https://brightdata.com/licensehttps://brightdata.com/license
Real estate datasets from various websites cover all major real estate data points including: property type, size, location, price, bedrooms, baths, address, history, images, and much more. Popular use cases include: forecast housing demand, analyze price fluctuations, improve customer satisfaction, see past prices to monitor market trends, and more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].
Note:- Only publicly available data can be worked upon
APISCRAPY collects and organizes data from Zillow's massive database, whether it's property characteristics, market trends, pricing histories, or more. Because of APISCRAPY's first-rate data extraction services, tracking property values, examining neighborhood trends, and monitoring housing market variations become a straightforward and efficient process.
APISCRAPY's Zillow real estate data scraping service offers numerous advantages for individuals and businesses seeking valuable insights into the real estate market. Here are key benefits associated with their advanced data extraction technology:
Real-time Zillow Real Estate Data: Users can access real-time data from Zillow, providing timely updates on property listings, market dynamics, and other critical factors. This real-time information is invaluable for making informed decisions in a fast-paced real estate environment.
Data Customization: APISCRAPY allows users to customize the data extraction process, tailoring it to their specific needs. This flexibility ensures that the extracted Zillow real estate data aligns precisely with the user's requirements.
Precision and Accuracy: The advanced algorithms utilized by APISCRAPY enhance the precision and accuracy of the extracted Zillow real estate data. This reliability is crucial for making well-informed decisions related to property investments and market trends.
Efficient Data Extraction: APISCRAPY's technology streamlines the data extraction process, saving users time and effort. The efficiency of the extraction workflow ensures that users can access the desired Zillow real estate data without unnecessary delays.
User-friendly Interface: APISCRAPY provides a user-friendly interface, making it accessible for individuals and businesses to navigate and utilize the Zillow real estate data scraping service with ease.
APISCRAPY provides real-time real estate market data drawn from Zillow, ensuring that consumers have access to the most up-to-date and comprehensive real estate insights available. Our real-time real estate market data services aren't simply a game changer in today's dynamic real estate landscape; they're an absolute requirement.
Our dedication to offering high-quality real estate data extraction services is based on the utilization of Zillow Real Estate Data. APISCRAPY's integration of Zillow Real Estate Data sets it different from the competition, whether you're a seasoned real estate professional or a homeowner wanting to sell, buy, or invest.
APISCRAPY's data extraction is a key element, and it is an automated and smooth procedure that is at the heart of the platform's operation. Our platform gathers Zillow real estate data quickly and offers it in an easily consumable format with the click of a button.
[Tags;- Zillow real estate scraper, Zillow data, Zillow API, Zillow scraper, Zillow web scraping tool, Zillow data extraction, Zillow Real estate data, Zillow scraper, Zillow scraping API, Zillow real estate da extraction, Extract Real estate Data, Property Listing Data, Real estate Data, Real estate Data sets, Real estate market data, Real estate data extraction, real estate web scraping, real estate api, real estate data api, real estate web scraping, web scraping real estate data, scraping real estate data, real estate scraper, best real, estate api, web scraping real estate, api real estate, Zillow scraping software ]
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Real Estate DataSet consists of 506 examples, including home prices in the Boston suburbs and various residential and environmental characteristics.
2) Data Utilization (1) Real Estate DataSet has characteristics that: • The dataset provides 13 continuous variables and one binary variable, including crime rate, house size, environmental pollution, accessibility, tax rate, and population characteristics. (2) Real Estate DataSet can be used to: • House Price Forecast: It can be used to develop a regression model that predicts the median price (MEDV) of a house based on various residential and environmental factors. • Analysis of Urban Planning and Policy: It can be used for urban development and policy making by analyzing the impact of residential environmental factors such as crime rates, environmental pollution, and educational environment on housing values.
Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The US residential real estate market, a cornerstone of the American economy, is projected to experience steady growth over the next decade. While the provided CAGR of 2.04% is a modest figure, it reflects a market maturing after a period of significant expansion. This sustained growth is driven by several key factors. Firstly, population growth and urbanization continue to fuel demand for housing, particularly in densely populated areas and emerging suburban markets. Secondly, low interest rates (historically, though this can fluctuate) have made mortgages more accessible, stimulating buyer activity. Thirdly, a robust construction sector, though facing challenges in material costs and labor shortages, is gradually increasing the housing supply, mitigating some of the upward pressure on prices. However, challenges remain. Rising inflation and potential interest rate hikes pose a risk to affordability, potentially dampening demand. Furthermore, the ongoing evolution of remote work is reshaping residential preferences, with a shift toward larger homes in suburban or exurban locations. This trend impacts the relative demand for various property types, potentially increasing the appeal of landed houses and villas compared to apartments and condominiums in certain regions. The segmentation of the market into apartments/condominiums and landed houses/villas provides crucial insights into consumer preferences and investment strategies. High-density urban areas will continue to see strong demand for apartments and condos, while suburban and rural areas are likely to experience a greater increase in landed property sales. Major players like Simon Property Group, Mill Creek Residential, and others are strategically adapting to these trends, focusing on both development and management across various property types and geographic locations. Analyzing regional data within the US (e.g., comparing growth in the Northeast versus the Southwest) will highlight market nuances and potential investment opportunities. While the global data provided is valuable for understanding broader market forces, focusing the analysis on the US market allows for a more granular understanding of the specific drivers, trends, and challenges within this significant segment of the real estate sector. The forecast period (2025-2033) suggests continued, albeit measured, expansion. Recent developments include: May 2022: Resource REIT Inc. completed the sale of all of its outstanding shares of common stock to Blackstone Real Estate Income Trust Inc. for USD 14.75 per share in an all-cash deal valued at USD 3.7 billion, including the assumption of the REIT's debt., February 2022: The largest owner of commercial real estate in the world and private equity company Blackstone is growing its portfolio of residential rentals and commercial properties in the United States. The company revealed that it would shell out about USD 6 billion to buy Preferred Apartment Communities, an Atlanta-based real estate investment trust that owns 44 multifamily communities and roughly 12,000 homes in the Southeast, mostly in Atlanta, Nashville, Charlotte, North Carolina, and the Florida cities of Jacksonville, Orlando, and Tampa.. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.
This dataset includes the historical Arlington real estate property tax rates, including rate value and tax rate type description.
Problem Statement 👉 Download the case studies here Investors and buyers in the real estate market faced challenges in accurately assessing property values and market trends. Traditional valuation methods were time-consuming and lacked precision, making it difficult to make informed investment decisions. A real estate firm sought a predictive analytics solution to provide accurate property price forecasts and market insights. Challenge Developing a real estate price prediction system involved… See the full description on the dataset page: https://huggingface.co/datasets/globosetechnology12/Real-Estate-Price-Prediction.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Dataset Overview
This dataset provides a detailed snapshot of real estate properties listed in Dubai, UAE, as of August 2024. The dataset includes over 5,000 listings scraped using the Apify API from Propertyfinder and various other real estate websites in the UAE. The data includes key details such as the number of bedrooms and bathrooms, price, location, size, and whether the listing is verified. All personal identifiers, such as agent names and contact details, have been ethically removed.
Data Science Applications
Given the size and structure of this dataset, it is ideal for the following data science applications:
This dataset provides a practical foundation for both beginners and experts in data science, allowing for the exploration of real estate trends, development of predictive models, and implementation of machine learning algorithms.
# Column Descriptors
# Ethically Mined Data
This dataset was ethically scraped using the Apify API, ensuring compliance with data privacy standards. All personal data such as agent names, phone numbers, and any other sensitive information have been omitted from this dataset to ensure privacy and ethical use. The data is intended solely for educational purposes and should not be used for commercial activities.
