100+ datasets found
  1. World's Real Estate Data(147k)

    • kaggle.com
    zip
    Updated Sep 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    toriqul (2023). World's Real Estate Data(147k) [Dataset]. https://www.kaggle.com/datasets/toriqulstu/worlds-real-estate-data147k
    Explore at:
    zip(6162018 bytes)Available download formats
    Dataset updated
    Sep 5, 2023
    Authors
    toriqul
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    https://cdn.vectorstock.com/i/preview-1x/58/33/shwedish-town-silhouette-vector-9305833.webp">

    Context:

    My dataset is a valuable collection of real estate information sourced from REALTING.com, an international affiliate sales system known for facilitating safe and convenient property transactions worldwide. REALTING.com has a strong foundation, with its founders boasting approximately 20 years of experience in creating information technologies for the real estate market. This dataset offers insights into various properties across the globe, making it a valuable resource for real estate market analysis, property valuation, and trend prediction.

    Content:

    The dataset contains information on a diverse range of properties, each represented by a row of data. Here are the key columns and their contents:

    • Title: A brief description or name of the property listing.
    • Country: The country where the property is located.
    • Location: The specific address or location of the property within the country.
    • Building Construction Year: The year in which the building was constructed.
    • Building Total Floors: The total number of floors or stories in the building.
    • Apartment Floor: The floor on which the apartment is situated within the building.
    • Apartment Rooms: The total number of rooms in the apartment.
    • Apartment Bedrooms: The number of bedrooms in the apartment.
    • Apartment Bathrooms: The number of bathrooms in the apartment.
    • Apartment Total Area: The total area of the apartment in square meters.
    • Apartment Living Area: The living area of the apartment in square meters.
    • Price in USD: The price of the property listed in United States Dollars (USD).
    • Image: References or links to images associated with the property listing.
    • URL: Web links to the full property listing or more detailed information.

    This dataset is rich in real estate-related information, making it suitable for various analytical tasks such as market research, property comparison, geographical analysis, and more. The dataset's global scope and diverse property attributes provide a comprehensive view of the international real estate market, offering ample opportunities for data-driven insights and decision-making.

  2. Housing Real Estate Data from Indian Cities

    • kaggle.com
    zip
    Updated Dec 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rakkesh Aravind G (2022). Housing Real Estate Data from Indian Cities [Dataset]. https://www.kaggle.com/datasets/rakkesharv/real-estate-data-from-7-indian-cities
    Explore at:
    zip(1671735 bytes)Available download formats
    Dataset updated
    Dec 8, 2022
    Authors
    Rakkesh Aravind G
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    Real Estate / Housing Dataset

    This dataset is web scrapped from a real estate website, collecting all the necessary infos on the resale and new properties. It has around 14000+ rows of data having properties from various Indian cities like Chennai, Mumbai, Bangalore, Delhi, Pune, Kolkata and Hyderabad. Columns:

    Name: Property Name, Property Title: Property Ad Title, Price: Property Price Location: Property Located Locality and Region Total Area: Total SQFT of the property Price Per SQFT: Price of Per SQFT of the property Description: Small paragraph about the property Baths: Number of baths in the property Balcony: Whether the Property has balcony or not

  3. b

    Real Estate Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Real Estate Dataset [Dataset]. https://brightdata.com/products/datasets/real-estate
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 11, 2022
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Real estate datasets from various websites cover all major real estate data points including: property type, size, location, price, bedrooms, baths, address, history, images, and much more. Popular use cases include: forecast housing demand, analyze price fluctuations, improve customer satisfaction, see past prices to monitor market trends, and more.

  4. d

    Real Estate Sales 2001-2023 GL

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Sep 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). Real Estate Sales 2001-2023 GL [Dataset]. https://catalog.data.gov/dataset/real-estate-sales-2001-2018
    Explore at:
    Dataset updated
    Sep 14, 2025
    Dataset provided by
    data.ct.gov
    Description

    The Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment. Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. Some municipalities may not report data for certain years because when a municipality implements a revaluation, they are not required to submit sales data for the twelve months following implementation.

