https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Categorical scatterplots with R for biologists: a step-by-step guide
Benjamin Petre1, Aurore Coince2, Sophien Kamoun1
1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK
Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.
Protocol
• Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.
• Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.
• Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.
Notes
• Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.
• Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.
replicates
graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()
References
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.
Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035
Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128
This module series covers how to import, manipulate, format and plot time series data stored in .csv format in R. Originally designed to teach researchers to use NEON plant phenology and air temperature data; has been used in undergraduate classrooms.
This archive contains code and data for reproducing the analysis for “Replication Data for Revisiting ‘The Rise and Decline’ in a Population of Peer Production Projects”. Depending on what you hope to do with the data you probabbly do not want to download all of the files. Depending on your computation resources you may not be able to run all stages of the analysis. The code for all stages of the analysis, including typesetting the manuscript and running the analysis, is in code.tar. If you only want to run the final analysis or to play with datasets used in the analysis of the paper, you want intermediate_data.7z or the uncompressed tab and csv files. The data files are created in a four-stage process. The first stage uses the program “wikiq” to parse mediawiki xml dumps and create tsv files that have edit data for each wiki. The second stage generates all.edits.RDS file which combines these tsvs into a dataset of edits from all the wikis. This file is expensive to generate and at 1.5GB is pretty big. The third stage builds smaller intermediate files that contain the analytical variables from these tsv files. The fourth stage uses the intermediate files to generate smaller RDS files that contain the results. Finally, knitr and latex typeset the manuscript. A stage will only run if the outputs from the previous stages do not exist. So if the intermediate files exist they will not be regenerated. Only the final analysis will run. The exception is that stage 4, fitting models and generating plots, always runs. If you only want to replicate from the second stage onward, you want wikiq_tsvs.7z. If you want to replicate everything, you want wikia_mediawiki_xml_dumps.7z.001 wikia_mediawiki_xml_dumps.7z.002, and wikia_mediawiki_xml_dumps.7z.003. These instructions work backwards from building the manuscript using knitr, loading the datasets, running the analysis, to building the intermediate datasets. Building the manuscript using knitr This requires working latex, latexmk, and knitr installations. Depending on your operating system you might install these packages in different ways. On Debian Linux you can run apt install r-cran-knitr latexmk texlive-latex-extra. Alternatively, you can upload the necessary files to a project on Overleaf.com. Download code.tar. This has everything you need to typeset the manuscript. Unpack the tar archive. On a unix system this can be done by running tar xf code.tar. Navigate to code/paper_source. Install R dependencies. In R. run install.packages(c("data.table","scales","ggplot2","lubridate","texreg")) On a unix system you should be able to run make to build the manuscript generalizable_wiki.pdf. Otherwise you should try uploading all of the files (including the tables, figure, and knitr folders) to a new project on Overleaf.com. Loading intermediate datasets The intermediate datasets are found in the intermediate_data.7z archive. They can be extracted on a unix system using the command 7z x intermediate_data.7z. The files are 95MB uncompressed. These are RDS (R data set) files and can be loaded in R using the readRDS. For example newcomer.ds <- readRDS("newcomers.RDS"). If you wish to work with these datasets using a tool other than R, you might prefer to work with the .tab files. Running the analysis Fitting the models may not work on machines with less than 32GB of RAM. If you have trouble, you may find the functions in lib-01-sample-datasets.R useful to create stratified samples of data for fitting models. See line 89 of 02_model_newcomer_survival.R for an example. Download code.tar and intermediate_data.7z to your working folder and extract both archives. On a unix system this can be done with the command tar xf code.tar && 7z x intermediate_data.7z. Install R dependencies. install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). On a unix system you can simply run regen.all.sh to fit the models, build the plots and create the RDS files. Generating datasets Building the intermediate files The intermediate files are generated from all.edits.RDS. This process requires about 20GB of memory. Download all.edits.RDS, userroles_data.7z,selected.wikis.csv, and code.tar. Unpack code.tar and userroles_data.7z. On a unix system this can be done using tar xf code.tar && 7z x userroles_data.7z. Install R dependencies. In R run install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). Run 01_build_datasets.R. Building all.edits.RDS The intermediate RDS files used in the analysis are created from all.edits.RDS. To replicate building all.edits.RDS, you only need to run 01_build_datasets.R when the int... Visit https://dataone.org/datasets/sha256%3Acfa4980c107154267d8eb6dc0753ed0fde655a73a062c0c2f5af33f237da3437 for complete metadata about this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
Data points present in this dataset were obtained following the subsequent steps: To assess the secretion efficiency of the constructs, 96 colonies from the selection plates were evaluated using the workflow presented in Figure Workflow. We picked transformed colonies and cultured in 400 μL TAP medium for 7 days in Deep-well plates (Corning Axygen®, No.: PDW500CS, Thermo Fisher Scientific Inc., Waltham, MA), covered with Breathe-Easy® (Sigma-Aldrich®). Cultivation was performed on a rotary shaker, set to 150 rpm, under constant illumination (50 μmol photons/m2s). Then 100 μL sample were transferred clear bottom 96-well plate (Corning Costar, Tewksbury, MA, USA) and fluorescence was measured using an Infinite® M200 PRO plate reader (Tecan, Männedorf, Switzerland). Fluorescence was measured at excitation 575/9 nm and emission 608/20 nm. Supernatant samples were obtained by spinning Deep-well plates at 3000 × g for 10 min and transferring 100 μL from each well to the clear bottom 96-well plate (Corning Costar, Tewksbury, MA, USA), followed by fluorescence measurement. To compare the constructs, R Statistic version 3.3.3 was used to perform one-way ANOVA (with Tukey's test), and to test statistical hypotheses, the significance level was set at 0.05. Graphs were generated in RStudio v1.0.136. The codes are deposit herein.