# Acknowledgements
This dataset was made possible thanks to the following:
-**Photo by** : Francesca Tosolini on Unsplash
Use the Data Responsibly
Please ensure that this dataset is used responsibly, with respect to privacy and data ethics. This data is provided for educational purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Sweden decreased to 936 points in the first quarter of 2025 from 937 points in the fourth quarter of 2024. This dataset provides - Sweden House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
The Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment. Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. Some municipalities may not report data for certain years because when a municipality implements a revaluation, they are not required to submit sales data for the twelve months following implementation.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Interest Rates and Price Indexes; Multi-Family Real Estate Apartment Price Index, Level (BOGZ1FL075035403A) from 1985 to 2024 about multifamily, real estate, family, interest rate, interest, rate, price index, indexes, price, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Saudi Arabia increased to 104.90 points in the first quarter of 2025 from 104.20 points in the fourth quarter of 2024. This dataset provides - Saudi Arabia Housing Index- actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Interest Rates and Price Indexes; Commercial Real Estate Price Index, Level (BOGZ1FL075035503A) from 1945 to 2024 about real estate, commercial, interest rate, interest, rate, price index, indexes, price, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Interest Rates and Price Indexes; Owner-Occupied Real Estate Zillow ZHVI Index (SA), Level (BOGZ1FL075035253A) from 1975 to 2024 about owner-occupied, real estate, interest rate, interest, rate, price index, indexes, price, and USA.
Turkey, Russia, and Mexico were the countries with the highest forecast annualized growth of residential real estate transactions until 2028. According to a 2023 forecast by Statista Market Insights, the value of residential sales in Russia will rise by about ** percent annually between 2023 and 2028. In the U.S. - the largest housing market - the growth rate is expected to be much lower at **** percent.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
House price prediction dataset
This dataset comprises housing data for various metropolitan cities of India. It includes: - Collection of prices of new and resale houses - The amenities provided for each house
This housing dataset is useful for a range of stakeholders, including real estate agents, property developers, buyers, renters, and researchers interested in analyzing housing markets and trends in metropolitan cities across India. It can be used for market analysis, price prediction, property recommendations, and various other real estate-related tasks.
Shape of dataset : (6207, 40)
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F11965067%2F75861c40e86a4d2d10c044be79542436%2FCapture.JPG?generation=1704918894425981&alt=media" alt="">
Github Link : https://github.com/TusharPaul01/House-Price-Prediction
For more such dataset & code check : https://www.kaggle.com/tusharpaul2001
BatchData provides access to 150+ million residential and commercial properties and property owners, covering 99+% of the us population. Enrich records, build lists, or power real estate websites and application based on:
BatchData is both a data and technology company, offering multiple self-service platforms, APIs and professional services solutions to meet your specific data needs. Whether you're looking for residential real estate data, commercial real estate data, property listing and transaction data, we've got you covered!
BatchData is the most comprehensive aggregator of US property and homeowner information, known for accuracy and completeness of records. BatchService can also provides homeowner and agency contact information for residential and commercial properties, including cell phone number and emails.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Delinquency Rate on Commercial Real Estate Loans (Excluding Farmland), Booked in Domestic Offices, Banks Ranked 1st to 100th Largest in Size by Assets (DRCRELEXFT100S) from Q1 1991 to Q1 2025 about farmland, domestic offices, delinquencies, real estate, commercial, domestic, assets, loans, banks, depository institutions, rate, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Interest Rates and Price Indexes; Owner-Occupied Real Estate CoreLogic National Seasonally Adjusted by FRB Staff (SA), Level (BOGZ1FL075035243A) from 1975 to 2024 about real estate, interest rate, interest, rate, price index, indexes, price, and USA.
https://brightdata.com/licensehttps://brightdata.com/license
Real estate datasets from various websites cover all major real estate data points including: property type, size, location, price, bedrooms, baths, address, history, images, and much more. Popular use cases include: forecast housing demand, analyze price fluctuations, improve customer satisfaction, see past prices to monitor market trends, and more.