  5. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  6. US Real Estate

    • zenrows.com
    csv
    Updated Jun 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZenRows (2021). US Real Estate [Dataset]. https://www.zenrows.com/datasets/us-real-estate
    Explore at:
    csv(5,8MB)Available download formats
    Dataset updated
    Jun 27, 2021
    Dataset provided by
    ZenRows S.L.
    Authors
    ZenRows
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    High-quality, free real estate dataset from all around the United States, in CSV format. Over 10.000 records relevant to Real Estate investors, agents, and data scientists. We are working on complete datasets from a wide variety of countries. Don't hesitate to contact us for more information.

  7. Real Estate Data Utah 2024

    • kaggle.com
    zip
    Updated May 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kanchana1990 (2024). Real Estate Data Utah 2024 [Dataset]. https://www.kaggle.com/datasets/kanchana1990/real-estate-data-utah-2024
    Explore at:
    zip(1201584 bytes)Available download formats
    Dataset updated
    May 23, 2024
    Authors
    Kanchana1990
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    Utah
    Description

    Dataset Overview

    This dataset contains real estate listings from Utah, comprising 4,440 entries and 14 columns. The data includes various attributes of properties such as type, description, year built, number of bedrooms and bathrooms, garage spaces, lot size, square footage, stories, listing price, and the date the property was last sold. The data was ethically mined and is to be used for educational and non-commercial purposes only.

    Data Science Applications

    Given the size of the dataset (4,440 entries) and the available columns, this dataset is well-suited for various data science applications, including but not limited to:

    • Regression Analysis: Predict property listing prices based on features like square footage, number of bedrooms and bathrooms, year built, and lot size.
    • Classification: Classify properties into different types or price ranges.
    • Time Series Analysis: Analyze trends in property sales over time using the lastSoldOn column.
    • Feature Engineering: Create new features such as price per square foot or age of the property at the time of sale to enhance predictive models.

    Column Descriptors

    • type: Type of property (e.g., single_family, land)
    • text: Description of the property
    • year_built: Year the property was built
    • beds: Number of bedrooms
    • baths: Total number of bathrooms
    • baths_full: Number of full bathrooms
    • baths_half: Number of half bathrooms
    • garage: Number of garage spaces
    • lot_sqft: Lot size in square feet
    • sqft: Property size in square feet
    • stories: Number of stories
    • lastSoldOn: Date the property was last sold
    • listPrice: Listing price of the property
    • status: Current status of the property (e.g., for_sale)

    Ethically Mined Data

    This dataset was ethically mined from Realtor.com using an API provided by Apify. The data collection process ensured compliance with ethical standards and respect for the source of the information. The dataset is intended for educational and analytical purposes, promoting transparency and responsible data use.

    Acknowledgements

    • Apify: For providing the API used to mine the data.
    • Realtor.com: For being the source of the data.
    • DALL-E 3: For generating the thumbnail image for this dataset.
  8. Leading real estate websites in the U.S. 2020-2024, by monthly visits

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading real estate websites in the U.S. 2020-2024, by monthly visits [Dataset]. https://www.statista.com/statistics/381468/most-popular-real-estate-websites-by-monthly-visits-usa/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    Zillow reigns supreme in the U.S. real estate website landscape, attracting a staggering ***** million monthly visits in 2024. This figure dwarfs its closest competitor, Realtor.com, which garnered less than half of Zillow's traffic. Online platforms are extremely popular, with the majority of homebuyers using a mobile device during the buying process. The rise of Zillow Founded in 2006, the Seattle-headquartered proptech Zillow has steadily grown over the years, establishing itself as the most popular U.S. real estate website. In 2023, the listing platform recorded about *** million unique monthly users across its mobile applications and website. Despite holding an undisputed position as a market leader, Zillow's revenue has decreased since 2021. A probable cause for the decline is the plummeting of housing transactions and the negative housing sentiment. Performance and trends in the proptech market The proptech market has shown remarkable performance, with companies like Opendoor and Redfin experiencing significant stock price increase in 2023. This growth is particularly notable in the residential brokerage segment. Meanwhile, major players in proptech fundraising, such as Fifth Wall and Hidden Hill Capital, have raised billions in direct investment, further fueling the sector's development. As technology continues to reshape the real estate industry, online platforms like Zillow are likely to play an increasingly crucial role in how people search for and purchase homes. (1477916, 1251604)

