Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
N.B. This is not real data. Only here for an example for project templates.
Project Title: Add title here
Project Team: Add contact information for research project team members
Summary: Provide a descriptive summary of the nature of your research project and its aims/focal research questions.
Relevant publications/outputs: When available, add links to the related publications/outputs from this data.
Data availability statement: If your data is not linked on figshare directly, provide links to where it is being hosted here (i.e., Open Science Framework, Github, etc.). If your data is not going to be made publicly available, please provide details here as to the conditions under which interested individuals could gain access to the data and how to go about doing so.
Data collection details: 1. When was your data collected? 2. How were your participants sampled/recruited?
Sample information: How many and who are your participants? Demographic summaries are helpful additions to this section.
Research Project Materials: What materials are necessary to fully reproduce your the contents of your dataset? Include a list of all relevant materials (e.g., surveys, interview questions) with a brief description of what is included in each file that should be uploaded alongside your datasets.
List of relevant datafile(s): If your project produces data that cannot be contained in a single file, list the names of each of the files here with a brief description of what parts of your research project each file is related to.
Data codebook: What is in each column of your dataset? Provide variable names as they are encoded in your data files, verbatim question associated with each response, response options, details of any post-collection coding that has been done on the raw-response (and whether that's encoded in a separate column).
Examples available at: https://www.thearda.com/data-archive?fid=PEWMU17 https://www.thearda.com/data-archive?fid=RELLAND14
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite the wide application of longitudinal studies, they are often plagued by missing data and attrition. The majority of methodological approaches focus on participant retention or modern missing data analysis procedures. This paper, however, takes a new approach by examining how researchers may supplement the sample with additional participants. First, refreshment samples use the same selection criteria as the initial study. Second, replacement samples identify auxiliary variables that may help explain patterns of missingness and select new participants based on those characteristics. A simulation study compares these two strategies for a linear growth model with five measurement occasions. Overall, the results suggest that refreshment samples lead to less relative bias, greater relative efficiency, and more acceptable coverage rates than replacement samples or not supplementing the missing participants in any way. Refreshment samples also have high statistical power. The comparative strengths of the refreshment approach are further illustrated through a real data example. These findings have implications for assessing change over time when researching at-risk samples with high levels of permanent attrition.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Phenotypic plasticity is essential to the immune system, yet the factors that shape it are not fully understood. Here, we comprehensively analyze immune cell phenotypes including morphology across human cohorts by single-round multiplexed immunofluorescence, automated microscopy, and deep learning. Using the uncertainty of convolutional neural networks to cluster the phenotypes of 8 distinct immune cell subsets, we find that the resulting maps are influenced by donor age, gender, and blood pressure, revealing distinct polarization and activation-associated phenotypes across immune cell classes. We further associate T-cell morphology to transcriptional state based on their joint donor variability, and validate an inflammation-associated polarized T-cell morphology, and an age-associated loss of mitochondria in CD4+ T-cells. Taken together, we show that immune cell phenotypes reflect both molecular and personal health information, opening new perspectives into the deep immune phenotyping of individual people in health and disease. Methods This dataset accompanies the manuscript "Multiplexed high-throughput immune cell imaging reveals molecular health-associated phenotypes" by Yannik Severin et al., Science Advances, 2022. It includes: - knnlea.m: Matlab function for the presented Local Enrichment Analysis method - LEA_Example_Data.mat containing data from the manuscript to reproduce a LEA analysis - LEA_Example_Script.mat that runs through the analysis steps - README.txt
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
In the way of my journey to earn the google data analytics certificate I will practice real world example by following the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Picking the Bellabeat example.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General
For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.
Summary
A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains
30 completely labeled (segmented) images
71 partly labeled images
altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)
To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects
A set of metrics and a novel ranking score for respective meaningful method benchmarking
An evaluation of three baseline methods in terms of the above metrics and score
Abstract
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.
Dataset documentation:
We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:
FISBe Datasheet
Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.
