https://creativecommons.org/licenses/publicdomain/https://creativecommons.org/licenses/publicdomain/
https://spdx.org/licenses/CC-PDDChttps://spdx.org/licenses/CC-PDDC
Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
A clip of impervious surfaces to only include what is within the Yukon River Drainage. Original data was pulled from the impervious surface index, and was clipped to the extent of the drainage, then converted from a raster to polygon.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
scripts.zip
arcgisTools.atbx: terrainDerivatives: make terrain derivatives from digital terrain model (Band 1 = TPI (50 m radius circle), Band 2 = square root of slope, Band 3 = TPI (annulus), Band 4 = hillshade, Band 5 = multidirectional hillshades, Band 6 = slopeshade). rasterizeFeatures: convert vector polygons to raster masks (1 = feature, 0 = background).
makeChips.R: R function to break terrain derivatives and chips into image chips of a defined size. makeTerrainDerivatives.R: R function to generated 6-band terrain derivatives from digital terrain data (same as ArcGIS Pro tool). merge_logs.R: R script to merge training logs into a single file. predictToExtents.ipynb: Python notebook to use trained model to predict to new data. trainExperiments.ipynb: Python notebook used to train semantic segmentation models using PyTorch and the Segmentation Models package. assessmentExperiments.ipynb: Python code to generate assessment metrics using PyTorch and the torchmetrics library. graphs_results.R: R code to make graphs with ggplot2 to summarize results. makeChipsList.R: R code to generate lists of chips in a directory. makeMasks.R: R function to make raster masks from vector data (same as rasterizeFeatures ArcGIS Pro tool).
terraceDL.zip
dems: LiDAR DTM data partitioned into training, testing, and validation datasets based on HUC8 watershed boundaries. Original DTM data were provided by the Iowa BMP mapping project: https://www.gis.iastate.edu/BMPs. extents: extents of the training, testing, and validation areas as defined by HUC 8 watershed boundaries. vectors: vector features representing agricultural terraces and partitioned into separate training, testing, and validation datasets. Original digitized features were provided by the Iowa BMP Mapping Project: https://www.gis.iastate.edu/BMPs.
https://maps.islandcountywa.gov/WebFiles/DataDownloads/Metadata/steepslopes.htmlhttps://maps.islandcountywa.gov/WebFiles/DataDownloads/Metadata/steepslopes.html
Data were derived from 2014 6" resolution Island County lidar data using ArcGIS and Spatial Analyst Tools. The resulting raster was then converted to polygons. Polygons spanning elevation differences <10' were deleted.
This packaged data collection contains all of the outputs from our primary model, including the following data layers: Habitat Cores (vector polygons) Least-cost Paths (vector lines) Least-cost Corridors (raster) Least-cost Corridors (vector polygon interpretation) Modeling Extent (vector polygon) Please refer to the embedded spatial metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in shapefile (.shp) or raster GeoTIFF (.tif) formats.