Info
ANOVA_Turkey_Sub.R -> code for ANOVA analysis in R statistic 3.3.3
barplot_R.R -> code to generate bar plot in R statistic 3.3.3
boxplotv2.R -> code to generate boxplot in R statistic 3.3.3
pRFU_+_bk.csv -> relative supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
sup_+_bl.csv -> supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
sup_raw.csv -> supernatant mCherry fluorescence dataset of 96 colonies for each construct.
who_+_bl2.csv -> whole culture mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
who_raw.csv -> whole culture mCherry fluorescence dataset of 96 colonies for each construct.
who_+_Chlo.csv -> whole culture chlorophyll fluorescence dataset of 96 colonies for each construct.
Anova_Output_Summary_Guide.pdf -> Explain the ANOVA files content
ANOVA_pRFU_+_bk.doc -> ANOVA of relative supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
ANOVA_sup_+_bk.doc -> ANOVA of supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
ANOVA_who_+_bk.doc -> ANOVA of whole culture mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
ANOVA_Chlo.doc -> ANOVA of whole culture chlorophyll fluorescence of all constructs, plus average and standard deviation values.
Consider citing our work.
Molino JVD, de Carvalho JCM, Mayfield SP (2018) Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS ONE 13(2): e0192433. https://doi.org/10.1371/journal. pone.0192433
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories,
This dataset contains files reconstructing single-cell data presented in 'Reference transcriptomics of porcine peripheral immune cells created through bulk and single-cell RNA sequencing' by Herrera-Uribe & Wiarda et al. 2021. Samples of peripheral blood mononuclear cells (PBMCs) were collected from seven pigs and processed for single-cell RNA sequencing (scRNA-seq) in order to provide a reference annotation of porcine immune cell transcriptomics at enhanced, single-cell resolution. Analysis of single-cell data allowed identification of 36 cell clusters that were further classified into 13 cell types, including monocytes, dendritic cells, B cells, antibody-secreting cells, numerous populations of T cells, NK cells, and erythrocytes. Files may be used to reconstruct the data as presented in the manuscript, allowing for individual query by other users. Scripts for original data analysis are available at https://github.com/USDA-FSEPRU/PorcinePBMCs_bulkRNAseq_scRNAseq. Raw data are available at https://www.ebi.ac.uk/ena/browser/view/PRJEB43826. Funding for this dataset was also provided by NRSP8: National Animal Genome Research Program (https://www.nimss.org/projects/view/mrp/outline/18464). Resources in this dataset:Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells 10X Format. File Name: PBMC7_AllCells.zipResource Description: Zipped folder containing PBMC counts matrix, gene names, and cell IDs. Files are as follows: matrix of gene counts* (matrix.mtx.gx) gene names (features.tsv.gz) cell IDs (barcodes.tsv.gz) *The ‘raw’ count matrix is actually gene counts obtained following ambient RNA removal. During ambient RNA removal, we specified to calculate non-integer count estimations, so most gene counts are actually non-integer values in this matrix but should still be treated as raw/unnormalized data that requires further normalization/transformation. Data can be read into R using the function Read10X().Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells Metadata. File Name: PBMC7_AllCells_meta.csvResource Description: .csv file containing metadata for cells included in the final dataset. Metadata columns include: nCount_RNA = the number of transcripts detected in a cell nFeature_RNA = the number of genes detected in a cell Loupe = cell barcodes; correspond to the cell IDs found in the .h5Seurat and 10X formatted objects for all cells prcntMito = percent mitochondrial reads in a cell Scrublet = doublet probability score assigned to a cell seurat_clusters = cluster ID assigned to a cell PaperIDs = sample ID for a cell celltypes = cell type ID assigned to a cellResource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells PCA Coordinates. File Name: PBMC7_AllCells_PCAcoord.csvResource Description: .csv file containing first 100 PCA coordinates for cells. Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells t-SNE Coordinates. File Name: PBMC7_AllCells_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for all cells.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells UMAP Coordinates. File Name: PBMC7_AllCells_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for all cells.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells t-SNE Coordinates. File Name: PBMC7_CD4only_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells UMAP Coordinates. File Name: PBMC7_CD4only_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells UMAP Coordinates. File Name: PBMC7_GDonly_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells t-SNE Coordinates. File Name: PBMC7_GDonly_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gene Annotation Information. File Name: UnfilteredGeneInfo.txtResource Description: .txt file containing gene nomenclature information used to assign gene names in the dataset. 'Name' column corresponds to the name assigned to a feature in the dataset.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells H5Seurat. File Name: PBMC7.tarResource Description: .h5Seurat object of all cells in PBMC dataset. File needs to be untarred, then read into R using function LoadH5Seurat().