Files
fisbe_v1.0_{completely,partly}.zip
contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.
fisbe_v1.0_mips.zip
maximum intensity projections of all samples, for convenience.
sample_list_per_split.txt
a simple list of all samples and the subset they are in, for convenience.
view_data.py
a simple python script to visualize samples, see below for more information on how to use it.
dim_neurons_val_and_test_sets.json
a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.
Readme.md
general information
How to work with the image files
Each sample consists of a single 3d MCFO image of neurons of the fruit fly.For each image, we provide a pixel-wise instance segmentation for all separable neurons.Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.The segmentation mask for each neuron is stored in a separate channel.The order of dimensions is CZYX.
We recommend to work in a virtual environment, e.g., by using conda:
conda create -y -n flylight-env -c conda-forge python=3.9conda activate flylight-env
How to open zarr files
Install the python zarr package:
pip install zarr
Opened a zarr file with:
import zarrraw = zarr.open(, mode='r', path="volumes/raw")seg = zarr.open(, mode='r', path="volumes/gt_instances")
Zarr arrays are read lazily on-demand.Many functions that expect numpy arrays also work with zarr arrays.Optionally, the arrays can also explicitly be converted to numpy arrays.
How to view zarr image files
We recommend to use napari to view the image data.
Install napari:
pip install "napari[all]"
Save the following Python script:
import zarr, sys, napari
raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")
viewer = napari.Viewer(ndisplay=3)for idx, gt in enumerate(gts): viewer.add_labels( gt, rendering='translucent', blending='additive', name=f'gt_{idx}')viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')napari.run()
Execute:
python view_data.py /R9F03-20181030_62_B5.zarr
Metrics
S: Average of avF1 and C
avF1: Average F1 Score
C: Average ground truth coverage
clDice_TP: Average true positives clDice
FS: Number of false splits
FM: Number of false merges
tp: Relative number of true positives
For more information on our selected metrics and formal definitions please see our paper.
Baseline
To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..For detailed information on the methods and the quantitative results please see our paper.
License
The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Citation
If you use FISBe in your research, please use the following BibTeX entry:
@misc{mais2024fisbe, title = {FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures}, author = {Lisa Mais and Peter Hirsch and Claire Managan and Ramya Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller}, year = 2024, eprint = {2404.00130}, archivePrefix ={arXiv}, primaryClass = {cs.CV} }
Acknowledgments
We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuablediscussions.P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.This work was co-funded by Helmholtz Imaging.
Changelog
There have been no changes to the dataset so far.All future change will be listed on the changelog page.
Contributing
If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.
All contributions are welcome!
Facebook
Twitterdeepthink8/sample-real-fake-data-Image dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterDescription: This dataset is created solely for the purpose of practice and learning. It contains entirely fake and fabricated information, including names, phone numbers, emails, cities, ages, and other attributes. None of the information in this dataset corresponds to real individuals or entities. It serves as a resource for those who are learning data manipulation, analysis, and machine learning techniques. Please note that the data is completely fictional and should not be treated as representing any real-world scenarios or individuals.
Attributes: - phone_number: Fake phone numbers in various formats. - name: Fictitious names generated for practice purposes. - email: Imaginary email addresses created for the dataset. - city: Made-up city names to simulate geographical diversity. - age: Randomly generated ages for practice analysis. - sex: Simulated gender values (Male, Female). - married_status: Synthetic marital status information. - job: Fictional job titles for practicing data analysis. - income: Fake income values for learning data manipulation. - religion: Pretend religious affiliations for practice. - nationality: Simulated nationalities for practice purposes.
