Facebook
Twittermetadata for location and details for raster layers provided by QSEL
Facebook
TwitterThe table Nigeria raster layer metadata is part of the dataset Uganda Geodata, available at https://columbia.redivis.com/datasets/2he4-1tf2z5myv. It contains 4 rows across 9 variables.
Facebook
TwitterOS Open Raster stack of GB for use as base mapping from national scale through to street level data. The currency of the data is: GB Overview Maps - 12/2014 MiniScale - 01/2024 OS 250K Raster - 06/2024Vector Map District Raster - 05/2024Open Map Local Raster - 10/2024 The coverage of the map service is GB. The map projection is British National Grid. The service is appropriate for viewing down to a scale of approximately 1:2,500. For more information on OS Open Services see: https://osdatahub.os.uk/downloads/open Updated: 29/10/2024
Facebook
TwitterThis zip file contains 24 raster layers representing data from a variety of landscape metrics used to analyze the landscape context of the greater Yellowstone area. Their names, descriptions and categorization are as follows: Housing This raster dataset contains seventeen housing layers which are all named in the format "bhc1940," where ‘bhc’ is Built Housing Capacity and year represents the decades from 1940 through 2100. The layers depict the location and density of private land housing unit classes, as described below. The classifications were produced using the SERGoM v3 model (see Theobald, D. 2005. Landscape patterns of exurban growth in the USA from 1980 to 2020. http://www.ecologyandsociety.org/vol10/iss1/art32). These data are based on existing US Census datasets and growth projections. SERGoM_bhc_metrics: Value CLASSNAME 0 Private undeveloped 1 2,470 units / square km 12 Commercial/industrial Land Cover Land cover and impervious surface data comes from version 2 of the circa 2001 National Land Cover Dataset (NLCD), the circa 2006 NLCD, and the NLCD 2001/2006 Land Cover Change product, which was acquired from the Multi-Resolution Land Characteristics Consortium. The names and descriptions of the five land cover raster layers are as follows: NLCD_2001v2. This raster layer depicts 16 land cover classes using data from version 2 of the circa 2001 National Land Cover Dataset. NLCD_2006. This raster layer depicts 16 land cover classes using data from the circa 2006 National Landcover Database. LandCover_2001. This raster layer depicts 16 land cover classes using data from the circa 2001 National Land Cover Dataset. Land cover classes for NLCD_2001, NLCD_2006 and LandCover_2001 are shown below. Value Land Cover 11 Open Water 12 Perennial Snow/Ice 21 Developed, Open Space 22 Developed, Low Intensity 23 Developed, Medium Intensity 24 Developed, High Intensity 31 Barren Land 41 Deciduous Forest 42 Evergreen Forest 43 Mixed Forest 52 Shrub/Scrub 71 Herbaceous 81 Hay/Pasture 82 Cultivated Crops 90 Woody Wetlands 95 Emergent Herbaceous Wetlands ImperviousSurfaces_2001. This raster layer represents impervious surfaces using data from the circa 2001 National Land Cover Dataset. ImperviousSurfaces_2006. This raster layer represents impervious surfaces using data from the circa 2006 National Landcover Database. LandCoverChange_2001_2006. This raster layer represents land cover change from 2001 to 2006 using data from the NLCD 2001/2006 Land Cover Change product, which was acquired from the Multi-Resolution Land Characteristics Consortium. Wildlife - Grizzly_Connectivity. This raster layer represents grizzly habitat connectivity in the GYA. For more information, please consult the corresponding reference citations from the report. Agriculture - GYA_Agriculture is a CSV file containing tabular county-level data from the 2002 and 2007 U.S. Department of Agriculture (USDA) Census of Agriculture. Data were obtained from National Agriculture Statistics Service (NASS).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Acknowledgements: The CORE format was proudly inspired by the Cloud Optimized GeoTIFF (COG) format, by considering how to leverage the ability of clients issuing HTTP GET range requests for a time-series of remote sensing and aerial imagery (instead of just one image).