This data package is associated with the publication “Investigating the impacts of solid phase extraction on dissolved organic matter optical signatures and the pairing with high-resolution mass spectrometry data in a freshwater system” submitted to “Limnology and Oceanography: Methods.” This data is an extension of the River Corridor and Watershed Biogeochemistry SFA’s Spatial Study 2021 (https://doi.org/10.15485/1898914). Other associated data and field metadata can be found at the link provided. The goal of this manuscript is to assess the impact of solid phase extraction (SPE) on the ability to pair ultra-high resolution mass spectrometry data collected from SPE extracts with optical properties collected on ambient stream samples. Forty-seven samples collected from within the Yakima River Basin, Washington were analyzed dissolved organic carbon (DOC, measured as non-purgeable organic carbon, NPOC), absorbance, and fluorescence. Samples were subsequently concentrated with SPE and reanalyzed for each measurement. The extraction efficiency for the DOC and common optical indices were calculated. In addition, SPE samples were subject to ultra-high resolution mass spectrometry and compared with the ambient and SPE generated optical data. Finally, in addition to this cross-platform inter-comparison, we further performed and intra-comparison among the high-resolution mass spectrometry data to determine the impact of sample preparation on the interpretability of results. Here, the SPE samples were prepared at 40 milligrams per liter (mg/L) based on the known DOC extraction efficiency of the samples (ranging from ~30 to ~75%) compared to the common practice of assuming the DOC extraction efficiency of freshwater samples at 60%. This data package folder consists of one main data folder with one subfolder (Data_Input). The main data folder contains (1) readme; (2) data dictionary (dd); (3) file-level metadata (flmd); (4) final data summary output from processing script; and (5) the processing script. The R-markdown processing script (SPE_Manuscript_Rmarkdown_Data_Package.rmd) contains all code needed to reproduce manuscript statistics and figures (with the exception of that stated below). The Data_Input folder has two subfolders: (1) FTICR and (2) Optics. Additionally, the Data_Input folder contains dissolved organic carbon (DOC, measured as non-purgeable organic carbon, NPOC) data (SPS_NPOC_Summary.csv) and relevant supporting Solid Phase Extraction Volume information (SPS_SPE_Volumes.csv). Methods information for the optical and FTICR data is embedded in the header rows of SPS_EEMs_Methods.csv and SPS_FTICR_Methods.csv, respectively. In addition, the data dictionary (SPS_SPE_dd.csv), file level metadata (SPS_SPE_flmd.csv), and methods codes (SPS_SPE_Methods_codes.csv) are provided. The FTICR subfolder contains all raw FTICR data as well as instructions for processing. In addition, post processed FTICR molecular information (Processed_FTICRMS_Mol.csv) and sample data (Processed_FTICRMS_Data.csv) is provided that can be directly read into R with the associated R-markdown file. The Optics subfolder contains all Absorbance and Fluorescence Spectra. Fluorescence spectra have been blank corrected, inner filter corrected, and undergone scatter removal. In addition, this folder contains Matlab code used to make a portion of Figure 1 within the manuscript, derive various spectral parameters used within the manuscript, and used for parallel factor analysis (PARAFAC) modeling. Spectral indices (SPS_SpectralIndices.csv) and PARAFAC outputs (SPS_PARAFAC_Model_Loadings.csv and SPS_PARAFAC_Sample_Scores.csv) are directly read into the associated R-markdown file.
Cyclistic: Google Data Analytics Capstone Project
Cyclistic - Google Data Analytics Certification Capstone Project Moirangthem Arup Singh How Does a Bike-Share Navigate Speedy Success? Background: This project is for the Google Data Analytics Certification capstone project. I am wearing the hat of a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. Cyclistic is a bike-share program that features more than 5,800 bicycles and 600 docking stations. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike. The majority of riders opt for traditional bikes; about 8% of riders use the assistive options. Cyclistic users are more likely to ride for leisure, but about 30% use them to commute to work each day. Customers who purchase single-ride or full-day passes are referred to as casual riders. Customers who purchase annual memberships are Cyclistic members. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore,my team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, my team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve the recommendations, so they must be backed up with compelling data insights and professional data visualizations. This project will be completed by using the 6 Data Analytics stages: Ask: Identify the business task and determine the key stakeholders. Prepare: Collect the data, identify how it’s organized, determine the credibility of the data. Process: Select the tool for data cleaning, check for errors and document the cleaning process. Analyze: Organize and format the data, aggregate the data so that it’s useful, perform calculations and identify trends and relationships. Share: Use design thinking principles and data-driven storytelling approach, present the findings with effective visualization. Ensure the analysis has answered the business task. Act: Share the final conclusion and the recommendations. Ask: Business Task: Recommend marketing strategies aimed at converting casual riders into annual members by better understanding how annual members and casual riders use Cyclistic bikes differently. Stakeholders: Lily Moreno: The director of marketing and my manager. Cyclistic executive team: A detail-oriented executive team who will decide whether to approve the recommended marketing program. Cyclistic marketing analytics team: A team of data analysts responsible for collecting, analyzing, and reporting data that helps guide Cyclistic’s marketing strategy. Prepare: For this project, I will use the public data of Cyclistic’s historical trip data to analyze and identify trends. The data has been made available