The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
This dataset contains i) 1-band raster file in geotiff format with assigned land cover classes, CRS: EPSG:32652 - WGS 84 / UTM zone 52N, 2201 rows, 2930 columns, Band 1 is the Land Cover class band, with values from 0 to 11 (12 classes), Classifyer: Random Forest, trained with ROIs (LD18 vegetation plots + manually labelling using expert knowledge)And ii) 10 training classes representing different vegetation composition in the form of ESRI polygon shape files, covering Lena Delta 2018 expedition (LD18) vegetation plots and extended with expert knowledge from the field (file names are indicative)
This geodatabase includes spatial datasets that represent the Mississippian aquifer in the States of Alabama, Illinois, Indiana, Iowa, Kentucky, Maryland, Missouri, Ohio, Pennsylvania, Tennessee, Virginia and West Virginia. The aquifer is divided into three subareas, based on the data availability. In subarea 1 (SA1), which is the aquifer extent in Iowa, data exist of the aquifer top altitude and aquifer thickness. In subarea 2 (SA2), which is the aquifer extent in Missouri, data exist of the aquifer top and bottom aquifer surface altitudes. In subarea 3 (SA3), which is the aquifer area of the remaining States, no altitude or thickness data exist. Included in this geodatabase are: (1) a feature dataset "ds40MSSPPI_altitude_and_thickness_contours that includes aquifer altitude and thickness contours used to generate the surface rasters for SA1 and SA2, (2) a feature dataset "ds40MSSPPI_extents" that includes a polygon dataset that represents the subarea extents, a polygon dataset that represents the combined overall aquifer extent, and a polygon dataset of the Ft. Dodge Fault and Manson Anomaly, (3) raster datasets that represent the altitude of the top and the bottom of the aquifer in SA1 and SA2, and (4) georeferenced images of the figures that were digitized to create the aquifer top- and bottom-altitude contours or aquifer thickness contours for SA1 and SA2. The images and digitized contours are supplied for reference. The extent of the Mississippian aquifer for all subareas was produced from the digital version of the HA-730 Mississippian aquifer extent, (USGS HA-730). For the two Subareas with vertical-surface information, SA1 and SA2, data were retrieved from the sources as described below. 1. The aquifer-altitude contours for the top and the aquifer-thickness contours for the top-to-bottom thickness of SA1 were received in digital format from the Iowa Geologic Survey. The URL for the top was ftp://ftp.igsb.uiowa.edu/GIS_Library/IA_State/Hydrologic/Ground_Waters/ Mississippian_aquifer/mississippian_topography.zip. The URL for the thickness was ftp://ftp.igsb.uiowa.edu/GIS_Library/IA_State/Hydrologic/Ground_Waters/ Mississippian_aquifer/mississippian_isopach.zip Reference for the top map is Altitude and Configuration, in feet above mean sea level, of the Mississipian Aquifer modified from a scanned image of Map 1, Sheet 1, Miscellaneous Map Series 3, Mississippian Aquifer of Iowa by P.J. Horick and W.L. Steinhilber, Iowa Geological Survey, 1973; IGS MMS-3, Map 1, Sheet 1 Reference for the thickness map is Distribution and isopach thickness, in feet, of the Mississipian Aquifer, modified from a scanned image of Map 1, Sheet 2, Miscellaneous Map Series 3, Mississippian Aquifer of Iowa by P.J. Horick and W.L. Steinhilber, Iowa Geological Survey, 1973; IGS MMS-3, Map 1, Sheet 2 The altitude contours for the top and bottom of SA2 were digitized from georeferenced figures of altitude contours in U.S. Geological Survey Professional Paper 1305 (USGS PP1305), figure 6 (for the top surface) and figure 9 (for the bottom surface). The altitude contours for SA1 and SA2 were interpolated into surface rasters within a GIS using tools that create hydrologically correct surfaces from contour data, derive the altitude from the thickness (depth from the land surface), and merge the subareas into a single surface. The primary tool was an enhanced version of "Topo to Raster" used in ArcGIS, ArcMap, Esri 2014. ArcGIS Desktop: Release 10.2 Redlands, CA: Environmental Systems Research Institute. The raster surfaces were corrected in areas where the altitude of the top of the aquifer exceeded the land surface, and where the bottom of an aquifer exceeded the altitude of the corrected top of the aquifer.