  9. c

    Real Estate DataSet

    • cubig.ai
    zip
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Real Estate DataSet [Dataset]. https://cubig.ai/store/products/317/real-estate-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Real Estate DataSet consists of 506 examples, including home prices in the Boston suburbs and various residential and environmental characteristics.

    2) Data Utilization (1) Real Estate DataSet has characteristics that: • The dataset provides 13 continuous variables and one binary variable, including crime rate, house size, environmental pollution, accessibility, tax rate, and population characteristics. (2) Real Estate DataSet can be used to: • House Price Forecast: It can be used to develop a regression model that predicts the median price (MEDV) of a house based on various residential and environmental factors. • Analysis of Urban Planning and Policy: It can be used for urban development and policy making by analyzing the impact of residential environmental factors such as crime rates, environmental pollution, and educational environment on housing values.

  10. c

    Explore Our Redfin Real Estate Dataset – Sample for USA Properties

    • crawlfeeds.com
    csv, zip
    Updated Oct 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Explore Our Redfin Real Estate Dataset – Sample for USA Properties [Dataset]. https://crawlfeeds.com/datasets/explore-our-redfin-real-estate-dataset-sample-for-usa-properties
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 5, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Looking to analyze the real estate market across the USA? Our Redfin real estate dataset provides a detailed sample of property listings, including prices, addresses, property features, and images. This dataset is perfect for analysts, developers, and real estate enthusiasts looking to gain insights into housing trends and market dynamics.

    The dataset includes fields such as price, currency, address, property details, number of beds and baths, square footage, listing status, images, and more, giving you a robust foundation for analysis.

    You can explore the full dataset and download the sample from Redfin real estate dataset. This makes it easy to integrate into your analytics pipelines, machine learning models, or market research projects.

    Whether you're building a property analytics dashboard, testing real estate algorithms, or simply exploring housing trends, this dataset provides rich, up-to-date information directly from Redfin listings across the USA.

    Start analyzing the USA housing market today with our Redfin dataset sample and make data-driven decisions with confidence.

  11. US Office Real Estate Market Size, Competitive Landscape 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). US Office Real Estate Market Size, Competitive Landscape 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/united-states-office-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    The US Office Real Estate Market Report is Segmented by Building Grade (Grade A, Grade B, and More), by Transaction Type (Rental and Sales), by End Use (Information Technology (IT & ITES), BFSI (Banking, Financial Services and Insurance), and More) and by States (Texas, California, Florida and More). The Report Offers Market Size and Forecasts in Value (USD) for all the Above Segments.

  12. c

    Housing data from Homes dot com

    • crawlfeeds.com
    csv, zip
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2024). Housing data from Homes dot com [Dataset]. https://crawlfeeds.com/datasets/housing-data-from-homes-dot-com
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Sep 21, 2024
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    The Housing Data Extracted from Homes.com (USA) dataset is a comprehensive collection of 2 million real estate listings sourced from Homes.com, one of the leading real estate platforms in the United States. This dataset offers detailed insights into the U.S. housing market, making it an invaluable resource for real estate professionals, investors, researchers, and analysts.

    The dataset contains extensive property details, including location, price, property type (single-family homes, condos, apartments), number of bedrooms and bathrooms, square footage, lot size, year built, and availability status. Organized in CSV format, it provides users with easy access to structured data for analyzing trends, developing investment strategies, or building real estate applications.

    Key Features:

    • Record Count: 2 million housing listings from across the USA.
    • Data Fields: Property address, price, property type, bedrooms, bathrooms, square footage, lot size, year built, and availability.
    • Format: CSV format for easy integration with data analysis platforms, machine learning models, and real estate tools.
    • Source: Directly sourced from Homes.com’s USA real estate listings.
    • Geographical Focus: Comprehensive coverage of properties across all regions of the United States.