by Motivate International Inc. under the license. I downloaded the ZIP files containing the csv files from the above link but while uploading the files in kaggle (as I am using kaggle notebook), it gave me a warning that the dataset is already available in kaggle. So I will be using the dataset cyclictic-bike-share dataset from kaggle. The dataset has 13 csv files from April 2020 to April 2021. For the purpose of my analysis I will use the csv files from April 2020 to March 2021. The source csv files are in Kaggle so I can rely on it's integrity. I am using Microsoft Excel to get a glimpse of the data. There is one csv file for each month and has information about the bike ride which contain details of the ride id, rideable type, start and end time, start and end station, latitude and longitude of the start and end stations. Process: I will use R as language in kaggle to import the dataset to check how it’s organized, whether all the columns have appropriate data type, find outliers and if any of these data have sampling bias. I will be using below R libraries
library(tidyverse) library(lubridate) library(ggplot2) library(plotrix) ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
✔ ggplot2 3.3.5 ✔ purrr 0.3.4 ✔ tibble 3.1.4 ✔ dplyr 1.0.7 ✔ tidyr 1.1.3 ✔ stringr 1.4.0 ✔ readr 2.0.1 ✔ forcats 0.5.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ── ✖ dplyr::filter() masks stats::filter() ✖ dplyr::lag() masks stats::lag()
Attaching package: ‘lubridate’
The following objects are masked from ‘package:base’:
date, intersect, setdiff, union
setwd("/kaggle/input/cyclistic-bike-share")
r_202004 <- read.csv("202004-divvy-tripdata.csv") r_202005 <- read.csv("20...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
This dataset is the repository for the following paper submitted to Data in Brief:
Kempf, M. A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19. Data in Brief (submitted: December 2023).
The Data in Brief article contains the supplement information and is the related data paper to:
Kempf, M. Climate change, the Arab Spring, and COVID-19 - Impacts on landcover transformations in the Levant. Journal of Arid Environments (revision submitted: December 2023).
Description/abstract
The Levant region is highly vulnerable to climate change, experiencing prolonged heat waves that have led to societal crises and population displacement. Since 2010, the area has been marked by socio-political turmoil, including the Syrian civil war and currently the escalation of the so-called Israeli-Palestinian Conflict, which strained neighbouring countries like Jordan due to the influx of Syrian refugees and increases population vulnerability to governmental decision-making. Jordan, in particular, has seen rapid population growth and significant changes in land-use and infrastructure, leading to over-exploitation of the landscape through irrigation and construction. This dataset uses climate data, satellite imagery, and land cover information to illustrate the substantial increase in construction activity and highlights the intricate relationship between climate change predictions and current socio-political developments in the Levant.
Folder structure
The main folder after download contains all data, in which the following subfolders are stored are stored as zipped files:
“code” stores the above described 9 code chunks to read, extract, process, analyse, and visualize the data.
“MODIS_merged” contains the 16-days, 250 m resolution NDVI imagery merged from three tiles (h20v05, h21v05, h21v06) and cropped to the study area, n=510, covering January 2001 to December 2022 and including January and February 2023.
“mask” contains a single shapefile, which is the merged product of administrative boundaries, including Jordan, Lebanon, Israel, Syria, and Palestine (“MERGED_LEVANT.shp”).
“yield_productivity” contains .csv files of yield information for all countries listed above.
“population” contains two files with the same name but different format. The .csv file is for processing and plotting in R. The .ods file is for enhanced visualization of population dynamics in the Levant (Socio_cultural_political_development_database_FAO2023.ods).
“GLDAS” stores the raw data of the NASA Global Land Data Assimilation System datasets that can be read, extracted (variable name), and processed using code “8_GLDAS_read_extract_trend” from the respective folder. One folder contains data from 1975-2022 and a second the additional January and February 2023 data.
“built_up” contains the landcover and built-up change data from 1975 to 2022. This folder is subdivided into two subfolder which contain the raw data and the already processed data. “raw_data” contains the unprocessed datasets and “derived_data” stores the cropped built_up datasets at 5 year intervals, e.g., “Levant_built_up_1975.tif”.
Code structure
1_MODIS_NDVI_hdf_file_extraction.R
This is the first code chunk that refers to the extraction of MODIS data from .hdf file format. The following packages must be installed and the raw data must be downloaded using a simple mass downloader, e.g., from google chrome. Packages: terra. Download MODIS data from after registration from: https://lpdaac.usgs.gov/products/mod13q1v061/ or https://search.earthdata.nasa.gov/search (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, last accessed, 09th of October 2023). The code reads a list of files, extracts the NDVI, and saves each file to a single .tif-file with the indication “NDVI”. Because the study area is quite large, we have to load three different (spatially) time series and merge them later. Note that the time series are temporally consistent.
2_MERGE_MODIS_tiles.R
In this code, we load and merge the three different stacks to produce large and consistent time series of NDVI imagery across the study area. We further use the package gtools to load the files in (1, 2, 3, 4, 5, 6, etc.). Here, we have three stacks from which we merge the first two (stack 1, stack 2) and store them. We then merge this stack with stack 3. We produce single files named NDVI_final_*consecutivenumber*.tif. Before saving the final output of single merged files, create a folder called “merged” and set the working directory to this folder, e.g., setwd("your directory_MODIS/merged").
