Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
What is the HyM_GR2M product?It's a product that contains monthly discharge estimations for 3594 subbasins and river reaches throughout the Peruvian territory, from January 1981 to March 2020. Discharge data is generated from a water balance model at a national scale, forced by the meteorological PISCO dataset, and using a semi-distributed GR2M model adaptation.How to read data?Shapefiles of subbasins and river reaches are provided. Each shapefile's attribute table has a field named GR2M_ID with a unique identifying number for each element, so discharge time-series could be easily assigned. Additionally and R script is attached to read the discharge netCDF file.Files- discharge.nc- Read_discharge.R- Subbasins_HyM_GR2M (shapefile)- Streams_HyM_GR2M (shapefile)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.
The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:
(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.
(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.
(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.
Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.
More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.
Data processing
We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.
Version
Version 2022.1.
Acknowledgements
This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.
Citation
Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision
Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940
Contacts
Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;
Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn
Institution: Kunming Institute of Botany, Chinese Academy of Sciences
Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China
Copyright
This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
First of a set of four files which make up the ESRI (Environmental Systems Research Institute) shapefile format. To read into R, the four files should be placed in the same folder (directory), for example the working directory, and imported using the ‘readOGR’ function of the ‘rgdal’ package. (SHP)
We present a flora and fauna dataset for the Mira-Mataje binational basins. This is an area shared between southwestern Colombia and northwestern Ecuador, where both the Chocó and Tropical Andes biodiversity hotspots converge. Information from 120 sources was systematized in the Darwin Core Archive (DwC-A) standard and geospatial vector data format for geographic information systems (GIS) (shapefiles). Sources included natural history museums, published literature, and citizen science repositories across 18 countries. The resulting database has 33,460 records from 5,281 species, of which 1,083 are endemic and 680 threatened. The diversity represented in the dataset is equivalent to 10\% of the total plant species and 26\% of the total terrestrial vertebrate species in the hotspots. It corresponds to 0.07\% of their total area. The dataset can be used to estimate and compare biodiversity patterns with environmental parameters and provide value to ecosystems, ecoregions, and protected areas. The dataset is a baseline for future assessments of biodiversity in the face of environmental degradation, climate change, and accelerated extinction processes. The data has been formally presented in the manuscript entitled "The Tropical Andes Biodiversity Hotspot: A Comprehensive Dataset for the Mira-Mataje Binational Basins" in the journal "Scientific Data". To maintain DOI integrity, this version will not change after publication of the manuscript and therefore we cannot provide further references on volume, issue, and DOI of manuscript publication. - Data format 1: The .rds file extension saves a single object to be read in R and provides better compression, serialization, and integration within the R environment, than simple .csv files. The description of file names is in the original manuscript. -- m_m_flora_2021_voucher_ecuador.rds -- m_m_flora_2021_observation_ecuador.rds -- m_m_flora_2021_total_ecuador.rds -- m_m_fauna_2021_ecuador.rds - Data format 2: The .csv file has been encoded in UTF-8, and is an ASCII file with text separated by commas. The description of file names is in the original manuscript. -- m_m_flora_fauna_2021_all.zip. This file includes all biodiversity datasets. -- m_m_flora_2021_voucher_ecuador.csv -- m_m_flora_2021_observation_ecuador.csv -- m_m_flora_2021_total_ecuador.csv -- m_m_fauna_2021_ecuador.csv - Data format 3: We consolidated a shapefile for the basin containing layers for vegetation ecosystems and the total number of occurrences, species, and endemic and threatened species for each ecosystem. -- biodiversity_measures_mira_mataje.zip. This file includes the .shp file and accessory geomatic files. - A set of 3D shaded-relief map representations of the data in the shapefile can be found at https://doi.org/10.6084/m9.figshare.23499180.v4 Three taxonomic data tables were used in our technical validation of the presented dataset. These three files are: 1) the_catalog_of_life.tsv (Source: Bánki, O. et al. Catalogue of life checklist (version 2024-03-26). https://doi.org/10.48580/dfz8d (2024)) 2) world_checklist_of_vascular_plants_names.csv (we are also including ancillary tables "world_checklist_of_vascular_plants_distribution.csv", and "README_world_checklist_of_vascular_plants_.xlsx") (Source: Govaerts, R., Lughadha, E. N., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants is a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215, 10.1038/s41597-021-00997-6 (2021).) 3) world_flora_online.csv (Source: The World Flora Online Consortium et al. World flora online plant list December 2023, 10.5281/zenodo.10425161 (2023).)