    Use Cases:

    • Real Estate Market Research: Analyze property prices, market trends, and housing demand in various U.S. regions.
    • Investment Analysis: Use data to identify high-potential properties and regions for real estate investments.
    • Property Comparison: Compare listings by price, location, and features to evaluate market conditions across different cities and states.
    • Machine Learning Models: Build predictive models for price forecasting, property valuation, and real estate recommendation systems.
    • Content Creation: Create real estate-related content, reports, and insights for the U.S. housing market using up-to-date data.

  13. Mexico City Real Estate Dataset

    • kaggle.com
    zip
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allan Kirwa (2024). Mexico City Real Estate Dataset [Dataset]. https://www.kaggle.com/datasets/allankirwa/mexico-city-real-estate-dataset
    Explore at:
    zip(1341395 bytes)Available download formats
    Dataset updated
    Feb 15, 2024
    Authors
    Allan Kirwa
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    Mexico, Mexico City
    Description

    Dataset

    This dataset was created by Allan Kirwa

    Released under Apache 2.0

    Contents

  14. Residential Real Estate Market Size, Trends, 2030 Share

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Residential Real Estate Market Size, Trends, 2030 Share [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    Residential Real Estate Market is Segmented by Property Type (Apartments & Condominiums, and Landed Houses & Villas), by Price Band (Affordable, Mid-Market, and Luxury/Super-prime), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (North America, South America, Europe, Asia-Pacific, and Middle East & Africa). The Market Forecasts are Provided in Terms of Value (USD).

  15. Real Estate Data Chicago 2024

    • kaggle.com
    zip
    Updated May 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kanchana1990 (2024). Real Estate Data Chicago 2024 [Dataset]. https://www.kaggle.com/datasets/kanchana1990/real-estate-data-chicago-2024
    Explore at:
    zip(749787 bytes)Available download formats
    Dataset updated
    May 10, 2024
    Authors
    Kanchana1990
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    Chicago
    Description

    Dataset Overview

    This dataset comprises detailed real estate listings scraped from Realtor.com, providing a snapshot of various property types across Chicago. It includes 2,000 entries with information on property characteristics such as type, size, age, price, and features. This dataset was ethically collected using an API provided by Apify, ensuring all data scraping adhered to ethical standards.

    Data Science Applications

    This dataset is ideal for a variety of data science applications, including but not limited to: - Predictive Modeling: Forecast property prices based on various features like location, size, and age. - Market Analysis: Understand trends in real estate, including the types of properties being sold, pricing trends, and the influence of property features on market value. - Natural Language Processing: Analyze the textual descriptions provided for each listing to extract additional features or perform sentiment analysis. - Anomaly Detection: Identify unusual listings or potential outliers in the data, which could indicate errors in data collection or unique investment opportunities.

    Column Descriptors

    1. type: The type of property (e.g., single-family home, condo).
    2. text: A textual description of the property.
    3. year_built: The year in which the property was constructed.
    4. beds: The number of bedrooms.
    5. baths: Total number of bathrooms (including full and half).
    6. baths_full: Number of full bathrooms.
    7. baths_half: Number of half bathrooms.
    8. garage: Garage capacity (number of cars).
    9. lot_sqft: Size of the lot in square feet.
    10. sqft: Living area size in square feet.
    11. stories: Number of stories/floors in the property.
    12. lastSoldPrice: The price at which the property was last sold.
    13. soldOn: The date on which the property was last sold.
    14. listPrice: The listing price of the property at the time of data collection.
    15. status: The current status of the listing (e.g., for sale, sold).

    Ethically Mined Data

    This dataset was responsibly and ethically mined, adhering to all legal standards of data collection. The use of Apify's API ensures that the data collection process respects privacy and the platform's terms of service.

    Acknowledgements

    We thank Realtor.com for maintaining a comprehensive and accessible database, and Apify for providing the tools necessary for ethical data scraping. Their contributions have been invaluable in the creation of this dataset. Credits to Dall E3 for thumbnail image.