3_CROP_MODIS_merged_tiles.R
Now we want to crop the derived MODIS tiles to our study area. We are using a mask, which is provided as .shp file in the repository, named "MERGED_LEVANT.shp". We load the merged .tif files and crop the stack with the vector. Saving to individual files, we name them “NDVI_merged_clip_*consecutivenumber*.tif. We now produced single cropped NDVI time series data from MODIS.
The repository provides the already clipped and merged NDVI datasets.
4_TREND_analysis_NDVI.R
Now, we want to perform trend analysis from the derived data. The data we load is tricky as it contains 16-days return period across a year for the period of 22 years. Growing season sums contain MAM (March-May), JJA (June-August), and SON (September-November). December is represented as a single file, which means that the period DJF (December-February) is represented by 5 images instead of 6. For the last DJF period (December 2022), the data from January and February 2023 can be added. The code selects the respective images from the stack, depending on which period is under consideration. From these stacks, individual annually resolved growing season sums are generated and the slope is calculated. We can then extract the p-values of the trend and characterize all values with high confidence level (0.05). Using the ggplot2 package and the melt function from reshape2 package, we can create a plot of the reclassified NDVI trends together with a local smoother (LOESS) of value 0.3.
To increase comparability and understand the amplitude of the trends, z-scores were calculated and plotted, which show the deviation of the values from the mean. This has been done for the NDVI values as well as the GLDAS climate variables as a normalization technique.
5_BUILT_UP_change_raster.R
Let us look at the landcover changes now. We are working with the terra package and get raster data from here: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (last accessed 03. March 2023, 100 m resolution, global coverage). Here, one can download the temporal coverage that is aimed for and reclassify it using the code after cropping to the individual study area. Here, I summed up different raster to characterize the built-up change in continuous values between 1975 and 2022.
6_POPULATION_numbers_plot.R
For this plot, one needs to load the .csv-file “Socio_cultural_political_development_database_FAO2023.csv” from the repository. The ggplot script provided produces the desired plot with all countries under consideration.
7_YIELD_plot.R
In this section, we are using the country productivity from the supplement in the repository “yield_productivity” (e.g., "Jordan_yield.csv". Each of the single country yield datasets is plotted in a ggplot and combined using the patchwork package in R.
8_GLDAS_read_extract_trend
The last code provides the basis for the trend analysis of the climate variables used in the paper. The raw data can be accessed https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20Noah%20Land%20Surface%20Model%20L4%20monthly&page=1 (last accessed 9th of October 2023). The raw data comes in .nc file format and various variables can be extracted using the [“^a variable name”] command from the spatraster collection. Each time you run the code, this variable name must be adjusted to meet the requirements for the variables (see this link for abbreviations: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary, last accessed 09th of October 2023; or the respective code chunk when reading a .nc file with the ncdf4 package in R) or run print(nc) from the code or use names(the spatraster collection).
Choosing one variable, the code uses the MERGED_LEVANT.shp mask from the repository to crop and mask the data to the outline of the study area.
From the processed data, trend analysis are conducted and z-scores were calculated following the code described above. However, annual trends require the frequency of the time series analysis to be set to value = 12. Regarding, e.g., rainfall, which is measured as annual sums and not means, the chunk r.sum=r.sum/12 has to be removed or set to r.sum=r.sum/1 to avoid calculating annual mean values (see other variables). Seasonal subset can be calculated as described in the code. Here, 3-month subsets were chosen for growing seasons, e.g. March-May (MAM), June-July (JJA), September-November (SON), and DJF (December-February, including Jan/Feb of the consecutive year).
From the data, mean values of 48 consecutive years are calculated and trend analysis are performed as describe above. In the same way, p-values are extracted and 95 % confidence level values are marked with dots on the raster plot. This analysis can be performed with a much longer time series, other variables, ad different spatial extent across the globe due to the availability of the GLDAS variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains the data and scripts used for: Goeking, S. A. and D. G. Tarboton, (2022). Spatially distributed overstory and understory leaf area index estimated from forest inventory data. Water. https://doi.org/10.3390/w1415241.
Abstract from the paper: Abstract: Forest change affects the relative magnitudes of hydrologic fluxes such as evapotranspiration (ET) and streamflow. However, much is unknown about the sensitivity of streamflow response to forest disturbance and recovery. Several physically based models recognize the different influences that overstory versus understory canopies exert on hydrologic processes, yet most input datasets consist of total leaf area index (LAI) rather than individual canopy strata. Here, we developed stratum-specific LAI datasets with the intent of improving the representation of vegetation for ecohydrologic modeling. We applied three pre-existing methods for estimating overstory LAI, and one new method for estimating both overstory and understory LAI, to measurements collected from a probability-based plot network established by the US Forest Service’s Forest Inventory and Analysis (FIA) program, for a modeling domain in Montana, MT, USA. We then combined plot-level LAI estimates with spatial datasets (i.e., biophysical and re-mote sensing predictors) in a machine learning algorithm (random forests) to produce annual gridded LAI datasets. Methods that estimate only overstory LAI tended to underestimate LAI relative to Landsat-based LAI (mean bias error ≥ 0.83), while the method that estimated both overstory and understory layers was most strongly correlated with Landsat-based LAI (r2 = 0.80 for total LAI, with mean bias error of -0.99). During 1984-2019, interannual variability of under-story LAI exceeded that for overstory LAI; this variability may affect partitioning of precipitation to ET vs. runoff at annual timescales. We anticipate that distinguishing overstory and understory components of LAI will improve the ability of LAI-based models to simulate how for-est change influences hydrologic processes.