Summary: The Cloud Optimized Raster Encoding (CORE) format is being developed for the efficient storage and management of gridded data by applying video encoding algorithms. It is mainly designed for the exchange and preservation of large time series data in environmental data repositories, while in the same time enabling more efficient workflows on the cloud. It can be applied to any large number of similar (in pixel size and image dimensions) raster data layers. CORE is not designed to replace COG but to work together with COG for a collection of many layers (e.g. by offering a fast preview of layers when switching between layers of a time series). WARNING: Currently only applicable to RGB/Byte imagery. The final CORE specifications may probably be very different from what is written herein or CORE may not ever become productive due to a myriad of reasons (see also 'Major issues to be solved'). With this early public sharing of the format we explicitly support the Open Science agenda, which implies "shifting from the standard practices of publishing research results in scientific publications towards sharing and using all available knowledge at an earlier stage in the research process" (quote from: European Commission, Directorate General for Research and Innovation, 2016. Open innovation, open science, open to the world). CORE Specifications: 1) a MP4 or WebM video digital multimedia container format (or any future video container playable as HTML video in major browsers) 2) a free to use or open video compression codec such as H.264, VP9, or AV1 (or any future video codec that is open sourced or free to use for end users) Note: H.264 is currently recommended because of the wide usage with support in all major browsers, fast encoding due to acceleration in hardware (which is currently not the case for AV1 or VP9) and the fact that MPEG LA has allowed the free use for streaming video that is free to the end users. However, please note that H.264 is restricted by patents and its use in proprietary or commercial software requires the payment of royalties to MPEG LA. However, when AV1 matures and accelerated hardware encoding becomes available, AV1 is expected to offer 30% to 50% smaller file size in comparison with H.264, while retaining the same quality. 3) the encoding frame rate should be of one frame per second (fps) with each layer segmented in internal tiles, similar to COG, ordered by the main use case when accessing the data: either layer contiguous or tile contiguous; Note: The internal tile arrangement should support an easy navigation inside the CORE video format, depending on the use case. 4) a CORE file is optimised for streaming with the moov atom at the beginning of the file (e.g. with -movflags faststart) and optional additional optimisations depending on the codec used (e.g. -tune fastdecode -tune zerolatency for H.264) 5) metadata tags inside the moov atom for describing and using geographic image data (that are preferably compatible with the OGC GeoTIFF standard or any future standard accepted by the geospatial community) as well as list of original file names corresponding to each CORE layer 6) it needs to encode similar source rasters (such as time series of rasters with the same extent and resolution, or different tiles of the same product; each input raster should be having the same image and pixel size) 7) it provides a mechanism for addressing and requesting overviews (lower resolution data) for a fast display in web browser depending on the map scale (currently external overviews) Major issues to be solved: - Internal overviews (similar to COG), by chaining lower resolution videos in the same MP4 container for fast access to overviews first); Currently, overviews are kept as separate files, as external overviews. - Metadata encoding (how to best encode spatial extent, layer names, and so on, for each of the layer inside the series, which may have a different geographical extent, etc...; Known issues: adding too many tags with FFmpeg which are not part of the standard MP4 moov atom; metadata tags have a limited string length. - Applicability beyond RGB/Byte datasets; defining a standard way of converting cell values from Int16/UInt16/UInt32/Int32/Float32/Float64/ data types into multi-band Byte values (and reconstructing them back to the original data type within acceptable thresholds) Example Notice: The provided CORE (.mp4) examples contain modified Copernicus Sentinel data [2018-2021]. For generating the CORE examples provided, 50 original Sentinel 2 (S-2) TCI data images from an area located inside Switzerland were downloaded from www.copernicus.eu, and then transformed into CORE format using ffmpeg with H.264 encoding using the x264 library. DISCLAIMER: Basic scripts are provided for the Geomatics peer review (in 2021) and kept as additional information for the dataset. Nevertheless, please note that software dependencies and libraries, as well as cloud storage paths, may quickly become deprecated over time (after 2021). For compatibility, stable dependencies and libraries released around 2020 should be used.