https://spdx.org/licenses/CC0-1.0https://spdx.org/licenses/CC0-1.0
The shapefile represents bottomfast sea ice (BSI) extent in lagoons along the Alaska Beaufort Sea coast during winter and spring, 2017-2021. It was created by digitizing extents from interferograms from the Alaska Satellite Facility Vertex portal. The result is used to identify BSI lateral extent in Arctic lagoons during the growth cycle seasonally. Comparing to future interferograms will identify the trend of BSI within Arctic lagoons. Each feature is attributed with applicable date range and area. Accurate data for the initial growth and maximum extent of BSI could only be collected for the winter and spring months. After the last collection in the spring, there is likely still BSI; however, the surface processes that take place after this point prevent further readings. For early winter time periods, if there are interferograms available (2017 and 2018 data had gaps in interferogram collection as Sentinel-1 was still new), the first date collected can be considered the onset of BSI formation.
Ice cores are collected using a Snow, Ice, and Permafrost Research Establishment (SIPRE) corer and measured for salinity. The data is logged in Excel format following Seasonal Ice Zone Observing Network (SIZONet) practices, making it compatible with the PySIC Python toolkit for analysis.
The auger data identifies key measurements collected from in-situ observations. Data are collected along five surveys and saved as a single CSV file. The data represent a 1-D representation of each auger hole. The data are used to verify satellite interpretations of BSI extent.
The apparent conductivity data includes values at three frequencies (1000 Hz, 4000 Hz, 16000 Hz) recorded during the spring of 2021 in Western Elson Lagoon. Data are saved as an EMI file, which is a CSV format with specific column names and header information. MATLAB scripts to read and interpret data are included in this data package. The apparent conductivity values are used to identify the boundary between floating and bottomfast sea ice. This is an additional survey method used to validate BSI extent interpreted from satellite data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please note this dataset is the most recent version of the Administrative Boundaries (AB). For previous versions of the AB please go to this url: https://data.gov.au/dataset/ds-dga-b4ad5702-ea2b-4f04-833c-d0229bfd689e/details?q=previous\r \r ----------------------------------\r \r Geoscape Administrative Boundaries is Australia’s most comprehensive national collection of boundaries, including government, statistical and electoral boundaries. It is built and maintained by Geoscape Australia using authoritative government data. Further information about contributors to Administrative Boundaries is available here.\r \r This dataset comprises seven Geoscape products:\r \r * Localities\r * Local Government Areas (LGAs)\r * Wards\r * Australian Bureau of Statistics (ABS) Boundaries\r * Electoral Boundaries\r * State Boundaries and\r * Town Points\r \r Updated versions of Administrative Boundaries are published on a quarterly basis.\r \r Users have the option to download datasets with feature coordinates referencing either GDA94 or GDA2020 datums.\r \r Notable changes in the May 2025 release\r \r * Victorian Wards have seen almost half of the dataset change now reflecting the boundaries from the 2024 subdivision review. https://www.vec.vic.gov.au/electoral-boundaries/council-reviews/ subdivision-reviews.\r \r * There have been spatial changes (area) greater than 1 km2 to 66 wards in Victoria. \r \r * One new locality ‘Kenwick Island’ has been added to the local Government area ‘Mackay Regional’ in Queensland.\r \r * There have been spatial changes(area) greater than 1 km2 to the local government areas 'Burke Shire' and 'Mount Isa City' in Queensland.\r \r * There have been spatial changes(area) greater than 1 km2 to the localities ‘Nicholson’, ‘Lawn Hill’ and ‘Coral Sea’ in Queensland and ‘Calguna’, ‘Israelite Bay’ and ‘Balladonia’ in Western Australia.\r \r * An update to the NT Commonwealth Electoral Boundaries has been applied to reflect the redistribution of the boundaries gazetted on 4 March 2025.\r \r * Geoscape has become aware that the DATE_CREATED and DATE_RETIRED attributes in the commonwealth_electoral_polygon MapInfo TAB tables were incorrectly ordered and did not match the product data model. These attributes have been re-ordered to match the data model for the May 2025 release.\r \r IMPORTANT NOTE: correction of issues with the 22 November 2022 release\r \r * On 28 November 2022, the Administrative Boundaries dataset originally released on 22 November 2022 was amended and re-uploaded after Geoscape identified some issues with the original data for 'Electoral Boundaries'.\r * As a result of the error, some shapefiles were published in 3D rather than 2D, which may affect some users when importing data into GIS applications.\r * The error affected the Electoral Boundaries dataset, specifically the Commonwealth boundary data for Victoria and Western Australia, including 'All States'.\r * Only the ESRI Shapefile formats were affected (both GDA94 and GDA2020). The MapInfo TAB format was not affected.\r * Because the datasets are zipped into a single file, once the error was fixed by Geoscape all of Administrative Boundaries shapefiles had to be re-uploaded, rather than only the affected files.\r * If you downloaded either of the two Administrative Boundary ESRI Shapefiles between 22 November and 28 November 2022 and plan to use the Electoral Boundary component, you are advised to download the revised version dated 28 November 2022. Apologies for any inconvenience.\r \r Further information on Administrative Boundaries, including FAQs on the data, is available here or through Geoscape Australia’s network of partners. They provide a range of commercial products based on Administrative Boundaries, including software solutions, consultancy and support.\r \r Note: On 1 October 2020, PSMA Australia Limited began trading as Geoscape Australia. \r \r \r The Australian Government has negotiated the release of Administrative Boundaries to the whole economy under an open CCBY 4.0 licence.\r \r Users must only use the data in ways that are consistent with the Australian Privacy Principles issued under the Privacy Act 1988 (Cth).\r \r Users must also note the following attribution requirements:\r \r Preferred attribution for the Licensed Material:\r \r
Administrative Boundaries © Geoscape Australia licensed by the Commonwealth of Australia under Creative Commons Attribution 4.0 International license (CC BY 4.0).\r \r Preferred attribution for Adapted Material:\r \r Incorporates or developed using Administrative Boundaries © Geoscape Australia licensed by the Commonwealth of Australia under Creative Commons Attribution 4.0 International licence (CC BY 4.0).\r \r
What to Expect When You Download Administrative Boundaries\r
\r Administrative Boundaries is large dataset (around 1.5GB unpacked), made up of seven themes each containing multiple layers.\r \r Users are advised to read the technical documentation including the product change notices and the individual product descriptions before downloading and using the product.\r \r Please note this dataset is the most recent version of the Administrative Boundaries (AB). For previous versions of the AB please go to this url: https://data.gov.au/dataset/ds-dga-b4ad5702-ea2b-4f04-833c-d0229bfd689e/details?q=previous\r
License Information\r
\r
Reason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. Because beaches in Puerto Rico and the U.S. Virgin Islands are open to the public, beaches also provide important outdoor recreation opportunities for urban residents, so we include beaches as parks in this indicator. Input Data
Southeast Blueprint 2023 subregions: Caribbean
Southeast Blueprint 2023 extent
National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) Coastal Relief Model, accessed 11-22-2022
Protected Areas Database of the United States (PAD-US) 3.0: VI, PR, and Marine Combined Fee Easement
Puerto Rico Protected Natural Areas 2018 (December 2018 update): Terrestrial and marine protected areas (PACAT2018_areas_protegidasPR_TERRESTRES_07052019.shp, PACAT2018_areas_protegidasPR_MARINAS_07052019.shp)
2020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 census
OpenStreetMap data “multipolygons” layer, accessed 3-14-2023
A polygon from this dataset is considered a park if the “leisure” tag attribute is either “park” or “nature_reserve”, and considered a beach if the value in the “natural” tag attribute is “beach”. OpenStreetMap describes leisure areas as “places people go in their spare time” and natural areas as “a wide variety of physical geography, geological and landcover features”. Data were downloaded in .pbf format and translated ton an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more on the OSM copyright page.
TNC Lands - Public Layer, accessed 3-8-2023
U.S. Virgin Islands beaches layer (separate vector layers for St. Croix, St. Thomas, and St. John) provided by Joe Dwyer with Lynker/the NOAA Caribbean Climate Adaptation Program on 3-3-2023 (contact jdwyer@lynker.com for more information)
Mapping Steps
Most mapping steps were completed using QGIS (v 3.22) Graphical Modeler.
Fix geometry errors in the PAD-US PR data using Fix Geometry. This must be done before any analysis is possible.
Merge the terrestrial PR and VI PAD-US layers.
Use the NOAA coastal relief model to restrict marine parks (marine polygons from PAD-US and Puerto Rico Protected Natural Areas) to areas shallower than 10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature.
Merge into one layer the resulting shallow marine parks from marine PAD-US and the Puerto Rico Protected Natural Areas along with the combined terrestrial PAD-US parks, OpenStreetMap, TNC Lands, and USVI beaches. Omit from the Puerto Rico Protected Areas layer the “Zona de Conservación del Carso”, which has some policy protections and conservation incentives but is not formally protected.
Fix geometry errors in the resulting merged layer using Fix Geometry.
Intersect the resulting fixed file with the Caribbean Blueprint subregion.
Process all multipart polygons to single parts (referred to in Arc software as an “explode”). This helps the indicator capture, as much as possible, the discrete units of a protected area that serve urban residents.
Clip the Census urban area to the Caribbean Blueprint subregion.
Select all polygons that intersect the Census urban extent within 1.2 miles (1,931 m). The 1.2 mi threshold is consistent with the average walking trip on a summer day (U.S. DOT 2002) used to define the walking distance threshold used in the greenways and trails indicator. Note: this is further than the 0.5 mi distance used in the continental version of the indicator. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation.
Dissolve all the park polygons that were selected in the previous step.
Process all multipart polygons to single parts (“explode”) again.
Add a unique ID to the selected parks. This value will be used to join the parks to their buffers.
Create a 1.2 mi (1,931 m) buffer ring around each park using the multiring buffer plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 1.2 mi buffer is created for each park.
Assess the amount of overlap between the buffered park and the Census urban area using overlap analysis. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix. This step creates a table that is joined back to the park polygons using the UniqueID.
Remove parks that had ≤2% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: In the continental version of this indicator, we used a threshold of 10%. In the Caribbean version, we lowered this to 2% in order to capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles.
Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.
Join the buffer attribute table to the previously selected parks, retaining only the parks that exceeded the 2% urban area overlap threshold while buffered.
Buffer the selected parks by 15 m. Buffering prevents very small parks and narrow beaches from being left out of the indicator when the polygons are converted to raster.
Reclassify the polygons into 7 classes, seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).
Export the final vector file to a shapefile and import to ArcGIS Pro.
Convert the resulting polygons to raster using the ArcPy Polygon to Raster function. Assign values to the pixels in the resulting raster based on the polygon class sizes of the contiguous park areas.
Clip to the Caribbean Blueprint 2023 subregion.
As a final step, clip to the spatial extent of Southeast Blueprint 2023.
Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator values Indicator values are assigned as follows: 6 = 75+ acre urban park 5 = >50 to <75 acre urban park 4 = 30 to <50 acre urban park 3 = 10 to <30 acre urban park 2 = 5 to <10 acre urban park 1 = <5 acre urban park 0 = Not identified as an urban park Known Issues
This indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.
This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.
This indicator includes parks and beaches from OpenStreetMap, which is a crowdsourced dataset. While members of the OpenStreetMap community often verify map features to check for accuracy and completeness, there is the potential for spatial errors (e.g., misrepresenting the boundary of a park) or incorrect tags (e.g., labelling an area as a park that is not actually a park). However, using a crowdsourced dataset gives on-the-ground experts, Blueprint users, and community members the power to fix errors and add new parks to improve the accuracy and coverage of this indicator in the future.
Other Things to Keep in Mind
This indicator calculates the area of each park using the park polygons from the source data. However, simply converting those park polygons to raster results in some small parks and narrow beaches being left out of the indicator. To capture those areas, we buffered parks and beaches by 15 m and applied the original area calculation to the larger buffered polygon, so as not to inflate the area by including the buffer. As a result, when the buffered polygons are rasterized, the final indicator has some areas of adjacent pixels that receive different scores. While these pixels may appear to be part of one contiguous park or suite of parks, they are scored differently because the park polygons themselves are not actually contiguous.
The Caribbean version of this indicator uses a slightly different methodology than the continental Southeast version. It includes parks within a 1.2 mi distance from the Census urban area, compared to 0.5 mi in the continental Southeast. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation. Similarly, this indicator uses a 2% threshold of overlap between buffered parks and the Census urban areas, compared to a 10% threshold in the continental Southeast. This helped capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles. Finally, the Caribbean version does not use the impervious surface cutoff applied in the continental Southeast
Reason for SelectionProtected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. They help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). Urban park size complements the equitable access to potential parks indicator by capturing the value of existing parks.Input DataSoutheast Blueprint 2024 extentFWS National Realty Tracts, accessed 12-13-2023Protected Areas Database of the United States(PAD-US):PAD-US 3.0national geodatabase -Combined Proclamation Marine Fee Designation Easement, accessed 12-6-20232020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 12-5-2023A polygon from this dataset is considered a beach if the value in the “natural” tag attribute is “beach”. Data for coastal states (VA, NC, SC, GA, FL, AL, MS, LA, TX) were downloaded in .pbf format and translated to an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under theOpen Data Commons Open Database License (ODbL) by theOpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more onthe OSM copyright page.2021 National Land Cover Database (NLCD): Percentdevelopedimperviousness2023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024Mapping StepsCreate a seamless vector layer to constrain the extent of the urban park size indicator to inland and nearshore marine areas <10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature. Shallow areas are more accessible for recreational activities like snorkeling, which typically has a maximum recommended depth of 12-15 meters. This step mirrors the approach taken in the Caribbean version of this indicator.Merge all coastal relief model rasters (.nc format) together using QGIS “create virtual raster”.Save merged raster to .tif and import into ArcPro.Reclassify the NOAA coastal relief model data to assign areas with an elevation of land to -10 m a value of 1. Assign all other areas (deep marine) a value of 0.Convert the raster produced above to vector using the “RasterToPolygon” tool.Clip to 2024 subregions using “Pairwise Clip” tool.Break apart multipart polygons using “Multipart to single parts” tool.Hand-edit to remove deep marine polygon.Dissolve the resulting data layer.This produces a seamless polygon defining land and shallow marine areas.Clip the Census urban area layer to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Clip PAD-US 3.0 to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Remove the following areas from PAD-US 3.0, which are outside the scope of this indicator to represent parks:All School Trust Lands in Oklahoma and Mississippi (Loc Des = “School Lands” or “School Trust Lands”). These extensive lands are leased out and are not open to the public.All tribal and military lands (“Des_Tp” = "TRIBL" or “Des_Tp” = "MIL"). Generally, these lands are not intended for public recreational use.All BOEM marine lease blocks (“Own_Name” = "BOEM"). These Outer Continental Shelf lease blocks do not represent actively protected marine parks, but serve as the “legal definition for BOEM offshore boundary coordinates...for leasing and administrative purposes” (BOEM).All lands designated as “proclamation” (“Des_Tp” = "PROC"). These typically represent the approved boundary of public lands, within which land protection is authorized to occur, but not all lands within the proclamation boundary are necessarily currently in a conserved status.Retain only selected attribute fields from PAD-US to get rid of irrelevant attributes.Merged the filtered PAD-US layer produced above with the OSM beaches and FWS National Realty Tracts to produce a combined protected areas dataset.The resulting merged data layer contains overlapping polygons. To remove overlapping polygons, use the Dissolve function.Clip the resulting data layer to the inland and nearshore extent.Process all multipart polygons (e.g., separate parcels within a National Wildlife Refuge) to single parts (referred to in Arc software as an “explode”).Select all polygons that intersect the Census urban extent within 0.5 miles. We chose 0.5 miles to represent a reasonable walking distance based on input and feedback from park access experts. Assuming a moderate intensity walking pace of 3 miles per hour, as defined by the U.S. Department of Health and Human Service’s physical activity guidelines, the 0.5 mi distance also corresponds to the 10-minute walk threshold used in the equitable access to potential parks indicator.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used in a later step to join the parks to their buffers.Create a 0.5 mi (805 m) buffer ring around each park using the multiring plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 0.5 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using “overlap analysis”. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix (e.g., Umstead Park in Raleigh, NC and Davidson-Arabia Mountain Nature Preserve in Atlanta, GA). This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤10% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: The 10% threshold is a judgement call based on testing which known urban parks and urban National Wildlife Refuges are captured at different overlap cutoffs and is intended to be as inclusive as possible.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Buffer the selected parks by 15 m. Buffering prevents very small and narrow parks from being left out of the indicator when the polygons are converted to raster.Reclassify the parks based on their area into the 7 classes seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Assess the impervious surface composition of each park using the NLCD 2021 impervious layer and the Zonal Statistics “MEAN” function. Retain only the mean percent impervious value for each park.Extract only parks with a mean impervious pixel value <80%. This step excludes parks that do not meet the intent of the indicator to capture opportunities to connect with nature and offer refugia for species (e.g., the Superdome in New Orleans, LA, the Astrodome in Houston, TX, and City Plaza in Raleigh, NC).Extract again to the inland and nearshore extent.Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Feature to Raster function and the area class field.Assign a value of 0 to all other pixels in the Southeast Blueprint 2024 extent not already identified as an urban park in the mapping steps above. Zero values are intended to help users better understand the extent of this indicator and make it perform better in online tools.Use the land and shallow marine layer and “extract by mask” tool to save the final version of this indicator.Add color and legend to raster attribute table.As a final step, clip to the spatial extent of Southeast Blueprint 2024.Note: For more details on the mapping steps, code used to create this layer is available in theSoutheast Blueprint Data Downloadunder > 6_Code.Final indicator valuesIndicator values are assigned as follows:6= 75+ acre urban park5= 50 to <75 acre urban park4= 30 to <50 acre urban park3= 10 to <30 acre urban park2=5 to <10acreurbanpark1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.The NLCD percent impervious layer contains classification inaccuracies. As a result, this indicator may exclude parks that are mostly natural because they are misclassified as mostly impervious. Conversely, this indicator may include parks that are mostly impervious because they are misclassified as mostly
**THIS NEWER 2016 DIGITAL MAP REPLACES THE OLDER 2014 VERSION OF THE GRI GATE Geomorphological-GIS data. The Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gate_geomorphology.gdb), a 10.1 ArcMap (.MXD) map document (gate_geomorphology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geomorphology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gate_gis_readme.pdf). Please read the gate_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gate_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gate_pre-sandy_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.08 meters or 16.67 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data source soilmap_simple is a simplified and standardized derived form of the 'digital soil map of the Flemish Region' (the shapefile of which we named soilmap, for analytical workflows in R) published by 'Databank Ondergrond Vlaanderen’ (DOV). It is a GeoPackage that contains a spatial polygon layer ‘soilmap_simple’ in the Belgian Lambert 72 coordinate reference system (EPSG-code 31370), plus a non-spatial table ‘explanations’ with the meaning of category codes that occur in the spatial layer. Further documentation about the digital soil map of the Flemish Region is available in Van Ranst & Sys (2000) and Dudal et al. (2005).
This version of soilmap_simple was derived from version 'soilmap_2017-06-20' (Zenodo DOI) as follows:
all attribute variables received English names (purpose of standardization), starting with prefix bsm_ (referring to the 'Belgian soil map');
attribute variables were reordered;
the values of the morphogenetic substrate, texture and drainage variables (bsm_mo_substr, bsm_mo_tex and bsm_mo_drain + their _explan counterparts) were filled for most features in the 'coastal plain' area.
To derive morphogenetic texture and drainage levels from the geomorphological soil types, a conversion table by Bruno De Vos & Carole Ampe was applied (for earlier work on this, see Ampe 2013).
Substrate classes were copied over from bsm_ge_substr into bsm_mo_substr (bsm_ge_substr already followed the categories of bsm_mo_substr).
These steps coincide with the approach that had been taken to construct the Unitype variable in the soilmap data source;
only a minimal number of variables were selected: those that are most useful for analytical work.
See R-code in the GitHub repository 'n2khab-preprocessing' at commit b3c6696 for the creation from the soilmap data source.
A reading function to return soilmap_simple (this data source) or soilmap in a standardized way into the R environment is provided by the R-package n2khab.
The attributes of the spatial polygon layer soilmap_simple can have mo_ in their name to refer to the Belgian Morphogenetic System:
bsm_poly_id: unique polygon ID (numeric)
bsm_region: name of the region
bsm_converted: boolean. Were morphogenetic texture and drainage variables (bsm_mo_tex and bsm_mo_drain) derived from a conversion table (see above)? Value TRUE is largely confined to the 'coastal plain' areas.
bsm_mo_soilunitype: code of the soil type (applying morphogenetic codes within the coastal plain areas when possible, just as for the following three variables)
bsm_mo_substr: code of the soil substrate
bsm_mo_tex: code of the soil texture category
bsm_mo_drain: code of the soil drainage category
bsm_mo_prof: code of the soil profile category
bsm_mo_parentmat: code of a variant regarding the parent material
bsm_mo_profvar: code of a variant regarding the soil profile
The non-spatial table explanations has following variables:
subject: attribute name of the spatial layer: either bsm_mo_substr, bsm_mo_tex, bsm_mo_drain, bsm_mo_prof, bsm_mo_parentmat or bsm_mo_profvar
code: category code that occurs as value for the corresponding attribute in the spatial layer
name: explanation of the value of code
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data relate to a project that aimed to construct and test a method for habitat condition data capture across Australia using expert elicitation. The data derived from experts are in two forms: (1) habitat condition scores for specified areas at a specified date range, and; (2) habitat condition scores based on images (photographs) of ecosystems. The image based habitat condition data were collected to enable cross-calibration of contributed site assessment data. These data represent the start of a continent-wide library of ecological condition data suitable for training and validation of model-based approaches to habitat condition assessment. Lineage: Objectives The project developed a novel approach to creating a continent-wide library of ecological condition data suitable for training and validation of model-based approaches to habitat condition assessment. Rather than attempting to aggregate complex raw attribute data, the project collated expert interpretations of habitat condition. Reliable condition assessment is heavily dependent on the deep ecological knowledge of members of Australia’s ecological science and natural resource management communities, hence this project engaged with experts in a wide range of ecosystem types across Australia.
Methods – site assessments Experts recorded their assessment of habitat condition for areas within Australia using a data capture tool hosted by the Atlas of Living Australia. Experts mapped site/s with which they have deep familiarity, using polygons. The sites may be small or large, depending on the area over which a consistent condition score can be applied. For each site, experts provided a condition score between 0 and 1 (1=pristine; 0=natural habitat completely removed), the time period of their assessment, and (optionally) disturbances influencing the score. For further details on how data were captured via the online tool, see the document ‘Expert-Elicitation-Guidance.pdf’ provided alongside the data.
Methods – image assessments Experts recorded their assessment of images using a data capture tool hosted by the Atlas of Living Australia. The image assessment scores are intended to be used to calibrate the site assessment condition scores contributed by experts. Experts were asked to provide a condition score for a suite of images allocated to them based on the Major Vegetation Groups (MVG) and Hutchinson bioclimatic classifications that they nominated familiarity with during the project registration process. The calibration images characterised each ecosystem in several different condition states.
Data preparation Following completion of the data capture phase of the project, data were downloaded from the online tool hosted by Biocollect on the Atlas of Living Australia on 23 November 2018. The data were reformatted and refined using a customised script in R. This processing involved reading in the data from file, removing entries associated with system testing, reformatting from multiple rows per entry to a single row, correcting a range of minor data issues, de-identifying records where requested by experts, writing the processed data out to file. All of the images that were assessed within the HCAT were downloaded from Biocollect. The shapefile holding the spatial polygons for the expert contributed site condition assessments were downloaded from biocollect, processed to remove polygons entered as part of testing, and written out to a single shapefile.
Data products The condition assessments of sites contributed by experts were formatted and prepared into the following files: SiteConditionAssessment.csv - Site assessment data of on-ground habitat condition for the 314 sites contributed by experts. Descriptor_SiteConditionAssessment.csv – A file describing the fields used in the SiteConditionAssessment data file. SiteAssessmentShapefile – A folder holding the shapefile (projectSites) specifying the 314 spatial polygons for which site assessments were contributed by experts, with a matching identifier (‘siteID’) to each record in the SiteConditionAssessment file (‘location’).
The image assessment data were formatted and prepared into the following files: ImageAssessment.csv – Data on the 278 image assessments of habitat condition, undertaken by experts. Descriptor_ImageAssessment.csv – A file describing the fields used in the ImageAssessment.csv data file. ImageAssessmentImages – A folder holding the 77 habitat images that were assessed by experts, as cross-referenced in the ImageAssessment.csv data file.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
What is the HyM_GR2M product?It's a product that contains monthly discharge estimations for 3594 subbasins and river reaches throughout the Peruvian territory, from January 1981 to March 2020. Discharge data is generated from a water balance model at a national scale, forced by the meteorological PISCO dataset, and using a semi-distributed GR2M model adaptation.How to read data?Shapefiles of subbasins and river reaches are provided. Each shapefile's attribute table has a field named GR2M_ID with a unique identifying number for each element, so discharge time-series could be easily assigned. Additionally and R script is attached to read the discharge netCDF file.Files- discharge.nc- Read_discharge.R- Subbasins_HyM_GR2M (shapefile)- Streams_HyM_GR2M (shapefile)