This resource contains one CSV file, two shapefiles (each within a zip file), two R scripts, and multiple raster datasets. The two shapefiles represent the boundaries of the Middle Fork Flathead river and South Fork Flathead River watersheds. The raster datasets represent annual leaf area index (LAI) at 30 m resolution for the entire modeling domain used in this study. LAI was estimated using method LAI4, which produced separate overstory and understory LAI datasets. Filenames contain years, e.g., "LAI4_2019" is overstory LAI for 2019; "LAI4under_2019" is understory LAI for 2019.
The CSV files in this Resource contain annual time series of LAI and ET ratio (annual evapotranspiration divided by annual precipitation) for the South Fork Flathead River and Middle Fork Flathead River watersheds, 1984-2019. LAI methods represented in this time series are LAI1 and LAI4 from the paper. LAI1 consists of only overstory LAI, and LAI4 consists of overstory (LAI4), understory (LAI4_under), and total (LAI4_total) LAI. For each LAI estimation method, summary statistics of the entire watershed are included (min, first quartile, median, third quartile, and max).
The two R scripts (R language and environment for statistical computing) summarize Forest Inventory & Analysis (FIA) data from the FIA database (FIADB) to estimate LAI at FIA plots. 1) FIADB_queries_public.r: Script for compiling FIA plot measurements prior to estimating LAI 2) LAI_estimation_public: Script for estimating LAI at FIA plots using the four methods described in this paper
Before running the R scripts, users must obtain several FIADB tables (PLOT, COND, TREE, and P2VEG_SUBP_STRUCTURE; all four tables must be renamed with lower-case names, e.g., "plot"). These tables can be obtained using one of two methods: 1) By downloading CSV files for the appropriate U.S. state(s) from the FIA DataMart (https://apps.fs.usda.gov/fia/datamart/datamart.html). If this method is used, the CSV files must be imported (read) into R before proceeding. 2) By using r package 'rFIA' to download the tables from FIADB for the U.S. state(s) of interest.
Note that publicly available plot coordinates are accurate within 1 km and are not true plot locations, which are legally confidential to protect the integrity of the sample locations and the privacy of landowners. Access to true plot location data requires review by FIA's Spatial Data Services unit, who can be contacted at SM.FS.RMRSFIA_Help@usda.gov.
This dataset includes all the data and R code needed to reproduce the analyses in a forthcoming manuscript:Copes, W. E., Q. D. Read, and B. J. Smith. Environmental influences on drying rate of spray applied disinfestants from horticultural production services. PhytoFrontiers, DOI pending.Study description: Instructions for disinfestants typically specify a dose and a contact time to kill plant pathogens on production surfaces. A problem occurs when disinfestants are applied to large production areas where the evaporation rate is affected by weather conditions. The common contact time recommendation of 10 min may not be achieved under hot, sunny conditions that promote fast drying. This study is an investigation into how the evaporation rates of six commercial disinfestants vary when applied to six types of substrate materials under cool to hot and cloudy to sunny weather conditions. Initially, disinfestants with low surface tension spread out to provide 100% coverage and disinfestants with high surface tension beaded up to provide about 60% coverage when applied to hard smooth surfaces. Disinfestants applied to porous materials were quickly absorbed into the body of the material, such as wood and concrete. Even though disinfestants evaporated faster under hot sunny conditions than under cool cloudy conditions, coverage was reduced considerably in the first 2.5 min under most weather conditions and reduced to less than or equal to 50% coverage by 5 min. Dataset contents: This dataset includes R code to import the data and fit Bayesian statistical models using the model fitting software CmdStan, interfaced with R using the packages brms and cmdstanr. The models (one for 2022 and one for 2023) compare how quickly different spray-applied disinfestants dry, depending on what chemical was sprayed, what surface material it was sprayed onto, and what the weather conditions were at the time. Next, the statistical models are used to generate predictions and compare mean drying rates between the disinfestants, surface materials, and weather conditions. Finally, tables and figures are created. These files are included:Drying2022.csv: drying rate data for the 2022 experimental runWeather2022.csv: weather data for the 2022 experimental runDrying2023.csv: drying rate data for the 2023 experimental runWeather2023.csv: weather data for the 2023 experimental rundisinfestant_drying_analysis.Rmd: RMarkdown notebook with all data processing, analysis, and table creation codedisinfestant_drying_analysis.html: rendered output of notebookMS_figures.R: additional R code to create figures formatted for journal requirementsfit2022_discretetime_weather_solar.rds: fitted brms model object for 2022. This will allow users to reproduce the model prediction results without having to refit the model, which was originally fit on a high-performance computing clusterfit2023_discretetime_weather_solar.rds: fitted brms model object for 2023data_dictionary.xlsx: descriptions of each column in the CSV data files
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a new version draft of the data files for "Food washing monkeys recognize the law of diminishing returns" by Rosien et al.