    Usage Policy

    This dataset is provided for non-commercial and educational purposes only. Users are encouraged to use this data to enhance learning, contribute to academic or personal projects, and develop skills in data science and real estate market analysis.

  16. Global Real Estate Market Size By Residential, By Commercial, By Geographic...

    • verifiedmarketresearch.com
    Updated Apr 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Real Estate Market Size By Residential, By Commercial, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/real-estate-market/
    Explore at:
    Dataset updated
    Apr 19, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Real Estate Market size was valued at USD 79.7 Trillion in 2024 and is projected to reach USD 103.6 Trillion by 2031, growing at a CAGR of 5.1% during the forecasted period 2024 to 2031

    Global Real Estate Market Drivers

    Population Growth and Urbanization: In order to meet the demands of businesses, housing needs, and infrastructure development, there is a constant need for residential and commercial properties as populations and urban areas rise.

    Low Interest Rates: By making borrowing more accessible, low interest rates encourage both individuals and businesses to make real estate investments. Reduced borrowing costs result in reduced mortgage rates, opening up homeownership and encouraging real estate investments and purchases.

    Economic Growth: A thriving real estate market is a result of positive economic growth indicators like GDP growth, rising incomes, and low unemployment rates. Robust economies establish advantageous circumstances for real estate investment, growth, and customer assurance in the housing sector. Job growth and income increases: As more people look for rental or purchase close to their places of employment, housing demand is influenced by these factors. The housing market is driven by employment opportunities and rising salaries, which in turn drive home buying, renting, and property investment activity. Infrastructure Development: The demand and property values in the surrounding areas can be greatly impacted by investments made in infrastructure projects such as public facilities, utilities, and transportation networks. Accessibility, convenience, and beauty are all improved by improved infrastructure, which encourages real estate development and investment.

    Government Policies and Incentives: Tax breaks, subsidies, and first-time homebuyer programs are a few examples of government policies and incentives that can boost the real estate market and homeownership. Market stability and growth are facilitated by regulatory actions that promote affordable housing, urban redevelopment, and real estate development.

    Foreign Investment: Foreign capital can be used to stimulate demand, diversify property portfolios, and pump capital into the real estate market through direct property purchases or real estate investment funds. Foreign investors are drawn to the local real estate markets by favorable exchange rates, stable political environments, and appealing returns.

    Demographic Trends: Shifting demographic trends affect housing preferences and demand for various property kinds. These trends include aging populations, household formation rates, and migration patterns. It is easier for real estate developers and investors to match supply with changing market demand when they are aware of demographic fluctuations.

    Technological Innovations: New technologies that are revolutionizing the marketing, transactions, and management of properties include digital platforms, data analytics, and virtual reality applications. In the real estate industry, technology adoption increases market reach, boosts customer experiences, and increases operational efficiency.

    Environmental Sustainability: Decisions about real estate development and investment are influenced by the growing knowledge of environmental sustainability and green building techniques. Market activity in environmentally aware real estate categories is driven by demand for eco-friendly neighborhoods, sustainable design elements, and energy-efficient buildings.

  17. c

    Trulia real-estate property listings dataset

    • crawlfeeds.com
    json, zip
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Trulia real-estate property listings dataset [Dataset]. https://crawlfeeds.com/datasets/trulia-real-estate-property-listings-dataset
    Explore at:
    json, zipAvailable download formats
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    This dataset contains over 1.1 million property listings extracted from Trulia, one of the largest U.S. real estate marketplaces. Compiled and structured by the CrawlFeeds team, this dataset includes residential property data across the United States — making it a valuable resource for real estate analytics, machine learning, and location-based modeling.

    Key Features:

    • Full listing info: title, description, URL

    • Detailed location data: city, ZIP code, latitude, longitude

    • Property specs: bedrooms, bathrooms, floor space, features

    • Pricing details: current price, currency, status

    • Metadata: timestamps, image URLs, and breadcrumbs

    • Format: Clean CSV, ready for modeling and analysis

    Ideal for:

    • Housing price prediction models

    • Real estate investment analysis

    • Location clustering & zip code segmentation

    • Building property recommendation engines

    • Mapping visualizations & geospatial applications

    Last crawled: September 2, 2021
    Data format: CSV (1.4M+ records)

    Need the latest data?

