100+ datasets found
  1. Deaths by cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths by cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184566/deaths-by-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.

  2. A

    ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-cancer-rates-by-u-s-state-5f6a/af56eb24/?iid=000-919&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

    The rates are the numbers out of 100,000 people who developed or died from cancer each year.

    Incidence Rates by State
    The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • ‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Death Rates by State
    Rates of dying from cancer also vary from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

    This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.

    How to use this dataset

    • Analyze Range in relation to Rate
    • Study the influence of Range on Rate
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Adam Helsinger

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  3. Cancer incidence in European countries in 2022

    • statista.com
    • ai-chatbox.pro
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer incidence in European countries in 2022 [Dataset]. https://www.statista.com/statistics/456786/cancer-incidence-europe/
    Explore at:
    Dataset updated
    Sep 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Europe, EU
    Description

    In 2022, the highest cancer rate for men and women among European countries was in Denmark with 728.5 cancer cases per 100,000 population. Ireland and the Netherlands followed, with 641.6 and 641.4 people diagnosed with cancer per 100,000 population, respectively.
    Lung cancer Lung cancer is the deadliest type of cancer worldwide, and in Europe, Germany was the country with the highest number of lung cancer deaths in 2022, with 47.7 thousand deaths. However, when looking at the incidence rate of lung cancer, Hungary had the highest for both males and females, with 138.4 and 72.3 cases per 100,000 population, respectively.
    Breast cancer Breast cancer is the most common type of cancer among women with an incidence rate of 83.3 cases per 100,000 population in Europe in 2022. Cyprus was the country with the highest incidence of breast cancer, followed by Belgium and France. The mortality rate due to breast cancer was 34.8 deaths per 100,000 population across Europe, and Cyprus was again the country with the highest figure.

  4. Number of new cases and age-standardized rates of primary cancer, by cancer...

    • www150.statcan.gc.ca
    • beta.data.urbandatacentre.ca
    • +2more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Number of new cases and age-standardized rates of primary cancer, by cancer type and sex [Dataset]. http://doi.org/10.25318/1310074701-eng
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    The number of new cases, age-standardized rates and average age at diagnosis of cancers diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Cancer incidence rates are age-standardized using the direct method and the final 2011 Canadian postcensal population structure. Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.

  5. Adult population diagnosed with cancer by country 2019

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Adult population diagnosed with cancer by country 2019 [Dataset]. https://www.statista.com/statistics/418374/adult-population-prevalence-of-cancer-by-country/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In a recent report it was shown that the U.S. has the highest prevalence of diagnosed cancer cases among all adults, with around * percent of the adult population having some cancer diagnosis. Cancer is the second leading cause of death from chronic diseases worldwide after cardiovascular diseases.

    Global cancer risks

    Globally, cancer accounts for about * in every 6 deaths. Many cancer cases are caused by behavioral and dietary risks including tobacco, alcohol and physical inactivity. The prevalence of tobacco smoking is on the decline and is expected to decline further in the future. Smoking has been linked to lung cancer, other upper respiratory cancers and chronic obstructive pulmonary disease (COPD). Among other cancer risk factors, alcohol consumption has been linked to liver and colorectal cancers, as well as other non-communicable diseases. Many European countries have high rates of alcohol consumption.

    Global cancer prevalence

    Globally, trachea, bronchus and lung cancers are responsible for the most cancer deaths, followed by liver cancer. Lifestyle modification is one of the easiest ways people can reduce their risk of these types of cancer. Among all cancer patients globally, a majority had a history of alcohol consumption. Similarly, in China, EU5 and Russia, over a quarter of all cancer patients had a history of smoking.

  6. d

    Cancer Registration Statistics, England 2019

    • digital.nhs.uk
    Updated Oct 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Cancer Registration Statistics, England 2019 [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/cancer-registration-statistics
    Explore at:
    Dataset updated
    Oct 21, 2021
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    This release summarises the diagnoses in 2019 registered by NDRS covering all registerable neoplasms (all cancers, all in situ tumours, some benign tumours and all tumours that have uncertain or unknown behaviours)

  7. US Mortality Rates for All Types of Cancer

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). US Mortality Rates for All Types of Cancer [Dataset]. https://www.johnsnowlabs.com/marketplace/us-mortality-rates-for-all-types-of-cancer/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    2010 - 2015
    Area covered
    United States
    Description

    Cancer survival statistics are typically expressed as the proportion of patients alive at some point subsequent to the diagnosis of their cancer. Statistics compare the survival of patients diagnosed with cancer with the survival of people in the general population who are the same age, race, and sex and who have not been diagnosed with cancer.

  8. d

    Cancer Registration Statistics, England 2020

    • digital.nhs.uk
    Updated Oct 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Cancer Registration Statistics, England 2020 [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/cancer-registration-statistics
    Explore at:
    Dataset updated
    Oct 20, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Area covered
    England
    Description

    This publication reports on newly diagnosed cancers registered in England in addition to cancer deaths registered in England during 2020. It includes this summary report showing key findings, spreadsheet tables with more detailed estimates, and a methodology document.

  9. Cancer Incidence - Surveillance, Epidemiology, and End Results (SEER)...

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (NCI), National Institutes of Health (NIH) (2025). Cancer Incidence - Surveillance, Epidemiology, and End Results (SEER) Registries Limited-Use [Dataset]. https://catalog.data.gov/dataset/cancer-incidence-surveillance-epidemiology-and-end-results-seer-registries-limited-use
    Explore at:
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    SEER Limited-Use cancer incidence data with associated population data. Geographic areas available are county and SEER registry. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and distributes high quality, comprehensive cancer data from a number of population-based cancer registries. Data include patient demographics, primary tumor site, morphology, stage at diagnosis, first course of treatment, and follow-up for vital status. The SEER Program is the only comprehensive source of population-based information in the United States that includes stage of cancer at the time of diagnosis and survival rates within each stage.

  10. Cancer incidence, by selected sites of cancer and sex, three-year average,...

    • www150.statcan.gc.ca
    • data.urbandatacentre.ca
    • +4more
    Updated Feb 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2018). Cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas [Dataset]. http://doi.org/10.25318/1310011201-eng
    Explore at:
    Dataset updated
    Feb 14, 2018
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Age standardized rate of cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas.

  11. Rate of liver cancer diagnoses in the U.S. in 2021, by age

    • statista.com
    Updated Jul 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Rate of liver cancer diagnoses in the U.S. in 2021, by age [Dataset]. https://www.statista.com/statistics/951914/new-liver-cancer-cases-rate-by-age/
    Explore at:
    Dataset updated
    Jul 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    The rate of liver cancer diagnoses in the United States increases with age. As of 2021, those aged 75 to 79 years had the highest rates of liver cancer. Risk factors for liver cancer include smoking, drinking alcohol, being overweight or obese, and having diabetes. Who is most likely to get liver cancer? Liver cancer in the United States is much more common among men than women. In 2021, there were 12.3 new liver cancer diagnoses among men per 100,000 population, compared to just five new diagnoses per 100,000 women. Concerning race and ethnicity, non-Hispanic American Indians and Alaska Natives and Hispanic have the highest rates of new liver cancer diagnoses. The five-year survival rate for liver cancer in the United States is around 22 percent, however, this rate is much higher among non-Hispanic Asian and Pacific Islanders than other races and ethnicities. Non-Hispanic Asian and Pacific Islanders have a 33 percent chance of surviving the next five years after a liver cancer diagnosis. Deaths from liver cancer In 2020, there were an estimated 20,262 deaths in the United States due to liver cancer. However, the death rate for liver cancer has decreased over the past few years. In the period 1999 to 2020, the death rate for liver cancer reached a high of five deaths per 100,000 population in 2015 but dropped to 4.6 deaths per 100,000 population by 2020. It is estimated that in 2024, there will be over 19,000 liver and intrahepatic bile duct cancer deaths among men in the United States and 10,700 such deaths among women.

  12. f

    Global incidence of prostate cancer in developing and developed countries...

    • plos.figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Y. C. Teoh; Hoyee W. Hirai; Jason M. W. Ho; Felix C. H. Chan; Kelvin K. F. Tsoi; Chi Fai Ng (2023). Global incidence of prostate cancer in developing and developed countries with changing age structures [Dataset]. http://doi.org/10.1371/journal.pone.0221775
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Jeremy Y. C. Teoh; Hoyee W. Hirai; Jason M. W. Ho; Felix C. H. Chan; Kelvin K. F. Tsoi; Chi Fai Ng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To investigate the global incidence of prostate cancer with special attention to the changing age structures. Data regarding the cancer incidence and population statistics were retrieved from the International Agency for Research on Cancer in World Health Organization. Eight developing and developed jurisdictions in Asia and the Western countries were selected for global comparison. Time series were constructed based on the cancer incidence rates from 1988 to 2007. The incidence rate of the population aged ≥ 65 was adjusted by the increasing proportion of elderly population, and was defined as the “aging-adjusted incidence rate”. Cancer incidence and population were then projected to 2030. The aging-adjusted incidence rates of prostate cancer in Asia (Hong Kong, Japan and China) and the developing Western countries (Costa Rica and Croatia) had increased progressively with time. In the developed Western countries (the United States, the United Kingdom and Sweden), we observed initial increases in the aging-adjusted incidence rates of prostate cancer, which then gradually plateaued and even decreased with time. Projections showed that the aging-adjusted incidence rates of prostate cancer in Asia and the developing Western countries were expected to increase in much larger extents than the developed Western countries.

  13. r

    Cancer Incidence och mortality in a population based investigation in the...

    • researchdata.se
    • demo.researchdata.se
    Updated Oct 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Håkan Olsson (2024). Cancer Incidence och mortality in a population based investigation in the southern health care region - Cost for health care for controls [Dataset]. https://researchdata.se/en/catalogue/dataset/ext0119-2
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset provided by
    Lund University
    Authors
    Håkan Olsson
    Time period covered
    2000 - 2007
    Description

    All individuals diagnosed with cancer from 2000 to 2007 were identified in the Cancer Register of Southern Sweden, but only individuals who were also identified in the Population Register of Scania were included in this cohort. Age- and gender-matched controls were identified in the Population Register of Scania. The controls were reconciled with the cancer registry in southern Sweden so that they had no prior diagnosis of cancer and with the Population Register of Scania that they were alive at time of diagnosis to the matched case. Also spouses to cancer patients were used as controls.

    For each individual, healthcare costs were monitored related to the date of diagnosis. Costs for outpatient care, inpatient care, number of days in hospital and medications were included. Costs were also calculated for the controls.

    Other information available about the individuals in the cohort are age, sex, domicile, type of tumor and medication.

    Purpose:

    To study the health cost per individual in relation to mortality and comorbidity.

    Dataset includes the study controls (individuals matched by age and sex ) Also spouses to cancer patients were included in the control group.

  14. Breast cancer cases rate per 100,000 population in England 1995-2022

    • statista.com
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Breast cancer cases rate per 100,000 population in England 1995-2022 [Dataset]. https://www.statista.com/statistics/313119/breast-present-past-cancer-cases-rate-england/
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom (England), Europe
    Description

    In 2022, 175 females per 100,000 population were registered in England as newly diagnosed with breast cancer. This was an overall increase in comparison to the last few years' rate of registration. This statistic shows the rate of newly diagnosed female cases of breast cancer per 100,000 population in England from 1995 to 2022.

  15. a

    5 year Male Colorectal Cancer Incidence MSSA

    • uscssi.hub.arcgis.com
    • usc-geohealth-hub-uscssi.hub.arcgis.com
    Updated Nov 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). 5 year Male Colorectal Cancer Incidence MSSA [Dataset]. https://uscssi.hub.arcgis.com/maps/USCSSI::5-year-male-colorectal-cancer-incidence-mssa
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.Cancer incidence ratesIncidence rates were calculated using case counts from the California Cancer Registry. Population data from 2010 Census and SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators. Yearly SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators for 5-year incidence rates (2013-2017)According to California Department of Public Health guidelines, cancer incidence rates cannot be reported if based on <15 cancer cases and/or a population <10,000 to ensure confidentiality and stable statistical rates.Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity

  16. b

    Mortality rate from oral cancer, all ages - WMCA

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Mortality rate from oral cancer, all ages - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/mortality-rate-from-oral-cancer-all-ages-wmca/
    Explore at:
    csv, geojson, json, excelAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)

  17. f

    Table_1_Decrease in the number of new cancer diagnoses during the first year...

    • figshare.com
    docx
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maciej Trojanowski; Piotr Radomyski; Witold Kycler; Irmina Maria Michalek (2023). Table_1_Decrease in the number of new cancer diagnoses during the first year of the COVID-19 pandemic – cohort study of 3.5 million individuals in western Poland.docx [Dataset]. http://doi.org/10.3389/fonc.2023.1230289.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Dec 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Maciej Trojanowski; Piotr Radomyski; Witold Kycler; Irmina Maria Michalek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionThe COVID-19 pandemic has considerably affected healthcare systems worldwide and is expected to influence cancer incidence, mortality, stage at diagnosis, and survival. This study aimed to assess COVID-19-related changes in cancer incidence observed in 2020 in the Greater Poland region.Materials and methodsData from the Greater Poland Cancer Registry on cancer patients diagnosed between 2010 and 2020 were analysed. To quantify the change in the number of incident cancer cases during the COVID-19 pandemic, we calculated the standardized incidence ratio (SIR) and the incidence rate difference (IRD) to assume the pandemic-attributable gap in cancer incidence.ResultsIn 2020, in Greater Poland, the expected number of new cancer cases was 18 154 (9 226 among males and 8 927 among females), while the observed number was 14 770 (7 336 among males and 7 434 among females). The registered number of cancer cases decreased in 2020 by 20% (SIR 0·80, 95% CI 0·78 to 0·81) and 17% (SIR 0·83, 95% CI 0·81 to 0·85) in males and females, respectively. Among men, the most significant difference was reported for myeloma (SIR 0·59, 95% CI 0·45 to 0·77), among women for bone cancer (SIR 0·47, 95% CI 0·20 to 0·93). In females the observed incidence was higher than expected for cancer of an unspecified site (SIR 1·19, 95% CI 1·01 to 1·38). In our study, the decrease in new cancer cases was greater in males than in females.DiscussionThe observed incidence was affected in most cancer sites, with the most significant deviation from the expected number in the case of myeloma. An increase in the observed incidence was reported only in women diagnosed with cancer of an unspecified site, which might reflect shortages in access to oncological diagnostics.

  18. SEER Breast Cancer Data

    • kaggle.com
    • ieee-dataport.org
    • +1more
    Updated May 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sujith K Mandala (2023). SEER Breast Cancer Data [Dataset]. https://www.kaggle.com/datasets/sujithmandala/seer-breast-cancer-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2023
    Dataset provided by
    Kaggle
    Authors
    Sujith K Mandala
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset of breast cancer patients was obtained from the 2017 November update of the SEER Program of the NCI, which provides information on population-based cancer statistics. The dataset involved female patients with invasive breast cancer who were diagnosed between 2000 and 2017. The dataset includes information on the patient's age, race, ethnicity, stage of cancer, tumor size, grade, and treatment.

    The data is available for sharing under the Creative Commons Attribution 4.0 International License. To share the data, please cite the dataset as follows:

    Citation: JING TENG, January 18, 2019, "SEER Breast Cancer Data", IEEE Dataport, doi: https://dx.doi.org/10.21227/a9qy-ph35.

  19. f

    Risk of cancer in patients with MS.

    • plos.figshare.com
    xls
    Updated Oct 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amirhossein Nafari; Saeed Vaheb; Alireza Afshari-Safavi; Zahra Ravankhah; Fotooheh Teimouri; Vahid Shaygannejad; Omid Mirmosayyeb (2024). Risk of cancer in patients with MS. [Dataset]. http://doi.org/10.1371/journal.pone.0312707.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Amirhossein Nafari; Saeed Vaheb; Alireza Afshari-Safavi; Zahra Ravankhah; Fotooheh Teimouri; Vahid Shaygannejad; Omid Mirmosayyeb
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundMultiple sclerosis (MS) and cancer present substantial global health challenges. Understanding cancer patterns among people with MS (PwMS) is crucial due to potential variations across demographics and geographic regions. Isfahan province in Iran, known for its high MS incidence ratio, offers a significant population for comprehensive studies on MS. In this study, we aim to investigate the association between risk of cancer and MS.MethodData on PwMS were collected utilizing the National Multiple Sclerosis Registry System of Iran (NMSRI), with diagnoses confirmed using McDonald criteria by neurologists specialized in MS. Cancer incidence was investigated using the Iranian National Population-Based Cancer Registry (INPCR) data, collected following international protocols. Descriptive statistics and regression analyses were employed to assess factors associated with cancer and mortality risks among PwMS. Survival analysis was conducted using Kaplan-Meier curves.ResultsOut of 10,049 PwMS, 123 were diagnosed with cancer, with an mean age at the time of cancer diagnosis being 40.41 years and a mean MS duration of 6.76 years. The majority had relapsing-remitting MS (81.2%), and Interferon-β was the most common disease-modifying therapy (DMT) (42.4%). Cancer incidence was 125.6 per 100,000 person-years, peaking at ages 60–64 (677.9 per 100,000 person-years). Receiving monoclonal antibody medications and older age were significantly associated with higher cancer risk (OR:1.542 (1.009–2.357), OR:1.033 (1.015–1.051), respectively). Female breast cancer had the highest incidence ratio among PwMS (40.17 per 100,000 person-years), followed by thyroid (18.38 per 100,000 person-years) and digestive system cancers (17.36 per 100,000 person-years). Breast cancer was the predominant cancer in women, while digestive system cancers were most common among men. Being male and having longer MS duration were linked to higher cancer mortality risk (HR: 2.683, 1.087, respectively).ConclusionCancer incidence among 10,049 people with multiple sclerosis was significant, especially in older individuals, with breast cancer being the most common. Male gender and longer MS duration were linked to higher cancer mortality risk.

  20. f

    Estimation of cancer incidence in the state of São Paulo, Brazil, based on...

    • scielo.figshare.com
    jpeg
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carolina Terra de Moraes Luizaga; Cassia Maria Buchalla (2023). Estimation of cancer incidence in the state of São Paulo, Brazil, based on real data [Dataset]. http://doi.org/10.6084/m9.figshare.22188010.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    SciELO journals
    Authors
    Carolina Terra de Moraes Luizaga; Cassia Maria Buchalla
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil, State of São Paulo
    Description

    This study aims to evaluate the feasibility of applying a method of estimating the incidence of cancer to regions of the state of São Paulo, Brazil, from real data (not estimated) and retrospectively comparing the results obtained with the official estimates. A method based on mortality and on the incidence to mortality (I/M) ration was used according to sex, age, and tumor location. In the I/M numerator, new cases of cancer were used from the population records of Jaú and São Paulo from 2006-2010; in the denominator, deaths from 2006-2010 in the respective areas, extracted from the national mortality system. The estimates resulted from the multiplication of I/M by the number of cancer deaths in 2010 for each region. Population data from the 2010 Demographic Census were used to estimate incidence rates. For the adjustment by age, the world standard population was used. We calculated the relative differences between the gross incidence rates estimated in this study and the official ones. Age-adjusted cancer incidence rates were 260.9/100,000 for men and 216.6/100,000 for women. Prostate cancer was the most common in males, whereas breast cancer was most common in females. Differences between the rates of this study and the official rates were 3.3% and 1.5% for each sex. The estimated incidence was compatible with the officially presented state profile, indicating that the application of real data did not alter the morbidity profile, while it did indicate different risk magnitudes. Despite the over-representativeness of the cancer registry with greater population coverage, the selected method proved feasible to point out different patterns within the state.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Deaths by cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184566/deaths-by-cancer-in-the-us-since-1950/
Organization logo

Deaths by cancer in the U.S. 1950-2023

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.

Search
Clear search
Close search
Google apps
Main menu