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available.The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lesson 1. An Introduction to working with multispectral satellite data in ArcGIS Pro In which we learn: • How to unpack tar and gz files from USGS EROS • The basic map interface in ArcGIS • How to add image files • What each individual band of Landsat spectral data looks like • The difference between: o Analysis-ready data: surface reflectance and surface temperature o Landsat Collection 1 Level 3 data: burned area and dynamic surface water o Sentinel2data o ISRO AWiFS and LISS-3 data Lesson 2. Basic image preprocessing In which we learn: • How to composite using the composite band tool • How to represent composite images • All about band combinations • How to composite using raster functions • How to subset data into a rectangle • How to clip to a polygon Lesson 3. Working with mosaic datasets In which we learn: o How to prepare an empty mosaic dataset o How to add images to a mosaic dataset o How to change symbology in a mosaic dataset o How to add a time attribute o How to add a time dimension to the mosaic dataset o How to view time series data in a mosaic dataset Lesson 4. Working with and creating derived datasets In which we learn: • How to visualize Landsat ARD surface temperature • How to calculate F° from K° using ARD surface temperature • How to generate and apply .lyrx files • How to calculate an NDVI raster using ISRO LISS-3 data • How to visualize burned areas using Landsat Level 3 data • How to visualize dynamic surface water extent using Landsat Level 3 data
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
RS-FRIS is a remote-sensing based forest inventory for WA DNR State Trust lands. RS-FRIS predicts forest conditions using statistical models that relate field measurements to three-dimensional remotely-sensed data (DAP and LiDAR point clouds). Forest metrics are predicted at a scale of 1/10th acre and stored as rasters.The attributes of each RIU are calculated as the mean of the raster cell values that fall within each polygon. Note: origin year and age are exceptions, and are based on the median value.RS-FRIS 5.3 was constructed using remote-sensing data collected in 2021 and 2022. Version 5.3 incorporates depletions for selected completed harvest types through 2025-03-31.Last edit date: 2025-02-12 NameDescriptionUnitsRIU_IDUnique identifier for each inventory unit.n/aLAND_COV_CDLand cover code.n/aLAND_COV_NMLand cover name.n/aAGENumber of years since the stand was initiated; a composite of known dates (where recorded in inventory data) and predicted dates (where not recorded in historical inventory data). Calculated as CURRENT YEAR - ORIGIN_YEAR.yearsORIGIN_YEARYear at which a stand was re-initiated, a composite of known dates (where recorded in inventory data) and predicted dates (where not recorded in historical inventory data). Based on the median of raster cell values.yearBAPredicted basal area.square feet / acreBA_4Predicted basal area of trees > 4" DBH.square feet / acreBA_4_CONIFERPredicted basal area of trees > 4" DBH which are of a conifer species.square feet / acreBA_4_HWDPredicted basal area of trees > 4" DBH which are of a hardwood species.square feet / acreBA_6Predicted basal area of trees > 6" DBH.square feet / acreBA_T100Predicted basal area of the 100 largest trees per acre.square feet / acreBAP_HWDPredicted percent of trees which are of a hardwood species.percent (0-100)BFVOL_GROSSPredicted gross board-foot volume. Values do not account for defect deductions.board feet / acreBFVOL_NETPredicted net board-foot volume.board feet / acreBIOMASS_ALLPredicted above-ground biomass (live and dead).metric tonnes / acBIOMASS_LIVEPredicted above-ground biomass (live).metric tonnes / acCANOPY_LAYERSPredicted count of distinct canopy layers. Units are continuous despite measurements being ordinal.countCARBON_ALLPredicted above-ground carbon (live and dead).metric tonnes / acCARBON_LIVEPredicted above-ground carbon (live).metric tonnes / acCFVOL_DDWMPredicted cubic foot volume of down and dead woody materials.cubic feet / acreCFVOL_TOTALPredicted total cubic-foot volume. This value does not account for merchantability or defect.cubic feet / acreCLOSUREPredicted canopy closure.percent (0-100)COVERPredicted canopy cover.percent (0-100)HT_LOREYPredicted Lorey height. Lorey height is basal-area weighted mean height.feetHT_T40Predicted height of the 40 largest trees per acre.feetHT_T100Predicted mean height of the 100 largest trees per acre.feetHTMAXPredicted maximum tree height.feetQMDPredicted quadratic mean diameter.inchesQMD_6Predicted quadratic mean diameter for trees > 6" DBH.inchesQMD_T100Predicted quadratic mean diameter for top 100 trees per acre.inchesRDPredicted Curtis relative density (RD)unitlessRD_6Predicted Curtis relative density (RD) for trees > 6" DBHunitlessRD_SUMPredicted Curtis relative density (RD), summation methodunitlessSDI_SUMPredicted Reineke's Stand Density Index (SDI), summation methodtrees / acreSDI_SUM_4Predicted Reineke's Stand Density Index (SDI), summation method, for trees > 4" DBH.trees / acreSDI_DF_EModeled maximum stand density index, Douglas-fir, eastern WA. 10" qmd.trees / acreSDI_GF_EModeled maximum stand density index, Grand-fir, eastern WA. 10" qmd.trees / acreSDI_LP_EModeled maximum stand density index, Lodgepole pine, eastern WA. 10" qmd.trees / acreSDI_PP_EModeled maximum stand density index, Ponderosa pine, eastern WA. 10" qmd.trees / acreSDI_WL_EModeled maximum stand density index,Western larch, eastern WA. 10" qmd.trees / acreSDI_DF_WModeled maximum stand density index, Douglas-fir, western WA. 10" qmd.trees / acreSDI_WH_WModeled maximum stand density index, Western hemlock, western WA. 10" qmd.trees / acreSNAG_ACRE_15Predicted number of snags per acre > 15" DBH.count / acreSNAG_ACRE_20Predicted number of snags per acre > 20" DBH.count / acreSNAG_ACRE_21Predicted number of snags per acre > 21" DBH.count / acreSNAG_ACRE_30Predicted number of snags per acre > 30" DBH.count / acreSPECIES1Primary speciesn/aSPECIES2Secondary speciesn/aTREE_ACREPredicted number of trees per acre.count / acreTREE_ACRE_4Predicted number of trees per acre > 4" DBH.count / acreTREE_ACRE_4_CONIFERPredicted number of trees per acre > 4" DBH which are conifer.count / acreTREE_ACRE_6Predicted number of trees per acre > 6" DBH.count / acreTREE_ACRE_8Predicted number of trees per acre > 8" DBH.count / acreTREE_ACRE_11Predicted number of trees per acre > 11" DBH.count / acreTREE_ACRE_20Predicted number of trees per acre > 20" DBH.count / acreTREE_ACRE_21Predicted number of trees per acre > 21" DBH.count / acreTREE_ACRE_30Predicted number of trees per acre > 30" DBH.count / acreTREE_ACRE_31Predicted number of trees per acre > 31" DBH.count / acreRS_COVEREDDescription of the extent of RS-FRIS raster coverage within inventory unit (NONE, PARTIAL, or FULL).n/aRS_COVERED_PCTPercent (0 to 100) of the inventory unit with RS-FRIS raster coverage.percent (0-100)RS_FRIS_POLY_ACRESAcres of RS-FRIS polygon.acres
Analysis of landslide susceptibility by the DNR / Washington Geologic Survey completed in 2017. These data were produced to provide attribute and spatial information on deep-seated landslide susceptibility. The goal of this data is to estimate the extent of deep-seated landslide susceptible areas. This data is only an estimate of deep-seated landslide susceptible areas, deep-seated landslides can occur outside of the bounds of these polygons. This data is nonregulatory and is intended for informational purposes. It may not be suitable for legal, engineering, forestry, or surveying purposes; but it is intended to assist planners, homeowners, regulators, and others by identifying areas to seek further geologic investigation in before developing, or areas to avoid. Users of this information should consider their intended application, and review or consult the accompanying documentation, to determine the usability of the data for themselves.Data was clipped to Puyallup City limits and converted from raster to Polygon by Puyallup GIS.
The gSSURGO dataset provides detailed soil survey mapping in raster format with ready-to-map attributes organized in statewide tiles for desktop GIS. gSSURGO is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO generally has the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes and are derived from properties and characteristics stored in the National Soil Information System (NASIS).