    Create a custom request through CrawlFeeds if you need to re-extract updated listings from Trulia or slice by region, price range, or timestamp.

  18. F

    All Employees, Real Estate

    • fred.stlouisfed.org
    json
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All Employees, Real Estate [Dataset]. https://fred.stlouisfed.org/series/CES5553100001
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for All Employees, Real Estate (CES5553100001) from Jan 1990 to Sep 2025 about real estate, establishment survey, financial, employment, and USA.

  19. Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (Australia, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/residential-real-estate-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    France, Germany, United Kingdom, North America, Brazil, Mexico, Japan, Europe, Canada, United States
    Description

    Snapshot img

    Residential Real Estate Market Size 2025-2029

    The residential real estate market size is valued to increase USD 485.2 billion, at a CAGR of 4.5% from 2024 to 2029. Growing residential sector globally will drive the residential real estate market.

    Major Market Trends & Insights

    APAC dominated the market and accounted for a 55% growth during the forecast period.
    By Mode Of Booking - Sales segment was valued at USD 926.50 billion in 2023
    By Type - Apartments and condominiums segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 41.01 billion
    Market Future Opportunities: USD 485.20 billion
    CAGR : 4.5%
    APAC: Largest market in 2023
    

    Market Summary

    The market is a dynamic and ever-evolving sector that continues to shape the global economy. With increasing marketing initiatives and the growing residential sector globally, the market presents significant opportunities for growth. However, regulatory uncertainty looms large, posing challenges for stakeholders. According to recent reports, technology adoption in residential real estate has surged, with virtual tours and digital listings becoming increasingly popular. In fact, over 40% of homebuyers in the US prefer virtual property viewings. Core technologies such as artificial intelligence and blockchain are revolutionizing the industry, offering enhanced customer experiences and streamlined processes.
    Despite these advancements, regulatory compliance remains a major concern, with varying regulations across regions adding complexity to market operations. The market is a complex and intriguing space, with ongoing activities and evolving patterns shaping its future trajectory.
    

    What will be the Size of the Residential Real Estate Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Residential Real Estate Market Segmented and what are the key trends of market segmentation?

    The residential real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Mode Of Booking
    
      Sales
      Rental or lease
    
    
    Type
    
      Apartments and condominiums
      Landed houses and villas
    
    
    Location
    
      Urban
      Suburban
      Rural
    
    
    End-user
    
      Mid-range housing
      Affordable housing
      Luxury housing
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        Australia
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Mode Of Booking Insights

    The sales segment is estimated to witness significant growth during the forecast period.

    Request Free Sample

    The Sales segment was valued at USD 926.50 billion in 2019 and showed a gradual increase during the forecast period.

    Request Free Sample

    Regional Analysis

    APAC is estimated to contribute 55% to the growth of the global market during the forecast period.Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    See How Residential Real Estate Market Demand is Rising in APAC Request Free Sample

    The market in the Asia Pacific (APAC) region holds a significant share and is projected to lead the global market growth. Factors fueling this expansion include the region's rapid urbanization and increasing consumer spending power. Notably, residential and commercial projects in countries like India and China are experiencing robust development. The residential real estate sector in China plays a pivotal role in the economy and serves as a major growth driver for the market.

    With these trends continuing, the APAC the market is poised for continued expansion during the forecast period.

    Market Dynamics

    Our researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    In the Residential Real Estate Market, understanding the impact property tax rates home values and effect interest rates mortgage affordability is essential for buyers and investors. Key factors affecting home price appreciation and factors influencing housing affordability shape market trends, while the importance property due diligence process and requirements environmental site assessment ensure informed decisions. Investors benefit from methods calculating rental property roi, process home equity loan application, and benefits real estate portfolio diversification. Tools like property management software efficiency and techniques effective property marketing help tackle challenges managing rental properties. Additionally, strategies successf

  20. E

    United States Real Estate Market Growth Analysis - Forecast Trends and...