Facebook
TwitterThis zip file contains geodatabases with raster mosaic datasets. The raster mosaic datasets consist of georeferenced tiff images of mineral potential maps, their associated metadata, and descriptive information about the images. These images are duplicates of the images found in the georeferenced tiff images zip file. There are four geodatabases containing the raster mosaic datasets, one for each of the four SaMiRA report areas: North-Central Montana; North-Central Idaho; Southwestern and South-Central Wyoming and Bear River Watershed; and Nevada Borderlands. The georeferenced images were clipped to the extent of the map and all explanatory text, gathered from map explanations or report text was imported into the raster mosaic dataset database as ‘Footprint’ layer attributes. The data compiled into the 'Footprint' layer tables contains the figure caption from the original map, online linkage to the source report when available, and information on the assessed commodities according to the legal definition of mineral resources—metallic, non-metallic, leasable non-fuel, leasable fuel, geothermal, paleontological, and saleable. To use the raster mosaic datasets in ArcMap, click on “add data”, double click on the [filename].gdb, and add the item titled [filename]_raster_mosaic. This will add all of the images within the geodatabase as part of the raster mosaic dataset. Once added to ArcMap, the raster mosaic dataset appears as a group of three layers under the mosaic dataset. The first item in the group is the ‘Boundary’, which contains a single polygon representing the extent of all images in the dataset. The second item is the ‘Footprint’, which contains polygons representing the extent of each individual image in the dataset. The ‘Footprint’ layer also contains the attribute table data associated with each of the images. The third item is the ‘Image’ layer and contains the images in the dataset. The images are overlapping and must be selected and locked, or queried in order to be viewed one at a time. Images can be selected from the attribute table, or can be selected using the direct select tool. When using the direct select tool, you will need to deselect the ‘overviews’ after clicking on an image or group of images. To do this, right click on the ‘Footprint’ layer and hover over ‘Selection’, then click ‘Reselect Only Primary Rasters’. To lock a selected image after selecting it, right-click on the ‘Footprint’ layer in the table of contents window and hover over ‘Selection’, then click ‘Lock To Selected Rasters’. Another way to view a single image is to run a definition query on the image. This is done by right clicking on the raster mosaic in the table of contents and opening the layer properties box. Then click on the ‘Definition Query’ tab and create a query for the desired image.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Native Vegetation Cover raster layer, Victoria, AustraliaInput file used to model the species distributions of 40 reptile species in Victoria, Australia.Cell size - 250 x 250Original map of land cover types for Victoria obtained DataVic website. The original layer included 15 land cover classes. These were reclassified into five classes - cropping, grazing pasture, native vegetation, plantation forests and other. FRAGSTATS (v4.2, McGarigal et al 2012) was used to perform moving window analysis on the edited file to calculate native vegetation cover. Further details of methods used to generate the input files and perform modelling are outlined in the methods section of the publication.Original dataset - Victorian Land Cover Mapping 2016https://metashare.maps.vic.gov.au/geonetwork/srv/api/records/45fb10e4-866a-50a2-902d-e4d0728f0caf/formatters/sdm-html?root=html&output=htmlDOI - 10.26279/5b98592d6b27d
Facebook
TwitterA 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks) For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub. To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 23 30m resolution raster data of continental Europe land use / land cover classes extracted from OpenStreetMap, as well as administrative areas, and a harmonized building dataset based on OpenStreetMap and Copernicus HRL Imperviousness data.
The land use / land cover classes are:
The land use / land cover data was generated by extracting OSM vector layers from https://download.geofabrik.de/). These were then transformed into a 30 m density raster for each feature type. This was done by first creating a 10 m raster where each pixel intersecting a vector feature was assigned the value 100. These pixels were then aggregated to 10 m resolution by calculating the average of every 9 adjacent pixels. This resulted in a 0—100 density layer for the three feature types. Although the digitized building data from OSM offers the highest level of detail, its coverage across Europe is inconsistent. To supplement the building density raster in regions where crowd-sourced OSM building data was unavailable, we combined it with Copernicus High Resolution Layers (HRL) (obtained from https://land.copernicus.eu/pan-european/ high-resolution-layers), filling the non-mapped areas in OSM with the Impervious Built-up 2018 pixel values, which was averaged to 30 m. The probability values produced by the averaged aggregation were integrated in such a way that values between 0—100 refer to OSM (lowest and highest probabilities equal to 0 and 100 respectively), and the values between 101—200 refer to Copernicus HRL (lowest and highest probability equal to 200 and 101 respectively). This resulted in a raster layer where values closer to 100 are more likely to be buildings than values closer to 0 and 200. Structuring the data in this way allows us to select the higher probability building pixels in both products by the single boolean expression: Pixel > 50 AND pixel <150.
This dataset is part of the OpenStreetMap+ was used to pre-process the LUCAS/CORINE land use / land cover samples (https://doi.org/10.5281/zenodo.4740691) used to train machine learning models in Witjes et al., 2022 (https://doi.org/10.21203/rs.3.rs-561383/v4)
Each layer can be viewed interactively on the Open Data Science Europe data viewer at maps.opendatascience.eu.