Please be aware that this dataset is not based on real data and should be used exclusively for educational purposes.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Real World Evidence Solutions Market size was valued at USD 1.30 Billion in 2024 and is projected to reach USD 3.71 Billion by 2032, growing at a CAGR of 13.92% during the forecast period 2026-2032.Global Real World Evidence Solutions Market DriversThe market drivers for the Real World Evidence Solutions Market can be influenced by various factors. These may include:Growing Need for Evidence-Based Healthcare: Real-world evidence (RWE) is becoming more and more important in healthcare decision-making, according to stakeholders such as payers, providers, and regulators. In addition to traditional clinical trial data, RWE solutions offer important insights into the efficacy, safety, and value of healthcare interventions in real-world situations.Growing Use of RWE by Pharmaceutical Companies: RWE solutions are being used by pharmaceutical companies to assist with market entry, post-marketing surveillance, and drug development initiatives. Pharmaceutical businesses can find new indications for their current medications, improve clinical trial designs, and convince payers and providers of the worth of their products with the use of RWE.Increasing Priority for Value-Based Healthcare: The emphasis on proving the cost- and benefit-effectiveness of healthcare interventions in real-world settings is growing as value-based healthcare models gain traction. To assist value-based decision-making, RWE solutions are essential in evaluating the economic effect and real-world consequences of healthcare interventions.Technological and Data Analytics Advancements: RWE solutions are becoming more capable due to advances in machine learning, artificial intelligence, and big data analytics. With the use of these technologies, healthcare stakeholders can obtain actionable insights from the analysis of vast and varied datasets, including patient-generated data, claims data, and electronic health records.Regulatory Support for RWE Integration: RWE is being progressively integrated into regulatory decision-making processes by regulatory organisations including the European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA). The FDA's Real-World Evidence Programme and the EMA's Adaptive Pathways and PRIority MEdicines (PRIME) programme are two examples of initiatives that are making it easier to incorporate RWE into regulatory submissions and drug development.Increasing Emphasis on Patient-Centric Healthcare: The value of patient-reported outcomes and real-world experiences in healthcare decision-making is becoming more widely acknowledged. RWE technologies facilitate the collection and examination of patient-centered data, offering valuable insights into treatment efficacy, patient inclinations, and quality of life consequences.Extension of RWE Use Cases: RWE solutions are being used in medication development, post-market surveillance, health economics and outcomes research (HEOR), comparative effectiveness research, and market access, among other healthcare fields. The necessity for a variety of RWE solutions catered to the needs of different stakeholders is being driven by the expansion of RWE use cases.
Facebook
Twitterhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.15139/S3/JKLBZFhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.15139/S3/JKLBZF
This Excel file contains example data as would be provided by an investigator to a collaborative statistician to analyze. Data are a permuted and edited version of real data provided to the authors during a statistical collaboration. The data are presented as commonly collected by investigators prior to working with a statistician, including several tabs of data in different domains (Set1, Set2, Demographics), colored cells, merged cells, cells with more than one data type, etc. as well as incomplete data and two systems of ID numbers. The file also includes a tab to link the different ID systems as well as tabs that have a "cleaned" version of the data (REVISEDSet1, REVISEDSet2) that would typically be provided after quality control identified some issues with the data that were then resolved by the investigator.
Facebook
TwitterACF Agency Wide resource Metadata-only record linking to the original dataset. Open original dataset below.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data set of failure times of 20 mechanical components.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive collection of synthetic job postings to facilitate research and analysis in the field of job market trends, natural language processing (NLP), and machine learning. Created for educational and research purposes, this dataset offers a diverse set of job listings across various industries and job types.
We would like to express our gratitude to the Python Faker library for its invaluable contribution to the dataset generation process. Additionally, we appreciate the guidance provided by ChatGPT in fine-tuning the dataset, ensuring its quality, and adhering to ethical standards.
Please note that the examples provided are fictional and for illustrative purposes. You can tailor the descriptions and examples to match the specifics of your dataset. It is not suitable for real-world applications and should only be used within the scope of research and experimentation. You can also reach me via email at: rrana157@gmail.com
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average Real Wages: Actual Earnings: Acre: Government Sector data was reported at 4,158.000 BRL in Mar 2019. This records an increase from the previous number of 3,374.000 BRL for Dec 2018. Average Real Wages: Actual Earnings: Acre: Government Sector data is updated quarterly, averaging 3,131.000 BRL from Mar 2012 (Median) to Mar 2019, with 29 observations. The data reached an all-time high of 4,158.000 BRL in Mar 2019 and a record low of 2,782.000 BRL in Sep 2015. Average Real Wages: Actual Earnings: Acre: Government Sector data remains active status in CEIC and is reported by Brazilian Institute of Geography and Statistics. The data is categorized under Brazil Premium Database’s Labour Market – Table BR.GBD004: Continuous National Household Sample Survey: Average Real Wages: Actual Earnings.