The gSSURGO data were prepared by merging the traditional vector-based SSURGO digital map data and tabular data into statewide extents, adding a statewide gridded map layer derived from the vector layer, and adding a new value-added look up table (valu) containing ready-to-map attributes. The gridded map layer is in an ArcGIS file geodatabase in raster format, thus it has the capacity to store significantly more data and greater spatial extents than the traditional SSURGO product. The raster map data have a 10-meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link the raster cells and polygons to attribute tables.
For more information, see the gSSURGO webpage: https://www.nrcs.usda.gov/resources/data-and-reports/description-of-gridded-soil-survey-geographic-gssurgo-database
Statewide Ecopia 3 foot Land Cover (2021-2022)This raster land cover data is based off of high-resolution statewide imagery from 2021-2022. It was used by Ecopia to extract and digitize the entire state into 7 different land cover classes. Download Notes:This service can be entered into ArcGIS Pro where "Download Rasters" can be used to download approximately 20 square miles at a time. (Rt. click layer in TOC > Data > Download Rasters)Alternatively, the entire statewide 3ft dataset is available as a zipped download from here (includes colormap file): Ecopia_Statewide_3ft_Raster_TilesClasses available at bottom of this pages.Data SpecificationImagery Used for Extraction: Pixel resolution: 15 cm (6")Camera sensor: Hexagon Pushbroom (Content Mapper)Date of capture: 06/25/2021 - 08/14/2022Date of Vector Extraction: June 2023Extraction Methodology:Ecopia uses proprietary extraction and modeling software to process raw images into high-resolution land cover classifications.Quality Measurements:Measure Name - Threshold across Impervious Polygons:False Negatives <= 5% All PolygonsFalse Positives <= 5% All PolygonsValid Interpretation >= 95% All PolygonsMinimum Area 100% All PolygonsValid Geometry 100% All PolygonsMeasure Name - Threshold across Natural Polygons:False Negatives <=5% All PolygonsFalse Positives <=5% All PolygonsValid Interpretation >=90% All PolygonsMinimum Area 100% All PolygonsValid Geometry 100% All PolygonsLand Cover Classes:UnclassifiedImperviousImpervious, covered by treesShrub/low vegetationTree/forest/high vegetationOpen waterRailroadVegetation (Canopy Mapping)Tree canopy will be captured as a unique polygon layer. It can therefore overlap impervious layers.High vegetation is distinguished from low vegetation based on crown, texture, and derived height models. Leveraging stereo imagery produces results using 3D elevation models used to aid the distinction of vegetation categories. Distinguishing low from high vegetation is based on a 5m threshold, but this is not always feasible, especially in areas where heavy canopy prevents a visualization of the ground. In these circumstances, high vegetation will be given the priority over low vegetation. For more information visit: www.ecopiatech.comClasses:0: No data - Null, clear1: Unclassified2: Impervious3: Impervious, Covered by Tree Canopy6: Shrub/Low Vegetation7: Tree/Forest/High Vegetation8: Open Water12: Railroad
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format.
The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.
The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.
The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes; (1) orthorectify, (2) digitize, and (3) database enhancement. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 12, using North American Datum of 1983 (NAD83). To produce a polygon vector coverage for use in GIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcInfo (Version 8.0.2, Environmental Systems Research Institute, Redlands, California). In ArcTools, we used the ArcScan utility to trace the polygon data and produce ArcInfo vector-based coverages. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the 78 individual coverages into a seamless map coverage of GNP and immediate environs. We synchronized polygons and attributes along the boundary between the GNP and WLNP map coverages. Although GNP and WLNP are two separate map coverages, they are seamless in the sense they edge tie perfectly in both polygon location and map attribute.
https://creativecommons.org/licenses/publicdomain/https://creativecommons.org/licenses/publicdomain/
https://spdx.org/licenses/CC-PDDChttps://spdx.org/licenses/CC-PDDC
Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset