3 datasets found
  1. Social Contacts

    • kaggle.com
    zip
    Updated Apr 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick (2020). Social Contacts [Dataset]. https://www.kaggle.com/bitsnpieces/social-contacts
    Explore at:
    zip(33056 bytes)Available download formats
    Dataset updated
    Apr 29, 2020
    Authors
    Patrick
    Description

    Inspiration

    Which countries have the most social contacts in the world? In particular, do countries with more social contacts among the elderly report more deaths caused by a pandemic caused by a respiratory virus?

    Context

    With the emergence of the COVID-19 pandemic, reports have shown that the elderly are at a higher risk of dying than any other age groups. 8 out of 10 deaths reported in the U.S. have been in adults 65 years old and older. Countries have also began to enforce 2km social distancing to contain the pandemic.

    To this end, I wanted to explore the relationship between social contacts among the elderly and its relationship with the number of COVID-19 deaths across countries.

    Content

    This dataset includes a subset of the projected social contact matrices in 152 countries from surveys Prem et al. 2020. It was based on the POLYMOD study where information on social contacts was obtained using cross-sectional surveys in Belgium (BE), Germany (DE), Finland (FI), Great Britain (GB), Italy (IT), Luxembourg (LU), The Netherlands (NL), and Poland (PL) between May 2005 and September 2006.

    This dataset includes contact rates from study participants ages 65+ for all countries from all sources of contact (work, home, school and others).

    I used this R code to extract this data:

    load('../input/contacts.Rdata') # https://github.com/kieshaprem/covid19-agestructureSEIR-wuhan-social-distancing/blob/master/data/contacts.Rdata
    View(contacts)
    contacts[["ALB"]][["home"]]
    contacts[["ITA"]][["all"]]
    rowSums(contacts[["ALB"]][["all"]])
    out1 = data.frame(); for (n in names(contacts)) { x = (contacts[[n]][["all"]])[16,]; out <- rbind(out, data.frame(x)) }
    out2 = data.frame(); for (n in names(contacts)) { x = (contacts[[n]][["all"]])[15,]; out <- rbind(out, data.frame(x)) }
    out3 = data.frame(); for (n in names(contacts)) { x = (contacts[[n]][["all"]])[14,]; out <- rbind(out, data.frame(x)) }
    m1 = data.frame(t(matrix(unlist(out1), nrow=16)))
    m2 = data.frame(t(matrix(unlist(out2), nrow=16)))
    m3 = data.frame(t(matrix(unlist(out3), nrow=16)))
    rownames(m1) = names(contacts)
    colnames(m1) = c("00_04", "05_09", "10_14", "15_19", "20_24", "25_29", "30_34", "35_39", "40_44", "45_49", "50_54", "55_59", "60_64", "65_69", "70_74", "75_79")
    rownames(m2) = rownames(m1)
    rownames(m3) = rownames(m1)
    colnames(m2) = colnames(m1)
    colnames(m3) = colnames(m1)
    write.csv(zapsmall(m1),"contacts_75_79.csv", row.names = TRUE)
    write.csv(zapsmall(m2),"contacts_70_74.csv", row.names = TRUE)
    write.csv(zapsmall(m3),"contacts_65_69.csv", row.names = TRUE)
    

    Rows names correspond to the 3 letter country ISO code, e.g. ITA represents Italy. Column names are the age groups of the individuals contacted in 5 year intervals from 0 to 80 years old. Cell values are the projected mean social contact rate.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1139998%2Ffa3ddc065ea46009e345f24ab0d905d2%2Fcontact_distribution.png?generation=1588258740223812&alt=media" alt="">

    Acknowledgements

    Thanks goes to Dr. Kiesha Prem for her correspondence and her team for publishing their work on social contact matrices.

    References

    Related resources

  2. FacialRecognition

    • kaggle.com
    zip
    Updated Dec 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TheNicelander (2016). FacialRecognition [Dataset]. https://www.kaggle.com/petein/facialrecognition
    Explore at:
    zip(121674455 bytes)Available download formats
    Dataset updated
    Dec 1, 2016
    Authors
    TheNicelander
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    #https://www.kaggle.com/c/facial-keypoints-detection/details/getting-started-with-r #################################

    ###Variables for downloaded files data.dir <- ' ' train.file <- paste0(data.dir, 'training.csv') test.file <- paste0(data.dir, 'test.csv') #################################

    ###Load csv -- creates a data.frame matrix where each column can have a different type. d.train <- read.csv(train.file, stringsAsFactors = F) d.test <- read.csv(test.file, stringsAsFactors = F)

    ###In training.csv, we have 7049 rows, each one with 31 columns. ###The first 30 columns are keypoint locations, which R correctly identified as numbers. ###The last one is a string representation of the image, identified as a string.

    ###To look at samples of the data, uncomment this line:

    head(d.train)

    ###Let's save the first column as another variable, and remove it from d.train: ###d.train is our dataframe, and we want the column called Image. ###Assigning NULL to a column removes it from the dataframe

    im.train <- d.train$Image d.train$Image <- NULL #removes 'image' from the dataframe

    im.test <- d.test$Image d.test$Image <- NULL #removes 'image' from the dataframe

    ################################# #The image is represented as a series of numbers, stored as a string #Convert these strings to integers by splitting them and converting the result to integer

    #strsplit splits the string #unlist simplifies its output to a vector of strings #as.integer converts it to a vector of integers. as.integer(unlist(strsplit(im.train[1], " "))) as.integer(unlist(strsplit(im.test[1], " ")))

    ###Install and activate appropriate libraries ###The tutorial is meant for Linux and OSx, where they use a different library, so: ###Replace all instances of %dopar% with %do%.

    install.packages('foreach')

    library("foreach", lib.loc="~/R/win-library/3.3")

    ###implement parallelization im.train <- foreach(im = im.train, .combine=rbind) %do% { as.integer(unlist(strsplit(im, " "))) } im.test <- foreach(im = im.test, .combine=rbind) %do% { as.integer(unlist(strsplit(im, " "))) } #The foreach loop will evaluate the inner command for each row in im.train, and combine the results with rbind (combine by rows). #%do% instructs R to do all evaluations in parallel. #im.train is now a matrix with 7049 rows (one for each image) and 9216 columns (one for each pixel):

    ###Save all four variables in data.Rd file ###Can reload them at anytime with load('data.Rd')

    save(d.train, im.train, d.test, im.test, file='data.Rd')

    load('data.Rd')

    #each image is a vector of 96*96 pixels (96*96 = 9216). #convert these 9216 integers into a 96x96 matrix: im <- matrix(data=rev(im.train[1,]), nrow=96, ncol=96)

    #im.train[1,] returns the first row of im.train, which corresponds to the first training image. #rev reverse the resulting vector to match the interpretation of R's image function #(which expects the origin to be in the lower left corner).

    #To visualize the image we use R's image function: image(1:96, 1:96, im, col=gray((0:255)/255))

    #Let’s color the coordinates for the eyes and nose points(96-d.train$nose_tip_x[1], 96-d.train$nose_tip_y[1], col="red") points(96-d.train$left_eye_center_x[1], 96-d.train$left_eye_center_y[1], col="blue") points(96-d.train$right_eye_center_x[1], 96-d.train$right_eye_center_y[1], col="green")

    #Another good check is to see how variable is our data. #For example, where are the centers of each nose in the 7049 images? (this takes a while to run): for(i in 1:nrow(d.train)) { points(96-d.train$nose_tip_x[i], 96-d.train$nose_tip_y[i], col="red") }

    #there are quite a few outliers -- they could be labeling errors. Looking at one extreme example we get this: #In this case there's no labeling error, but this shows that not all faces are centralized idx <- which.max(d.train$nose_tip_x) im <- matrix(data=rev(im.train[idx,]), nrow=96, ncol=96) image(1:96, 1:96, im, col=gray((0:255)/255)) points(96-d.train$nose_tip_x[idx], 96-d.train$nose_tip_y[idx], col="red")

    #One of the simplest things to try is to compute the mean of the coordinates of each keypoint in the training set and use that as a prediction for all images colMeans(d.train, na.rm=T)

    #To build a submission file we need to apply these computed coordinates to the test instances: p <- matrix(data=colMeans(d.train, na.rm=T), nrow=nrow(d.test), ncol=ncol(d.train), byrow=T) colnames(p) <- names(d.train) predictions <- data.frame(ImageId = 1:nrow(d.test), p) head(predictions)

    #The expected submission format has one one keypoint per row, but we can easily get that with the help of the reshape2 library:

    install.packages('reshape2')

    library(...

  3. f

    Data from: R‑BIND 2.0: An Updated Database of Bioactive RNA-Targeting Small...

    • datasetcatalog.nlm.nih.gov
    • acs.figshare.com
    Updated May 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cai, Zhengguo; Tolbert, Blanton S.; Kassam, Kamillah; Donlic, Anita; Chiu, Liang-Yuan; Laudeman, Chris; Swanson, Emily G.; Wicks, Sarah L.; Han, Eunseong; Juru, Aline Umuhire; Sanaba, Bilva G.; Sugarman, Andrew; Hargrove, Amanda E. (2022). R‑BIND 2.0: An Updated Database of Bioactive RNA-Targeting Small Molecules and Associated RNA Secondary Structures [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000305182
    Explore at:
    Dataset updated
    May 20, 2022
    Authors
    Cai, Zhengguo; Tolbert, Blanton S.; Kassam, Kamillah; Donlic, Anita; Chiu, Liang-Yuan; Laudeman, Chris; Swanson, Emily G.; Wicks, Sarah L.; Han, Eunseong; Juru, Aline Umuhire; Sanaba, Bilva G.; Sugarman, Andrew; Hargrove, Amanda E.
    Description

    Discoveries of RNA roles in cellular physiology and pathology are increasing the need for new tools that modulate the structure and function of these biomolecules, and small molecules are proving useful. In 2017, we curated the RNA-targeted BIoactive ligaNd Database (R-BIND) and discovered distinguishing physicochemical properties of RNA-targeting ligands, leading us to propose the existence of an “RNA-privileged” chemical space. Biennial updates of the database and the establishment of a website platform (rbind.chem.duke.edu) have provided new insights and tools to design small molecules based on the analyzed physicochemical and spatial properties. In this report and R-BIND 2.0 update, we refined the curation approach and ligand classification system as well as conducted analyses of RNA structure elements for the first time to identify new targeting strategies. Specifically, we curated and analyzed RNA target structural motifs to determine the properties of small molecules that may confer selectivity for distinct RNA secondary and tertiary structures. Additionally, we collected sequences of target structures and incorporated an RNA structure search algorithm into the website that outputs small molecules targeting similar motifs without a priori secondary structure knowledge. Cheminformatic analyses revealed that, despite the 50% increase in small molecule library size, the distinguishing properties of R-BIND ligands remained significantly different from that of proteins and are therefore still relevant to RNA-targeted probe discovery. Combined, we expect these novel insights and website features to enable the rational design of RNA-targeted ligands and to serve as a resource and inspiration for a variety of scientists interested in RNA targeting.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Patrick (2020). Social Contacts [Dataset]. https://www.kaggle.com/bitsnpieces/social-contacts
Organization logo

Social Contacts

Projected age and location specific mean contact rates across 152 countries

Explore at:
zip(33056 bytes)Available download formats
Dataset updated
Apr 29, 2020
Authors
Patrick
Description

Inspiration

Which countries have the most social contacts in the world? In particular, do countries with more social contacts among the elderly report more deaths caused by a pandemic caused by a respiratory virus?

Context

With the emergence of the COVID-19 pandemic, reports have shown that the elderly are at a higher risk of dying than any other age groups. 8 out of 10 deaths reported in the U.S. have been in adults 65 years old and older. Countries have also began to enforce 2km social distancing to contain the pandemic.

To this end, I wanted to explore the relationship between social contacts among the elderly and its relationship with the number of COVID-19 deaths across countries.

Content

This dataset includes a subset of the projected social contact matrices in 152 countries from surveys Prem et al. 2020. It was based on the POLYMOD study where information on social contacts was obtained using cross-sectional surveys in Belgium (BE), Germany (DE), Finland (FI), Great Britain (GB), Italy (IT), Luxembourg (LU), The Netherlands (NL), and Poland (PL) between May 2005 and September 2006.

This dataset includes contact rates from study participants ages 65+ for all countries from all sources of contact (work, home, school and others).

I used this R code to extract this data:

load('../input/contacts.Rdata') # https://github.com/kieshaprem/covid19-agestructureSEIR-wuhan-social-distancing/blob/master/data/contacts.Rdata
View(contacts)
contacts[["ALB"]][["home"]]
contacts[["ITA"]][["all"]]
rowSums(contacts[["ALB"]][["all"]])
out1 = data.frame(); for (n in names(contacts)) { x = (contacts[[n]][["all"]])[16,]; out <- rbind(out, data.frame(x)) }
out2 = data.frame(); for (n in names(contacts)) { x = (contacts[[n]][["all"]])[15,]; out <- rbind(out, data.frame(x)) }
out3 = data.frame(); for (n in names(contacts)) { x = (contacts[[n]][["all"]])[14,]; out <- rbind(out, data.frame(x)) }
m1 = data.frame(t(matrix(unlist(out1), nrow=16)))
m2 = data.frame(t(matrix(unlist(out2), nrow=16)))
m3 = data.frame(t(matrix(unlist(out3), nrow=16)))
rownames(m1) = names(contacts)
colnames(m1) = c("00_04", "05_09", "10_14", "15_19", "20_24", "25_29", "30_34", "35_39", "40_44", "45_49", "50_54", "55_59", "60_64", "65_69", "70_74", "75_79")
rownames(m2) = rownames(m1)
rownames(m3) = rownames(m1)
colnames(m2) = colnames(m1)
colnames(m3) = colnames(m1)
write.csv(zapsmall(m1),"contacts_75_79.csv", row.names = TRUE)
write.csv(zapsmall(m2),"contacts_70_74.csv", row.names = TRUE)
write.csv(zapsmall(m3),"contacts_65_69.csv", row.names = TRUE)

Rows names correspond to the 3 letter country ISO code, e.g. ITA represents Italy. Column names are the age groups of the individuals contacted in 5 year intervals from 0 to 80 years old. Cell values are the projected mean social contact rate.

https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1139998%2Ffa3ddc065ea46009e345f24ab0d905d2%2Fcontact_distribution.png?generation=1588258740223812&alt=media" alt="">

Acknowledgements

Thanks goes to Dr. Kiesha Prem for her correspondence and her team for publishing their work on social contact matrices.

References

Related resources

Search
Clear search
Close search
Google apps
Main menu