Facebook
Twitterhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.23708/TCK6IHhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.23708/TCK6IH
This dataset holds the map “Carte du recouvrement ligneux de la réserve de Lamto" published by Gautier, L. in 1990. We georeferenced the scanned paper map using ground control points derived from Google Maps. The dataset contains the scanned map, the ground control points and the raster layer of the georeferenced map.
Facebook
Twitter6 inch resolution raster image of New York City, classified by landcover type. High resolution land cover data set for New York City. This is the 6 inch version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains the processing unit for Greenland from the Hydrological Derivatives for Modeling and Analysis (HDMA) database. The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seconds (the sma ...
Facebook
TwitterShape Index ((arithmetic mean) raster Victoria, AustraliaInput file used to model the species distributions of 40 reptile species in Victoria, Australia.Cell size - 250 x 250Original map of land cover types for Victoria obtained DataVic website. The original layer included 15 land cover classes. These were reclassified into five classes - cropping, grazing pasture, native vegetation, plantation forests and other.FRAGSTATS (v4.2, McGarigal et al 2012) was used to perform moving window analysis on the edited file to calculate Shape Index ((arithmetic mean). Further details of methods used to generate the input files and perform modelling are outlined in the methods section of the publication.Original dataset - Victorian Land Cover Mapping 2016https://metashare.maps.vic.gov.au/geonetwork/srv/api/records/45fb10e4-866a-50a2-902d-e4d0728f0caf/formatters/sdm-html?root=html&output=htmlDOI - 10.26279/5b98592d6b27d
Facebook
TwitterThis is a raster file in .e00 file that have values from -1 to 360. These values represent cardinal values (North; 0 , East; 90, South; 180, West; 270).
Facebook
TwitterThis dataset contains the processing units for the Asian continent from the Hydrological Derivatives for Modeling and Analysis (HDMA) database. The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seconds (the smallest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30-arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information.
Facebook
Twitterhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.23708/XCNQCShttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.23708/XCNQCS
This dataset holds the unpublished map “Carte physionomique des faciès savaniens de Lamto" drawn by de la Souchère; P. and Badarello, L. in 1969. We georeferenced the scanned paper map using ground control points derived from Google Maps. The dataset contains the scanned map, the ground control points and the raster layer of the georeferenced map.
Facebook
TwitterGeodata from Uganda Uganda administrative boundaries and distribution of electic lines have been converted from shapefiles (.shp) to tables including the geospatial information in a geojson or geobuf_* column using NodeJS shapefile utilities.
Facebook
TwitterThe table Nigeria Raster Layer Metadata is part of the dataset Nigeria Geodata, available at https://columbia.redivis.com/datasets/7rma-4nv9caew9. It contains 2 rows across 9 variables.
Facebook
TwitterThis is a raster file in .e00 file that has a number of values that represent a range of elevations across Interior Alaska.
Facebook
TwitterNIWA's bathymetry model of New Zealand at a 250m resolution. The 2016 model is a compilation of data digitised from published coastal charts, digital soundings archive, navy collector sheets and digital multibeam data sourced from surveys by NIWA, LINZ, as well as international surveys by vessels from United States of America, France, Germany, Australia, and Japan. All data used is held at NIWA.Image service can be used for analysis in ArcGIS Desktop or ArcGIS Online - no need to download the data, just stream using this service and classify, symbolise, mask, extract or apply map algebra - just like you would with local raster files. https://enterprise.arcgis.com/en/server/latest/publish-services/windows/key-concepts-for-image-services.htmMap information and metadata Offshore representation was generated from digital bathymetry at a grid resolution of 250m. Sun illumination is from an azimuth of 315° and 45° above the horizon.Projection Mercator 41 (WGS84 datum). EPSG: 3994Scale 1:5,000,000 at 41°S. Not to be used for navigational purposes Bibliographic reference Mitchell, J.S., Mackay, K.A., Neil, H.L., Mackay, E.J., Pallentin, A., Notman P., 2012. Undersea New Zealand, 1:5,000,000. NIWA Chart, Miscellaneous Series No. 92Further Information: https://www.niwa.co.nz/our-science/oceans/bathymetry/further-informationLicence: https://www.niwa.co.nz/environmental-information/licences/niwa-open-data-licence-by-nn-nc-sa-version-1_Item Page Created: 2017-11-01 00:55 Item Page Last Modified: 2025-04-05 18:48Owner: NIWA_OpenData
Facebook
Twittermetadata for location and details for raster layers provided by QSEL