanned at a minimum resolution of 250 dots per inch, and georeferenced to the Universal Transverse Mercator (UTM) projection. Each 7.5-minute DRG provides coverage for an area of land measuring 7.5-minutes of latitude by 7.5-minutes longitude. The horizontal positional accuracy and datum of the DRG matches that of the source map. The National Elevation Dataset (NED) is produced and distributed by the USGS. The NED is derived from diverse sources and processed to a common coordinate system and unit of vertical measure. NED data are in geographic coordinates (decimal degree units) and conform with the North American Datum of 1983. Elevation values are in meters, and referenced to the North American Vertical Datum of 1988 over the conterminous US. Although these data have been processed successfully on a computer system at the Georgia GIS Data Clearinghouse, no warranty expressed or implied is made by Georgia GIS Data Clearinghouse regarding the utility of the data on any other system, nor shall the act of distribution constitute any such warranty.

  12. n

    Earth Cover Classification - Dalton Highway - Report and GIS Raster -...

    • catalog.northslopescience.org
    Updated Feb 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Earth Cover Classification - Dalton Highway - Report and GIS Raster - Datasets - North Slope Science Catalog [Dataset]. https://catalog.northslopescience.org/dataset/1139
    Explore at:
    Dataset updated
    Feb 11, 2022
    Area covered
    Dalton Highway, North Slope Borough, Earth
    Description

    BLM and Ducks Unlimited (DU) cooperatively mapped a study area along the Dalton Highway using portions of four Landsat TM scenes (1999-2001) and classified 43 earth cover categories. Raster dataset is available separately for download.

  13. Missouri Raster Data

    • figshare.com
    tiff
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melanie Boudreau (2023). Missouri Raster Data [Dataset]. http://doi.org/10.6084/m9.figshare.23646456.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jul 7, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Melanie Boudreau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Rasters assocaited with elevation (from the National elevation dataset), slope (created from the elevation dataset using ArcGIS), a Shannon diversity index as a metric of landscape fragmentation (created from the forest/shrub layer using Fragstats), distance to all roads (created in ArcGIS using a road TIGER shapefile), distance to forest/shrubs (created using NLCD 2016 data), human population density (created using data from the US Census Bureau). All rasters are at a 90m resolution.

  14. Global map of tree density

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A. (2023). Global map of tree density [Dataset]. http://doi.org/10.6084/m9.figshare.3179986.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).

    Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.

    Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.

    Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------

    Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.

    Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.

    References:

    Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.

  15. n

    NC OneMap Elevation Raster Functions

    • nconemap.gov
    • hub.arcgis.com
    • +2more
    Updated Mar 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NC OneMap / State of North Carolina (2025). NC OneMap Elevation Raster Functions [Dataset]. https://www.nconemap.gov/content/46fbc7bc1eca4241891e9011da95b59a
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset authored and provided by
    NC OneMap / State of North Carolina
    License

    https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms

    Description

    Raster functions are operations that apply processing directly to raster dataset pixels. The raster functions supplied here are the same operations applied to the 3 ft. DEM-related web services from NC OneMap (Aspect, Hillshade, Shaded Elevation, Shaded Relief, Slope, and raster contours for 1 foot, 2 feet, 4 feet, 20 feet, and 100 feet). The downloaded functions can be used in ArcGIS products.

    These could be helpful if there is a need to use an NC OneMap DEM-derivative elevation product in a disconnected environment, an instance where web service use is not practical. The county-based DEMs can be downloaded and the raster functions applied in ArcGIS Pro, for use in an offline environment.

    In the downloaded raster functions ZIP file are XML files for:

     Aspect
     Hillshade
     Shaded Elevation
     Shaded Relief
     Slope
     Raster Contours for intervals: 1 ft., 2 ft., 4 ft., 20 ft., 100 ft.
    

    Information on using raster functions in ArcGIS Pro can be found here.

  16. D

    Lamto GIS layer (raster dataset): orthomosaic of aerial photographs of the...

    • dataverse.ird.fr
    png, zip
    Updated Mar 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Konaté; S. Barot; S. Barot; S. Konaté (2023). Lamto GIS layer (raster dataset): orthomosaic of aerial photographs of the Lamto reserve (Côte d'Ivoire) acquired by IGN in 1963 [Dataset]. http://doi.org/10.23708/G3YBU1
    Explore at:
    zip(79357655), png(1048116)Available download formats
    Dataset updated
    Mar 7, 2023
    Dataset provided by
    DataSuds
    Authors
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Konaté; S. Barot; S. Barot; S. Konaté
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/4.0/customlicense?persistentId=doi:10.23708/G3YBU1https://dataverse.ird.fr/api/datasets/:persistentId/versions/4.0/customlicense?persistentId=doi:10.23708/G3YBU1

    Area covered
    Côte d'Ivoire
    Description

    This dataset holds the process chain to produce a orthomosaic from 220 aerial photographs acquired by IGN in 1963 under the mission AOF 566P5000. The dataset covers the Lamto reserve. We orthorectified the scanned images using ground control points from Google Maps and a structure from motion software (SfM). This dataset contains the scanned aerial photographes, the ground control points and the finale orthomosaic with a 17 cm ground resolution.

  17. n

    Reduced-Resolution QuickBird Imagery and Related GIS Layers for Barrow,...

    • cmr.earthdata.nasa.gov
    • access.earthdata.nasa.gov
    • +3more
    not provided
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Reduced-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1386246137-NSIDCV0.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Apr 2, 2025
    Time period covered
    Aug 1, 2002 - Aug 2, 2002
    Area covered
    Description

    This data set contains reduced-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area 156.15° W - 157.07° W, 71.15° N - 71.41° N) and the Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitialGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.

    Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).

    The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest.

    Data are available either via FTP or on CD-ROM.

  18. D

    Lamto GIS layer (raster dataset): Lamto reserve (Côte d'Ivoire) 1963...

    • dataverse.ird.fr
    Updated Mar 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; S. Konaté; de la Souchère P; Badarello L; S. Konaté; de la Souchère P; Badarello L (2024). Lamto GIS layer (raster dataset): Lamto reserve (Côte d'Ivoire) 1963 vegetation cover, after original map by de la Souchère & Badarello (1969) [Dataset]. http://doi.org/10.23708/XCNQCS
    Explore at:
    application/zipped-shapefile(113195307), png(84127), png(288848), tiff(55323016)Available download formats
    Dataset updated
    Mar 12, 2024
    Dataset provided by
    DataSuds
    Authors
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; S. Konaté; de la Souchère P; Badarello L; S. Konaté; de la Souchère P; Badarello L
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.23708/XCNQCShttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.23708/XCNQCS

    Area covered
    Côte d'Ivoire
    Description

    This dataset holds the unpublished map “Carte physionomique des faciès savaniens de Lamto" drawn by de la Souchère; P. and Badarello, L. in 1969. We georeferenced the scanned paper map using ground control points derived from Google Maps. The dataset contains the scanned map, the ground control points and the raster layer of the georeferenced map.

  19. d

    Raster classification and mapping of ecological units of Southern California...

    • datadryad.org
    • search.dataone.org
    • +1more
    zip
    Updated Mar 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allan Hollander; Emma Underwood (2021). Raster classification and mapping of ecological units of Southern California [Dataset]. http://doi.org/10.25338/B8432H
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 11, 2021
    Dataset provided by
    Dryad
    Authors
    Allan Hollander; Emma Underwood
    Time period covered
    2021
    Area covered
    California, Southern California
    Description

    Summary of Methods for Developing Ecological Units in Southern California

    Allan Hollander and Emma Underwood, University of California Davis.

    1) Compiling GIS layers. These data were compiled from a variety of sources and resolutions (Table 1) for the southern California study area (see Methods_figure_1.png for the study area). The original resolution of these raster layers ran from 10 meters to 270 meters, and resampling was conducted so all analyses were performed at a 30 meter raster resolution. We decided not to include vegetation in the data stack as the aim was to capture biophysical characteristics and vegetation will reflect current landscape history and land use patterns (e.g. fire history, type conversion from shrubland, or agricultural use). Lakes and reservoirs were omitted from the subsequent analysis. Data compiled:

    a) Soil suborders. This was a discretely-classified raster layer with 22 soil suborder classes included in the southern California region. This was derived ...

  20. d

    Spring Season Habitat Suitability Index Raster

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Spring Season Habitat Suitability Index Raster [Dataset]. https://catalog.data.gov/dataset/spring-season-habitat-suitability-index-raster
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This raster represents a continuous surface of sage-grouse habitat suitability index (HSI, created using ArcGIS 10.2.2) values for Nevada during spring, which is a surrogate for habitat conditions during the sage-grouse breeding and nesting period. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Summer included telemetry locations (n = 14,058) from mid-March to June. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated using R Software (v 3.13) for each subregion and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Justin Welty; Michelle Jefferies; Robert Arkle; David Pilliod; Susan Kemp (2022). GIS Clipping and Summarization Toolbox [Dataset]. https://verso.uidaho.edu/esploro/outputs/dataset/GIS-Clipping-and-Summarization-Toolbox/996762913201851

GIS Clipping and Summarization Toolbox

Explore at:
Dataset updated
Mar 9, 2022
Dataset provided by
Idaho EPSCoR, EPSCoR GEM3
Authors
Justin Welty; Michelle Jefferies; Robert Arkle; David Pilliod; Susan Kemp
Time period covered
Mar 9, 2022
Description

Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset.

Toolbox Use
License
Creative Commons-PDDC
Recommended Citation
Welty JL, Jeffries MI, Arkle RS, Pilliod DS, Kemp SK. 2021. GIS Clipping and Summarization Toolbox: U.S. Geological Survey Software Release. https://doi.org/10.5066/P99X8558

Search
Clear search
Close search
Google apps
Main menu