The original reviewed pre-print was published on the elife website on 22 July 2024: https://elifesciences.org/reviewed-preprints/98520. The data stored here are for the updated version of record.
The published text contains methods justifications and supporting citations.
This dataset was revised based on the recommendations of three reviewers. It now contains:
A general note: when running the scripts, the file path you utilize will differ from the ones utilized in the current text, as it depends on where on one's computer the actual .csv files are stored. The "read.csv" command in the R code will need to be customized to a particular file path.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘School Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/smeilisa07/number of school teacher student class on 13 February 2022.
--- Dataset description provided by original source is as follows ---
This is my first analyst data. This dataset i got from open data Jakarta website (http://data.jakarta.go.id/), so mostly the dataset is in Indonesian. But i have try describe it that you can find it on VARIABLE DESCRIPTION.txt file.
The title of this dataset is jumlah-sekolah-guru-murid-dan-ruang-kelas-menurut-jenis-sekolah-2011-2016, with type is CSV, so you can easily access it. If you not understand, the title means the number of school, teacher, student, and classroom according to the type of school 2011 - 2016. I think, if you just read from the title, you can imagine the contents. So this dataset have 50 observations and 8 variables, taken from 2011 until 2016.
In general, this dataset is about the quality of education in Jakarta, which each year some of school level always decreasing and some is increase, but not significant.
This dataset comes from Indonesian education authorities, which is already established in the CSV file by Open Data Jakarta.
Althought this data given from Open Data Jakarta publicly, i want always continue to improve my Data Scientist skill, especially in R programming, because i think R programming is easy to learn and really help me to be always curious about Data Scientist. So, this dataset that I am still struggle with below problem, and i need solution.
Question :
How can i cleaning this dataset ? I have try cleaning this dataset, but i still not sure. You can check on
my_hypothesis.txt file, when i try cleaning and visualize this dataset.
How can i specify the model for machine learning ? What recommended steps i should take ?
How should i cluster my dataset, if i want the label is not number but tingkat_sekolah for every tahun and
jenis_sekolah ? You can check on my_hypothesis.txt file.
--- Original source retains full ownership of the source dataset ---
titanic5 Dataset Created by David Beltran del Rio March 2016.
Notes This is the final (for now) version of my update to the Titanic data. I think it’s finally ready for publishing if you’d like. What I did was to strip all the passenger and crew data from the Encyclopedia Titanica (ET) web pages (excluding channel crossing passengers), create a unique ID for each passenger and crew member (Name_ID), then (painstakingly and hopefully 100% correctly) match to your earlier titanic3 dataset, in order to compare the two and to get your sibsp and parch variables. Since the ET is updated occasionally the work put into the ID and matching can be reused and refined later. I did eventually hear back from the ET people, they are willing to make the underlying database available in the future, I have not yet taken them up on it.
The two datasets line up nicely, most of the differences in the newer titanic5 dataset are in the age variable, as I had mentioned before - the new set has less missing ages - 51 missing (vs 263) out of 1309.
I am in the process of refining my analysis of the data as well, based on your comments below and your Regression Modeling Strategies example.
titanic3_wID data can be matched to titanic5 using the Name_ID variable. Tab titanic5 Metadata has the variable descriptions and allowable values for Class and Class/Dept.
A note about the ages - instead of using the add 0.5 trick to indicate estimated birth day / date I have a flag that indicates how the “final” age (Age_F) was arrived at. It’s the Age_F_Code variable - the allowable values are in the Titanic5_metadata tab in the attached excel. The reason for this is that I already had some fractional ages for infants where I had age in months instead of years and I wanted to avoid confusion for 6 month old infants, although I don’t think there are any in the data! Also, I was thinking to make fractional ages or age in days for all passengers for whom I have DoB, but I have not yet done so.
Here’s what the tabs are:
Titanic5_all - all (mostly cleaned) Titanic passenger and crew records Titanic5_work - working dataset, crew removed, unnecessary variables removed - this is the one I import into SAS / R to work on Titanic5_metadata - Variable descriptions and allowable values titanic3_wID - Original Titanic3 dataset with Name_ID added for merging to Titanic5 I have a csv, R dataset, and SAS dataset, but the variable names are an older version, so I won’t send those along for now to avoid confusion.
If it helps send my contact info along to your student in case any questions arise. Gmail address probably best, on weekends for sure: davebdr@gmail.com
The tabs in titanic5.xls are
Titanic5_all Titanic5_passenger (the one to be used for analysis) Titanic5_metadata (used during analysis file creation) Titanic3_wID
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data publication contains data and scripts associated with the publication:
Tebbett SB, Connolly SR, Bellwood DR. Benthic composition changes on coral reefs at global scales. Nature Ecology and Evolution
In this study we wanted to gain an insight into likely coral reef configurations of the near future. Specifically we focused on two relatively straightforward questions: 1) how is the benthic composition of coral reefs changing at a global scale? and 2) how, and to what extent, do these changes vary among major marine realms? To explore these questions, we compiled an extensive, global, dataset composed of observations of coral reef benthic composition (cover of 6 benthic categories).