Facebook
TwitterThe Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.
Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).
The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.
The survey is focused on three core areas of research:
Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.
If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".
Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.
Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.
The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."
The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:
The survey data will be provided under embargo in both comma-delimited and statistical formats.
Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)
Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.
Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.
Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.
Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Login Data Set for Risk-Based Authentication
Synthesized login feature data of >33M login attempts and >3.3M users on a large-scale online service in Norway. Original data collected between February 2020 and February 2021.
This data sets aims to foster research and development for Risk-Based Authentication (RBA) systems. The data was synthesized from the real-world login behavior of more than 3.3M users at a large-scale single sign-on (SSO) online service in Norway.
The users used this SSO to access sensitive data provided by the online service, e.g., a cloud storage and billing information. We used this data set to study how the Freeman et al. (2016) RBA model behaves on a large-scale online service in the real world (see Publication). The synthesized data set can reproduce these results made on the original data set (see Study Reproduction). Beyond that, you can use this data set to evaluate and improve RBA algorithms under real-world conditions.
WARNING: The feature values are plausible, but still totally artificial. Therefore, you should NOT use this data set in productive systems, e.g., intrusion detection systems.
Overview
The data set contains the following features related to each login attempt on the SSO:
| Feature | Data Type | Description | Range or Example |
|---|---|---|---|
| IP Address | String | IP address belonging to the login attempt | 0.0.0.0 - 255.255.255.255 |
| Country | String | Country derived from the IP address | US |
| Region | String | Region derived from the IP address | New York |
| City | String | City derived from the IP address | Rochester |
| ASN | Integer | Autonomous system number derived from the IP address | 0 - 600000 |
| User Agent String | String | User agent string submitted by the client | Mozilla/5.0 (Windows NT 10.0; Win64; ... |
| OS Name and Version | String | Operating system name and version derived from the user agent string | Windows 10 |
| Browser Name and Version | String | Browser name and version derived from the user agent string | Chrome 70.0.3538 |
| Device Type | String | Device type derived from the user agent string | (mobile, desktop, tablet, bot, unknown)1 |
| User ID | Integer | Idenfication number related to the affected user account | [Random pseudonym] |
| Login Timestamp | Integer | Timestamp related to the login attempt | [64 Bit timestamp] |
| Round-Trip Time (RTT) [ms] | Integer | Server-side measured latency between client and server | 1 - 8600000 |
| Login Successful | Boolean | True: Login was successful, False: Login failed | (true, false) |
| Is Attack IP | Boolean | IP address was found in known attacker data set | (true, false) |
| Is Account Takeover | Boolean | Login attempt was identified as account takeover by incident response team of the online service | (true, false) |
Data Creation
As the data set targets RBA systems, especially the Freeman et al. (2016) model, the statistical feature probabilities between all users, globally and locally, are identical for the categorical data. All the other data was randomly generated while maintaining logical relations and timely order between the features.
The timestamps, however, are not identical and contain randomness. The feature values related to IP address and user agent string were randomly generated by publicly available data, so they were very likely not present in the real data set. The RTTs resemble real values but were randomly assigned among users per geolocation. Therefore, the RTT entries were probably in other positions in the original data set.
The country was randomly assigned per unique feature value. Based on that, we randomly assigned an ASN related to the country, and generated the IP addresses for this ASN. The cities and regions were derived from the generated IP addresses for privacy reasons and do not reflect the real logical relations from the original data set.
The device types are identical to the real data set. Based on that, we randomly assigned the OS, and based on the OS the browser information. From this information, we randomly generated the user agent string. Therefore, all the logical relations regarding the user agent are identical as in the real data set.
The RTT was randomly drawn from the login success status and synthesized geolocation data. We did this to ensure that the RTTs are realistic ones.
Regarding the Data Values
Due to unresolvable conflicts during the data creation, we had to assign some unrealistic IP addresses and ASNs that are not present in the real world. Nevertheless, these do not have any effects on the risk scores generated by the Freeman et al. (2016) model.