    • expertmarketresearch.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claight Corporation (Expert Market Research), United States Real Estate Market Growth Analysis - Forecast Trends and Outlook (2025-2034) [Dataset]. https://www.expertmarketresearch.com/reports/united-states-real-estate-market
    Explore at:
    pdf, excel, csv, pptAvailable download formats
    Dataset authored and provided by
    Claight Corporation (Expert Market Research)
    License

    https://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy

    Time period covered
    2025 - 2034
    Area covered
    United States
    Variables measured
    CAGR, Forecast Market Value, Historical Market Value
    Measurement technique
    Secondary market research, data modeling, expert interviews
    Dataset funded by
    Claight Corporation (Expert Market Research)
    Description

    The United States real estate market was valued at USD 3.43 Trillion in 2024. The industry is expected to grow at a CAGR of 2.80% during the forecast period of 2025-2034 to reach a value of USD 4.52 Trillion by 2034. The market growth is mainly driven by the rising corporate investment, particularly in addressing the nation’s affordable housing shortage.

    Major corporations are actively investing to integrate housing stability with social responsibility, supporting both new construction and the preservation of existing homes. In September 2024, UnitedHealth Group surpassed USD 1 billion in investments for affordable and mixed-income housing through direct capital and tax credits. These projects span 31 states and have delivered over 25,000 homes, simultaneously improved community health and providing secure housing for low- and moderate-income households.

    Such corporate involvements are reshaping trends in United States real estate market by expanding the supply of affordable housing, reducing barriers for renters and homeowners, and stimulating development in high-demand urban and suburban areas. By aligning financial resources with strategic planning, corporations are enabling scalable solutions that meet social and economic objectives while enhancing overall market efficiency.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
toriqul (2023). World's Real Estate Data(147k) [Dataset]. https://www.kaggle.com/datasets/toriqulstu/worlds-real-estate-data147k
Organization logo

World's Real Estate Data(147k)

This dataset contains comprehensive Property Insights all over the world

Explore at:
zip(6162018 bytes)Available download formats
Dataset updated
Sep 5, 2023
Authors
toriqul
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
World
Description

https://cdn.vectorstock.com/i/preview-1x/58/33/shwedish-town-silhouette-vector-9305833.webp">

Context:

My dataset is a valuable collection of real estate information sourced from REALTING.com, an international affiliate sales system known for facilitating safe and convenient property transactions worldwide. REALTING.com has a strong foundation, with its founders boasting approximately 20 years of experience in creating information technologies for the real estate market. This dataset offers insights into various properties across the globe, making it a valuable resource for real estate market analysis, property valuation, and trend prediction.

Content:

The dataset contains information on a diverse range of properties, each represented by a row of data. Here are the key columns and their contents:

  • Title: A brief description or name of the property listing.
  • Country: The country where the property is located.
  • Location: The specific address or location of the property within the country.
  • Building Construction Year: The year in which the building was constructed.
  • Building Total Floors: The total number of floors or stories in the building.
  • Apartment Floor: The floor on which the apartment is situated within the building.
  • Apartment Rooms: The total number of rooms in the apartment.
  • Apartment Bedrooms: The number of bedrooms in the apartment.
  • Apartment Bathrooms: The number of bathrooms in the apartment.
  • Apartment Total Area: The total area of the apartment in square meters.
  • Apartment Living Area: The living area of the apartment in square meters.
  • Price in USD: The price of the property listed in United States Dollars (USD).
  • Image: References or links to images associated with the property listing.
  • URL: Web links to the full property listing or more detailed information.

This dataset is rich in real estate-related information, making it suitable for various analytical tasks such as market research, property comparison, geographical analysis, and more. The dataset's global scope and diverse property attributes provide a comprehensive view of the international real estate market, offering ample opportunities for data-driven insights and decision-making.

Search
Clear search
Close search
Google apps
Main menu