The individual datapoints in our dataset were mean site level (i.e. a unique latitude and longitude) benthic community composition data. The six benthic categories were: hard coral, soft corals, macroalgae, low lying algae, sand, and other. We sourced all data from publicly availably databases (all references are supplied in CSV file 1) and previous literature (references and data supplied in CSV files 2 and 3). Specifically, we compiled benthic composition data from six major publicly available monitoring databases: Reef Check, Reef Check Australia, Reef Life Survey, Caribbean Coastal Marine Productivity (CARICOMP), Moorea Coral Reef Long Term Ecological Research and the National Oceanic and Atmospheric Administration (NOAA). The raw data from these six publicly available databases can be accessed through the list of references and relevant accession details listed in CSV file 1. There are 48 references listed in this file as these detail the specific location of each individual data source within these broader databases to ensure raw data can be easily located. To complement the data from these databases and to ensure that our dataset was comprehensive, we then undertook an extensive formal search of the literature for available data. Ultimately, this search process resulted in 83 publications with data that could be used in our study. The references and derived data from these 83 studies is provided in CSV files 2 and 3.
This data publication also includes five R scripts (R markdown files) that detail the statistical analyses and compilation of figures from the main text in the manuscript.
For full methodological details, please see the published manuscript (referenced above).
Further details of the files associated with this data publication can also be found in the 'read me' file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. The database consists of 11 tables; one raw data table plus ten related meta data tables. For further information please see our associated data paper.
This data consists of several elements:
Please note: any users of any of this material should cite the associated data paper in addition to the DOI listed here.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The purpose of this dataset is to provide a detailed picture of the characteristics of Syrian towns in the years preceding the 2011 Syrian uprising and ensuing civil war. It incorporates the 2004 national census, the last before the uprising, and a newly collected set of data on ethnic identity. The level of analysis is the town (the Syrian Census Bureau’s fourth administrative level). TECHNICAL NOTE: The .csv files in this data package contain both Arabic and English, so are encoded in UTF-8. The Arabic script should render if opened directly in Open Office, Numbers, Google Drive, or R statistical software. To read the Arabic in Excel, you can open the .csv file in any of these applications and save it as an .xlsx file, or open it through Excel using the following steps: (1) open a blank excel document (2) import the data using “Data -> Get External Data -> Import text file” (3) select “File Origin: Unicode (UTF-8)” (4) select “Delimiters: comma” (5) select the top left cell to place the data See the following post for further details: https://stackoverflow.com/questions/6002256/is-it-possible-to-force-excel-recognize-utf-8-csv-files-automatically
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The DIAMAS project investigates Institutional Publishing Service Providers (IPSP) in the broadest sense, with a special focus on those publishing initiatives that do not charge fees to authors or readers. To collect information on Institutional Publishing in the ERA, a survey was conducted among IPSPs between March-May 2024. This dataset contains aggregated data from the 685 valid responses to the DIAMAS survey on Institutional Publishing.
The dataset supplements D2.3 Final IPSP landscape Report Institutional Publishing in the ERA: results from the DIAMAS survey.
The data
Basic aggregate tabular data
Full individual survey responses are not being shared to prevent the easy identification of respondents (in line with conditions set out in the survey questionnaire). This dataset contains full tables with aggregate data for all questions from the survey, with the exception of free-text responses, from all 685 survey respondents. This includes, per question, overall totals and percentages for the answers given as well the breakdown by both IPSP-types: institutional publishers (IPs) and service providers (SPs). Tables at country level have not been shared, as cell values often turned out to be too low to prevent potential identification of respondents. The data is available in csv and docx formats, with csv files grouped and packaged into ZIP files. Metadata describing data type, question type, as well as question response rate, is available in csv format. The R code used to generate the aggregate tables is made available as well.
Files included in this dataset
survey_questions_data_description.csv - metadata describing data type, question type, as well as question response rate per survey question.
tables_raw_all.zip - raw tables (csv format) with aggregated data per question for all respondents, with the exception of free-text responses. Questions with multiple answers have a table for each answer option. Zip file contains 180 csv files.
tables_raw_IP.zip - as tables_raw_all.zip, for responses from institutional publishers (IP) only. Zip file contains 180 csv files.
tables_raw_SP.zip - as tables_raw_all.zip, for responses from service providers (SP) only. Zip file contains 170 csv files.
tables_formatted_all.docx - formatted tables (docx format) with aggregated data per question for all respondents, with the exception of free-text responses. Questions with multiple answers have a table for each answer option.
tables_formatted_IP.docx - as tables_formatted_all.docx, for responses from institutional publishers (IP) only.
tables_formatted_SP.docx - as tables_formatted_all.docx, for responses from service providers (SP) only.
DIAMAS_Tables_single.R - R script used to generate raw tables with aggregated data for all single response questions
DIAMAS_Tables_multiple.R - R script used to generate raw tables with aggregated data for all multiple response questions
DIAMAS_Tables_layout.R - R script used to generate document with formatted tables from raw tables with aggregated data
DIAMAS Survey on Instititutional Publishing - data availability statement (pdf)
All data are made available under a CC0 license.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CSV results a .zip folder containing a .csv file with the ANSYS results for each outline, formatted to be read into R.
https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `