2 datasets found
  1. Data from: Ecosystem-Level Determinants of Sustained Activity in Open-Source...

    • zenodo.org
    application/gzip, bin +2
    Updated Aug 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb (2024). Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A Case Study of the PyPI Ecosystem [Dataset]. http://doi.org/10.5281/zenodo.1419788
    Explore at:
    bin, application/gzip, zip, text/x-pythonAvailable download formats
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb
    License

    https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html

    Description
    Replication pack, FSE2018 submission #164:
    ------------------------------------------
    
    **Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: 
    A Case Study of the PyPI Ecosystem
    
    **Note:** link to data artifacts is already included in the paper. 
    Link to the code will be included in the Camera Ready version as well.
    
    
    Content description
    ===================
    
    - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files 
     described below
    - **settings.py** - settings template for the code archive.
    - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset.
     This dataset only includes stats aggregated by the ecosystem (PyPI)
    - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level
     statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages
     themselves, which take around 2TB.
    - **build_model.r, helpers.r** - R files to process the survival data 
      (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, 
      `common.cache/survival_data.pypi_2008_2017-12_6.csv` in 
      **dataset_full_Jan_2018.tgz**)
    - **Interview protocol.pdf** - approximate protocol used for semistructured interviews.
    - LICENSE - text of GPL v3, under which this dataset is published
    - INSTALL.md - replication guide (~2 pages)
    Replication guide
    =================
    
    Step 0 - prerequisites
    ----------------------
    
    - Unix-compatible OS (Linux or OS X)
    - Python interpreter (2.7 was used; Python 3 compatibility is highly likely)
    - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible)
    
    Depending on detalization level (see Step 2 for more details):
    - up to 2Tb of disk space (see Step 2 detalization levels)
    - at least 16Gb of RAM (64 preferable)
    - few hours to few month of processing time
    
    Step 1 - software
    ----------------
    
    - unpack **ghd-0.1.0.zip**, or clone from gitlab:
    
       git clone https://gitlab.com/user2589/ghd.git
       git checkout 0.1.0
     
     `cd` into the extracted folder. 
     All commands below assume it as a current directory.
      
    - copy `settings.py` into the extracted folder. Edit the file:
      * set `DATASET_PATH` to some newly created folder path
      * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` 
    - install docker. For Ubuntu Linux, the command is 
      `sudo apt-get install docker-compose`
    - install libarchive and headers: `sudo apt-get install libarchive-dev`
    - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools`
     Without this dependency, you might get an error on the next step, 
     but it's safe to ignore.
    - install Python libraries: `pip install --user -r requirements.txt` . 
    - disable all APIs except GitHub (Bitbucket and Gitlab support were
     not yet implemented when this study was in progress): edit
     `scraper/init.py`, comment out everything except GitHub support
     in `PROVIDERS`.
    
    Step 2 - obtaining the dataset
    -----------------------------
    
    The ultimate goal of this step is to get output of the Python function 
    `common.utils.survival_data()` and save it into a CSV file:
    
      # copy and paste into a Python console
      from common import utils
      survival_data = utils.survival_data('pypi', '2008', smoothing=6)
      survival_data.to_csv('survival_data.csv')
    
    Since full replication will take several months, here are some ways to speedup
    the process:
    
    ####Option 2.a, difficulty level: easiest
    
    Just use the precomputed data. Step 1 is not necessary under this scenario.
    
    - extract **dataset_minimal_Jan_2018.zip**
    - get `survival_data.csv`, go to the next step
    
    ####Option 2.b, difficulty level: easy
    
    Use precomputed longitudinal feature values to build the final table.
    The whole process will take 15..30 minutes.
    
    - create a folder `
  2. q

    Large Datasets in R - Plant Phenology & Temperature Data from NEON

    • qubeshub.org
    Updated May 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Megan Jones Patterson; Lee Stanish; Natalie Robinson; Katherine Jones; Cody Flagg (2018). Large Datasets in R - Plant Phenology & Temperature Data from NEON [Dataset]. http://doi.org/10.25334/Q4DQ3F
    Explore at:
    Dataset updated
    May 10, 2018
    Dataset provided by
    QUBES
    Authors
    Megan Jones Patterson; Lee Stanish; Natalie Robinson; Katherine Jones; Cody Flagg
    Description

    This module series covers how to import, manipulate, format and plot time series data stored in .csv format in R. Originally designed to teach researchers to use NEON plant phenology and air temperature data; has been used in undergraduate classrooms.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb (2024). Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A Case Study of the PyPI Ecosystem [Dataset]. http://doi.org/10.5281/zenodo.1419788
Organization logo

Data from: Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A Case Study of the PyPI Ecosystem

Related Article
Explore at:
bin, application/gzip, zip, text/x-pythonAvailable download formats
Dataset updated
Aug 2, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb
License

https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html

Description
Replication pack, FSE2018 submission #164:
------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: 
A Case Study of the PyPI Ecosystem

**Note:** link to data artifacts is already included in the paper. 
Link to the code will be included in the Camera Ready version as well.


Content description
===================

- **ghd-0.1.0.zip** - the code archive. This code produces the dataset files 
 described below
- **settings.py** - settings template for the code archive.
- **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset.
 This dataset only includes stats aggregated by the ecosystem (PyPI)
- **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level
 statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages
 themselves, which take around 2TB.
- **build_model.r, helpers.r** - R files to process the survival data 
  (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, 
  `common.cache/survival_data.pypi_2008_2017-12_6.csv` in 
  **dataset_full_Jan_2018.tgz**)
- **Interview protocol.pdf** - approximate protocol used for semistructured interviews.
- LICENSE - text of GPL v3, under which this dataset is published
- INSTALL.md - replication guide (~2 pages)
Replication guide
=================

Step 0 - prerequisites
----------------------

- Unix-compatible OS (Linux or OS X)
- Python interpreter (2.7 was used; Python 3 compatibility is highly likely)
- R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible)

Depending on detalization level (see Step 2 for more details):
- up to 2Tb of disk space (see Step 2 detalization levels)
- at least 16Gb of RAM (64 preferable)
- few hours to few month of processing time

Step 1 - software
----------------

- unpack **ghd-0.1.0.zip**, or clone from gitlab:

   git clone https://gitlab.com/user2589/ghd.git
   git checkout 0.1.0
 
 `cd` into the extracted folder. 
 All commands below assume it as a current directory.
  
- copy `settings.py` into the extracted folder. Edit the file:
  * set `DATASET_PATH` to some newly created folder path
  * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` 
- install docker. For Ubuntu Linux, the command is 
  `sudo apt-get install docker-compose`
- install libarchive and headers: `sudo apt-get install libarchive-dev`
- (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools`
 Without this dependency, you might get an error on the next step, 
 but it's safe to ignore.
- install Python libraries: `pip install --user -r requirements.txt` . 
- disable all APIs except GitHub (Bitbucket and Gitlab support were
 not yet implemented when this study was in progress): edit
 `scraper/init.py`, comment out everything except GitHub support
 in `PROVIDERS`.

Step 2 - obtaining the dataset
-----------------------------

The ultimate goal of this step is to get output of the Python function 
`common.utils.survival_data()` and save it into a CSV file:

  # copy and paste into a Python console
  from common import utils
  survival_data = utils.survival_data('pypi', '2008', smoothing=6)
  survival_data.to_csv('survival_data.csv')

Since full replication will take several months, here are some ways to speedup
the process:

####Option 2.a, difficulty level: easiest

Just use the precomputed data. Step 1 is not necessary under this scenario.

- extract **dataset_minimal_Jan_2018.zip**
- get `survival_data.csv`, go to the next step

####Option 2.b, difficulty level: easy

Use precomputed longitudinal feature values to build the final table.
The whole process will take 15..30 minutes.

- create a folder `
Search
Clear search
Close search
Google apps
Main menu