You can recognize them by the following values:
ASNs with values >= 500.000
IP addresses in the range 10.0.0.0 - 10.255.255.255 (10.0.0.0/8 CIDR range)
Study Reproduction
Based on our evaluation, this data set can reproduce our study results regarding the RBA behavior of an RBA model using the IP address (IP address, country, and ASN) and user agent string (Full string, OS name and version, browser name and version, device type) as features.
The calculated RTT significances for countries and regions inside Norway are not identical using this data set, but have similar tendencies. The same is true for the Median RTTs per country. This is due to the fact that the available number of entries per country, region, and city changed with the data creation procedure. However, the RTTs still reflect the real-world distributions of different geolocations by city.
See RESULTS.md for more details.
Ethics
By using the SSO service, the users agreed in the data collection and evaluation for research purposes. For study reproduction and fostering RBA research, we agreed with the data owner to create a synthesized data set that does not allow re-identification of customers.
The synthesized data set does not contain any sensitive data values, as the IP addresses, browser identifiers, login timestamps, and RTTs were randomly generated and assigned.
Publication
You can find more details on our conducted study in the following journal article:
Pump Up Password Security! Evaluating and Enhancing Risk-Based Authentication on a Real-World Large-Scale Online Service (2022)
Stephan Wiefling, Paul René Jørgensen, Sigurd Thunem, and Luigi Lo Iacono.
ACM Transactions on Privacy and Security
Bibtex
@article{Wiefling_Pump_2022,
author = {Wiefling, Stephan and Jørgensen, Paul René and Thunem, Sigurd and Lo Iacono, Luigi},
title = {Pump {Up} {Password} {Security}! {Evaluating} and {Enhancing} {Risk}-{Based} {Authentication} on a {Real}-{World} {Large}-{Scale} {Online} {Service}},
journal = {{ACM} {Transactions} on {Privacy} and {Security}},
doi = {10.1145/3546069},
publisher = {ACM},
year = {2022}
}
License
This data set and the contents of this repository are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. See the LICENSE file for details. If the data set is used within a publication, the following journal article has to be cited as the source of the data set:
Stephan Wiefling, Paul René Jørgensen, Sigurd Thunem, and Luigi Lo Iacono: Pump Up Password Security! Evaluating and Enhancing Risk-Based Authentication on a Real-World Large-Scale Online Service. In: ACM Transactions on Privacy and Security (2022). doi: 10.1145/3546069
Few (invalid) user agents strings from the original data set could not be parsed, so their device type is empty. Perhaps this parse error is useful information for your studies, so we kept these 1526 entries.↩︎
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average Real Wages: Actual Earnings: Bahia: Domestic Worker data was reported at 586.000 BRL in Mar 2019. This records a decrease from the previous number of 594.000 BRL for Dec 2018. Average Real Wages: Actual Earnings: Bahia: Domestic Worker data is updated quarterly, averaging 533.000 BRL from Mar 2012 (Median) to Mar 2019, with 29 observations. The data reached an all-time high of 622.000 BRL in Mar 2016 and a record low of 480.000 BRL in Jun 2012. Average Real Wages: Actual Earnings: Bahia: Domestic Worker data remains active status in CEIC and is reported by Brazilian Institute of Geography and Statistics. The data is categorized under Brazil Premium Database’s Labour Market – Table BR.GBD004: Continuous National Household Sample Survey: Average Real Wages: Actual Earnings.
Facebook
TwitterBackground: Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATHS) is the first example of a learning health system in multiple sclerosis (MS). This paper describes the initial implementation of MS PATHS and initial patient characteristics.Methods: MS PATHS is an ongoing initiative conducted in 10 healthcare institutions in three countries, each contributing standardized information acquired during routine care. Institutional participation required the following: active MS patient census of ≥500, at least one Siemens 3T magnetic resonance imaging scanner, and willingness to standardize patient assessments, share standardized data for research, and offer universal enrolment to capture a representative sample. The eligible participants have diagnosis of MS, including clinically isolated syndrome, and consent for sharing pseudonymized data for research. MS PATHS incorporates a self-administered patient assessment tool, the Multiple Sclerosis Performance Test, to collect a structured history, patient-reported outcomes, and quantitative testing of cognition, vision, dexterity, and walking speed. Brain magnetic resonance imaging is acquired using standardized acquisition sequences on Siemens 3T scanners. Quantitative measures of brain volume and lesion load are obtained. Using a separate consent, the patients contribute DNA, RNA, and serum for future research. The clinicians retain complete autonomy in using MS PATHS data in patient care. A shared governance model ensures transparent data and sample access for research.Results: As of August 5, 2019, MS PATHS enrolment included participants (n = 16,568) with broad ranges of disease subtypes, duration, and severity. Overall, 14,643 (88.4%) participants contributed data at one or more time points. The average patient contributed 15.6 person-months of follow-up (95% CI: 15.5–15.8); overall, 166,158 person-months of follow-up have been accumulated. Those with relapsing–remitting MS demonstrated more demographic heterogeneity than the participants in six randomized phase 3 MS treatment trials. Across sites, a significant variation was observed in the follow-up frequency and the patterns of disease-modifying therapy use.Conclusions: Through digital health technology, it is feasible to collect standardized, quantitative, and interpretable data from each patient in busy MS practices, facilitating the merger of research and patient care. This approach holds promise for data-driven clinical decisions and accelerated systematic learning.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of the real data network meta-analysis MARCH/MACH-NC with IPD- and AD-based models.
Facebook
TwitterThe dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains material related to the analysis performed in the article "Best Practices for Your Exploratory Factor Analysis: Factor Tutorial". The material includes the data used in the analyses in .dat format, the labels (.txt) of the variables used in the Factor software, the outputs (.txt) evaluated in the article, and videos (.mp4 with English subtitles) recorded for the purpose of explaining the article. The videos can also be accessed in the following playlist: https://youtube.com/playlist?list=PLDfyRtHbxiZ3R-T3H1cY8dusz273aUFVe. Below is a summary of the article:
"Exploratory Factor Analysis (EFA) is one of the statistical methods most widely used in Administration, however, its current practice coexists with rules of thumb and heuristics given half a century ago. The purpose of this article is to present the best practices and recent recommendations for a typical EFA in Administration through a practical solution accessible to researchers. In this sense, in addition to discussing current practices versus recommended practices, a tutorial with real data on Factor is illustrated, a software that is still little known in the Administration area, but freeware, easy to use (point and click) and powerful. The step-by-step illustrated in the article, in addition to the discussions raised and an additional example, is also available in the format of tutorial videos. Through the proposed didactic methodology (article-tutorial + video-tutorial), we encourage researchers/methodologists who have mastered a particular technique to do the same. Specifically, about EFA, we hope that the presentation of the Factor software, as a first solution, can transcend the current outdated rules of thumb and heuristics, by making best practices accessible to Administration researchers"
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
N.B. This is not real data. Only here for an example for project templates.
Project Title: Add title here
Project Team: Add contact information for research project team members
Summary: Provide a descriptive summary of the nature of your research project and its aims/focal research questions.
Relevant publications/outputs: When available, add links to the related publications/outputs from this data.
Data availability statement: If your data is not linked on figshare directly, provide links to where it is being hosted here (i.e., Open Science Framework, Github, etc.). If your data is not going to be made publicly available, please provide details here as to the conditions under which interested individuals could gain access to the data and how to go about doing so.
Data collection details: 1. When was your data collected? 2. How were your participants sampled/recruited?
Sample information: How many and who are your participants? Demographic summaries are helpful additions to this section.
Research Project Materials: What materials are necessary to fully reproduce your the contents of your dataset? Include a list of all relevant materials (e.g., surveys, interview questions) with a brief description of what is included in each file that should be uploaded alongside your datasets.
List of relevant datafile(s): If your project produces data that cannot be contained in a single file, list the names of each of the files here with a brief description of what parts of your research project each file is related to.
Data codebook: What is in each column of your dataset? Provide variable names as they are encoded in your data files, verbatim question associated with each response, response options, details of any post-collection coding that has been done on the raw-response (and whether that's encoded in a separate column).
Examples available at: https://www.thearda.com/data-archive?fid=PEWMU17 https://www.thearda.com/data-archive?fid=RELLAND14