100+ datasets found
  1. d

    Real Estate Sales 2001-2022 GL

    • catalog.data.gov
    • data.ct.gov
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2024). Real Estate Sales 2001-2022 GL [Dataset]. https://catalog.data.gov/dataset/real-estate-sales-2001-2018
    Explore at:
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    data.ct.gov
    Description

    The Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment. Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. Some municipalities may not report data for certain years because when a municipality implements a revaluation, they are not required to submit sales data for the twelve months following implementation.

  2. b

    Real Estate Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Real Estate Dataset [Dataset]. https://brightdata.com/products/datasets/real-estate
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Real estate datasets from various websites cover all major real estate data points including: property type, size, location, price, bedrooms, baths, address, history, images, and much more. Popular use cases include: forecast housing demand, analyze price fluctuations, improve customer satisfaction, see past prices to monitor market trends, and more.

  3. US Real Estate

    • zenrows.com
    csv
    Updated Jun 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZenRows (2021). US Real Estate [Dataset]. https://www.zenrows.com/datasets/us-real-estate
    Explore at:
    csv(5,8MB)Available download formats
    Dataset updated
    Jun 27, 2021
    Dataset provided by
    ZenRows S.L.
    Authors
    ZenRows
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    High-quality, free real estate dataset from all around the United States, in CSV format. Over 10.000 records relevant to Real Estate investors, agents, and data scientists. We are working on complete datasets from a wide variety of countries. Don't hesitate to contact us for more information.

  4. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  5. UAE Real Estate 2024 Dataset

    • kaggle.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kanchana1990 (2024). UAE Real Estate 2024 Dataset [Dataset]. http://doi.org/10.34740/kaggle/ds/5567442
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kanchana1990
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    United Arab Emirates
    Description

    Dataset Overview

    This dataset provides a detailed snapshot of real estate properties listed in Dubai, UAE, as of August 2024. The dataset includes over 5,000 listings scraped using the Apify API from Propertyfinder and various other real estate websites in the UAE. The data includes key details such as the number of bedrooms and bathrooms, price, location, size, and whether the listing is verified. All personal identifiers, such as agent names and contact details, have been ethically removed.

    Data Science Applications

    Given the size and structure of this dataset, it is ideal for the following data science applications:

    • Price Prediction Models: Predicting the price of properties based on features like location, size, and furnishing status.
    • Market Analysis: Understanding trends in the Dubai real estate market by analyzing price distributions, property types, and locations.
    • Recommendation Systems: Developing systems to recommend properties based on user preferences (e.g., number of bedrooms, budget).
    • Sentiment Analysis: Extracting and analyzing sentiments from the property descriptions to gauge the market's tone.

    This dataset provides a practical foundation for both beginners and experts in data science, allowing for the exploration of real estate trends, development of predictive models, and implementation of machine learning algorithms.

    # Column Descriptors

    • title: The listing's title, summarizing the key selling points of the property.
    • displayAddress: The public address of the property, including the community and city.
    • bathrooms: The number of bathrooms available in the property.
    • bedrooms: The number of bedrooms available in the property.
    • addedOn: The timestamp indicating when the property was added to the listing platform.
    • type: Specifies whether the property is residential, commercial, etc.
    • price: The listed price of the property in AED.
    • verified: A boolean value indicating whether the listing has been verified by the platform.
    • priceDuration: Indicates if the property is listed for sale or rent.
    • sizeMin: The minimum size of the property in square feet.
    • furnishing: Describes whether the property is furnished, unfurnished, or partially furnished.
    • description: A more detailed narrative about the property, including additional features and selling points.

    # Ethically Mined Data

    This dataset was ethically scraped using the Apify API, ensuring compliance with data privacy standards. All personal data such as agent names, phone numbers, and any other sensitive information have been omitted from this dataset to ensure privacy and ethical use. The data is intended solely for educational purposes and should not be used for commercial activities.

    # Acknowledgements

    This dataset was made possible thanks to the following:

    • Apify: For providing the API to ethically scrape the data.
    • Propertyfinder and various other real estate websites in the UAE for the original listings.
    • Kaggle: For providing the platform to share and analyze this dataset.

    -**Photo by** : Francesca Tosolini on Unsplash

    Use the Data Responsibly

    Please ensure that this dataset is used responsibly, with respect to privacy and data ethics. This data is provided for educational purposes.

  6. c

    Real Estate DataSet

    • cubig.ai
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Real Estate DataSet [Dataset]. https://cubig.ai/store/products/317/real-estate-dataset
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Real Estate DataSet consists of 506 examples, including home prices in the Boston suburbs and various residential and environmental characteristics.

    2) Data Utilization (1) Real Estate DataSet has characteristics that: • The dataset provides 13 continuous variables and one binary variable, including crime rate, house size, environmental pollution, accessibility, tax rate, and population characteristics. (2) Real Estate DataSet can be used to: • House Price Forecast: It can be used to develop a regression model that predicts the median price (MEDV) of a house based on various residential and environmental factors. • Analysis of Urban Planning and Policy: It can be used for urban development and policy making by analyzing the impact of residential environmental factors such as crime rates, environmental pollution, and educational environment on housing values.

  7. Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio, Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (Australia, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/residential-real-estate-market-analysis
    Explore at:
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Mexico, South Korea, Germany, Australia, Canada, Europe, Japan, United Kingdom, Brazil, United States, Global
    Description

    Snapshot img

    Residential Real Estate Market Size 2025-2029

    The residential real estate market size is forecast to increase by USD 485.2 billion at a CAGR of 4.5% between 2024 and 2029.

    The market is experiencing significant growth, fueled by increasing marketing initiatives that attract potential buyers and tenants. This trend is driven by the rising demand for housing solutions that cater to the evolving needs of consumers, particularly in urban areas. However, the market's growth trajectory is not without challenges. Regulatory uncertainty looms large, with changing policies and regulations posing a significant threat to market stability. Notably, innovative smart home technologies, such as voice-activated assistants and energy-efficient appliances, are gaining traction, offering enhanced convenience and sustainability for homeowners.
    As such, companies seeking to capitalize on the opportunities presented by the growing the market must navigate these challenges with agility and foresight. The residential construction industry's expansion is driven by urbanization and the rising standard of living in emerging economies, including India, China, Thailand, Malaysia, and Indonesia. By staying abreast of regulatory changes and implementing innovative marketing strategies, they can effectively meet the evolving needs of consumers and maintain a competitive edge. These regulatory shifts can impact everything from property prices to financing options, making it crucial for market players to stay informed and adapt quickly.
    

    What will be the Size of the Residential Real Estate Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic housing market analysis, small flats continue to be a popular choice for both investors and first-time homebuyers, driven by affordability and urban growth. International investment in housing projects, including apartments and condominiums, remains strong, offering attractive investment returns. Real estate syndication and property management software facilitate efficient property ownership and management. Real estate loans, property insurance, and urban planning are essential components of the housing market, ensuring the development of affordable housing and addressing the needs of the middle class and upper middle class. Property disputes, property tax assessments, and real estate litigation are ongoing challenges, requiring careful attention from stakeholders.
    Property search engines streamline the process of finding the perfect property, from studio apartments to luxury homes. Real estate auctions, land banking, and nano apartments are innovative solutions in the market, while property flipping and short sales provide opportunities for savvy investors. Urban growth and community development are key trends, with a focus on sustainable, planned cities and the integration of technology, such as real estate blockchain, into the industry. Developers secure building permits, review inspection reports, and manage escrow accounts during real estate transactions. Key services include contract negotiation, dispute resolution, and tailored investment strategies for portfolio management. Financial aspects cover tax implications, estate planning, retirement planning, taxdeferred exchanges, capital gains, tax deductions, and maintaining positive cash flow for sustained returns.
    

    How is this Residential Real Estate Industry segmented?

    The residential real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Mode Of Booking
    
      Sales
      Rental or lease
    
    
    Type
    
      Apartments and condominiums
      Landed houses and villas
    
    
    Location
    
      Urban
      Suburban
      Rural
    
    
    End-user
    
      Mid-range housing
      Affordable housing
      Luxury housing
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        Australia
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Mode Of Booking Insights

    The sales segment is estimated to witness significant growth during the forecast period. The sales segment dominates the global residential real estate market and will continue to dominate during the forecast period. The sales segment includes the sale of any property that is majorly used for residential purposes, such as single-family homes, condos, cooperatives, duplexes, townhouses, and multifamily residences. With the growing population and urbanization, the demand for homes is also increasing, which is the major factor driving the growth of the sales segment. Moreover, real estate firms work with developers to sel

  8. Real Estate Market Analysis APAC, North America, Europe, South America,...

    • technavio.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Real Estate Market Analysis APAC, North America, Europe, South America, Middle East and Africa - US, China, Japan, India, South Korea, Australia, Canada, UK, Germany, Brazil - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/real-estate-market-analysis
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States, Canada, United Kingdom
    Description

    Snapshot img

    Real Estate Market Size 2025-2029

    The real estate market size is forecast to increase by USD 1,258.6 billion at a CAGR of 5.6% between 2024 and 2029.

    The market is experiencing significant shifts and innovations, with both residential and commercial sectors adapting to new trends and challenges. In the commercial realm, e-commerce growth is driving the demand for logistics and distribution centers, while virtual reality technology is revolutionizing property viewings. Europe's commercial real estate sector is witnessing a rise in smart city development, incorporating LED lighting and data centers to enhance sustainability and efficiency. In the residential sector, wellness real estate is gaining popularity, focusing on health and well-being. Real estate software and advertising services are essential tools for asset management, streamlining operations, and reaching potential buyers. Regulatory uncertainty remains a challenge, but innovation in construction technologies, such as generators and renewable energy solutions, is helping mitigate risks.
    

    What will be the Size of the Real Estate Market During the Forecast Period?

    Request Free Sample

    The market continues to exhibit strong activity, driven by rising population growth and increasing demand for personal household space. Both residential and commercial sectors have experienced a rebound in home sales and leasing activity. The trend towards live-streaming rooms and remote work has further fueled demand for housing and commercial real estate. Economic conditions and local market dynamics influence the direction of the market, with interest rates playing a significant role in investment decisions. Fully furnished, semi-furnished, and unfurnished properties, as well as rental properties, remain popular options for buyers and tenants. Offline transactions continue to dominate, but online transactions are gaining traction.
    The market encompasses a diverse range of assets, including land, improvements, buildings, fixtures, roads, structures, utility systems, and undeveloped property. Vacant land and undeveloped property present opportunities for investors, while the construction and development of new housing and commercial projects contribute to the market's overall growth.
    

    How is this Real Estate Industry segmented and which is the largest segment?

    The industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Type
    
      Residential
      Commercial
      Industrial
    
    
    Business Segment
    
      Rental
      Sales
    
    
    Manufacturing Type
    
      New construction
      Renovation and redevelopment
      Land development
    
    
    Geography
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      North America
    
        Canada
        US
    
    
      Europe
    
        Germany
        UK
    
    
      South America
    
        Brazil
    
    
      Middle East and Africa
    

    By Type Insights

    The residential segment is estimated to witness significant growth during the forecast period.
    

    The market encompasses the buying and selling of properties designed for dwelling purposes, including buildings, single-family homes, apartments, townhouses, and more. Factors fueling growth in this sector include the increasing homeownership rate among millennials and urbanization trends. The Asia Pacific region, specifically China, dominates the market due to escalating homeownership rates. In India, the demand for affordable housing is a major driver, with initiatives like Pradhan Mantri Awas Yojana (PMAY) spurring the development of affordable housing projects catering to the needs of lower and middle-income groups. The commercial real estate segment, consisting of office buildings, shopping malls, hotels, and other commercial properties, is also experiencing growth.

    Furthermore, economic and local market conditions, interest rates, and investment opportunities in fully furnished, semi-furnished, unfurnished properties, and rental properties influence the market dynamics. Technological integration, infrastructure development, and construction projects further shape the real estate landscape. Key sectors like transportation, logistics, agriculture, and the e-commerce sector also impact the market.

    Get a glance at the market report of share of various segments Request Free Sample

    The Residential segment was valued at USD 1440.30 billion in 2019 and showed a gradual increase during the forecast period.

    Regional Analysis

    APAC is estimated to contribute 64% to the growth of the global market during the forecast period.
    

    Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    For more insights on the market share of various regions, Request Free Sample

    The Asia Pacific region holds the largest share of The market, dr

  9. Residential Real Estate Market Size, Share, Growth & Industry Trends Report,...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Residential Real Estate Market Size, Share, Growth & Industry Trends Report, 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    Residential Real Estate Market is Segmented by Property Type (Apartments & Condominiums, and Landed Houses & Villas), by Price Band (Affordable, Mid-Market, and Luxury/Super-prime), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (North America, South America, Europe, Asia-Pacific, and Middle East & Africa). The Market Forecasts are Provided in Terms of Value (USD).

  10. m

    US Residential Real Estate Market Analysis | Trends, Forecast, Size &...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). US Residential Real Estate Market Analysis | Trends, Forecast, Size & Industry Growth Report 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market-in-usa
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 21, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    The United States Residential Real Estate Market is Segmented by Property Type (Apartments and Condominiums, and Villas and Landed Houses), by Price Band (Affordable, Mid-Market and Luxury), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (Northeast, Midwest, Southeast, West and Southwest). The Market Forecasts are Provided in Terms of Value (USD)

  11. Leading real estate websites in the U.S. 2020-2024, by monthly visits

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading real estate websites in the U.S. 2020-2024, by monthly visits [Dataset]. https://www.statista.com/statistics/381468/most-popular-real-estate-websites-by-monthly-visits-usa/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    Zillow reigns supreme in the U.S. real estate website landscape, attracting a staggering ***** million monthly visits in 2024. This figure dwarfs its closest competitor, Realtor.com, which garnered less than half of Zillow's traffic. Online platforms are extremely popular, with the majority of homebuyers using a mobile device during the buying process. The rise of Zillow Founded in 2006, the Seattle-headquartered proptech Zillow has steadily grown over the years, establishing itself as the most popular U.S. real estate website. In 2023, the listing platform recorded about *** million unique monthly users across its mobile applications and website. Despite holding an undisputed position as a market leader, Zillow's revenue has decreased since 2021. A probable cause for the decline is the plummeting of housing transactions and the negative housing sentiment. Performance and trends in the proptech market The proptech market has shown remarkable performance, with companies like Opendoor and Redfin experiencing significant stock price increase in 2023. This growth is particularly notable in the residential brokerage segment. Meanwhile, major players in proptech fundraising, such as Fifth Wall and Hidden Hill Capital, have raised billions in direct investment, further fueling the sector's development. As technology continues to reshape the real estate industry, online platforms like Zillow are likely to play an increasingly crucial role in how people search for and purchase homes. (1477916, 1251604)

  12. d

    Zillow Real Estate Data Extraction | Real-time Real Estate Market Data | No...

    • datarade.ai
    Updated Nov 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2023). Zillow Real Estate Data Extraction | Real-time Real Estate Market Data | No Infra Cost | Pre-built AI & Automation | 50% Cost Saving | Free Sample [Dataset]. https://datarade.ai/data-products/zillow-real-estate-data-extraction-real-time-real-estate-ma-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Nov 7, 2023
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Canada, Isle of Man, Portugal, Liechtenstein, Belgium, Albania, Bulgaria, Spain, Iceland, Croatia
    Description

    Note:- Only publicly available data can be worked upon

    APISCRAPY collects and organizes data from Zillow's massive database, whether it's property characteristics, market trends, pricing histories, or more. Because of APISCRAPY's first-rate data extraction services, tracking property values, examining neighborhood trends, and monitoring housing market variations become a straightforward and efficient process.

    APISCRAPY's Zillow real estate data scraping service offers numerous advantages for individuals and businesses seeking valuable insights into the real estate market. Here are key benefits associated with their advanced data extraction technology:

    1. Real-time Zillow Real Estate Data: Users can access real-time data from Zillow, providing timely updates on property listings, market dynamics, and other critical factors. This real-time information is invaluable for making informed decisions in a fast-paced real estate environment.

    2. Data Customization: APISCRAPY allows users to customize the data extraction process, tailoring it to their specific needs. This flexibility ensures that the extracted Zillow real estate data aligns precisely with the user's requirements.

    3. Precision and Accuracy: The advanced algorithms utilized by APISCRAPY enhance the precision and accuracy of the extracted Zillow real estate data. This reliability is crucial for making well-informed decisions related to property investments and market trends.

    4. Efficient Data Extraction: APISCRAPY's technology streamlines the data extraction process, saving users time and effort. The efficiency of the extraction workflow ensures that users can access the desired Zillow real estate data without unnecessary delays.

    5. User-friendly Interface: APISCRAPY provides a user-friendly interface, making it accessible for individuals and businesses to navigate and utilize the Zillow real estate data scraping service with ease.

    APISCRAPY provides real-time real estate market data drawn from Zillow, ensuring that consumers have access to the most up-to-date and comprehensive real estate insights available. Our real-time real estate market data services aren't simply a game changer in today's dynamic real estate landscape; they're an absolute requirement.

    Our dedication to offering high-quality real estate data extraction services is based on the utilization of Zillow Real Estate Data. APISCRAPY's integration of Zillow Real Estate Data sets it different from the competition, whether you're a seasoned real estate professional or a homeowner wanting to sell, buy, or invest.

    APISCRAPY's data extraction is a key element, and it is an automated and smooth procedure that is at the heart of the platform's operation. Our platform gathers Zillow real estate data quickly and offers it in an easily consumable format with the click of a button.

    [Tags;- Zillow real estate scraper, Zillow data, Zillow API, Zillow scraper, Zillow web scraping tool, Zillow data extraction, Zillow Real estate data, Zillow scraper, Zillow scraping API, Zillow real estate da extraction, Extract Real estate Data, Property Listing Data, Real estate Data, Real estate Data sets, Real estate market data, Real estate data extraction, real estate web scraping, real estate api, real estate data api, real estate web scraping, web scraping real estate data, scraping real estate data, real estate scraper, best real, estate api, web scraping real estate, api real estate, Zillow scraping software ]

  13. F

    All Employees, Real Estate

    • fred.stlouisfed.org
    json
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All Employees, Real Estate [Dataset]. https://fred.stlouisfed.org/series/CEU5553100001
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for All Employees, Real Estate (CEU5553100001) from Jan 1990 to Jul 2025 about real estate, financial, establishment survey, employment, and USA.

  14. R

    Residential Real Estate Market in the United States Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Residential Real Estate Market in the United States Report [Dataset]. https://www.datainsightsmarket.com/reports/residential-real-estate-market-in-the-united-states-17275
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global, United States
    Variables measured
    Market Size
    Description

    The US residential real estate market, a cornerstone of the American economy, is projected to experience steady growth over the next decade. While the provided CAGR of 2.04% is a modest figure, it reflects a market maturing after a period of significant expansion. This sustained growth is driven by several key factors. Firstly, population growth and urbanization continue to fuel demand for housing, particularly in densely populated areas and emerging suburban markets. Secondly, low interest rates (historically, though this can fluctuate) have made mortgages more accessible, stimulating buyer activity. Thirdly, a robust construction sector, though facing challenges in material costs and labor shortages, is gradually increasing the housing supply, mitigating some of the upward pressure on prices. However, challenges remain. Rising inflation and potential interest rate hikes pose a risk to affordability, potentially dampening demand. Furthermore, the ongoing evolution of remote work is reshaping residential preferences, with a shift toward larger homes in suburban or exurban locations. This trend impacts the relative demand for various property types, potentially increasing the appeal of landed houses and villas compared to apartments and condominiums in certain regions. The segmentation of the market into apartments/condominiums and landed houses/villas provides crucial insights into consumer preferences and investment strategies. High-density urban areas will continue to see strong demand for apartments and condos, while suburban and rural areas are likely to experience a greater increase in landed property sales. Major players like Simon Property Group, Mill Creek Residential, and others are strategically adapting to these trends, focusing on both development and management across various property types and geographic locations. Analyzing regional data within the US (e.g., comparing growth in the Northeast versus the Southwest) will highlight market nuances and potential investment opportunities. While the global data provided is valuable for understanding broader market forces, focusing the analysis on the US market allows for a more granular understanding of the specific drivers, trends, and challenges within this significant segment of the real estate sector. The forecast period (2025-2033) suggests continued, albeit measured, expansion. Recent developments include: May 2022: Resource REIT Inc. completed the sale of all of its outstanding shares of common stock to Blackstone Real Estate Income Trust Inc. for USD 14.75 per share in an all-cash deal valued at USD 3.7 billion, including the assumption of the REIT's debt., February 2022: The largest owner of commercial real estate in the world and private equity company Blackstone is growing its portfolio of residential rentals and commercial properties in the United States. The company revealed that it would shell out about USD 6 billion to buy Preferred Apartment Communities, an Atlanta-based real estate investment trust that owns 44 multifamily communities and roughly 12,000 homes in the Southeast, mostly in Atlanta, Nashville, Charlotte, North Carolina, and the Florida cities of Jacksonville, Orlando, and Tampa.. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.

  15. d

    Real Estate Data | Property Listing, Sold Properties, Rankings, Agent...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr, Real Estate Data | Property Listing, Sold Properties, Rankings, Agent Datasets | Global Coverage | For Competitive Property Pricing and Investment [Dataset]. https://datarade.ai/data-products/real-estate-property-data-grepsr-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Grepsr
    Area covered
    Congo (Democratic Republic of the), Iraq, South Sudan, Tonga, Australia, Kazakhstan, Kuwait, Holy See, Spain, Malaysia
    Description

    Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.

    A. Usecase/Applications possible with the data:

    1. Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data

    2. Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.

    3. Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.

    4. Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.

    5. Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.

    6. Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.

    7. Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.

    How does it work?

    • Analyze sample data
    • Customize parameters to suit your needs
    • Add to your projects
    • Contact support for further customization
  16. US Luxury Residential Real Estate Market Size, Share & Growth Trends - 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). US Luxury Residential Real Estate Market Size, Share & Growth Trends - 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/united-states-luxury-residential-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    United States Luxury Residential Real Estate Market Report is Segmented by Property Type (Apartments and Condominiums, and Villas and Landed Houses), by Business Model (Sales and Rental), by Mode of Sale (Primary (New-Build) and Secondary (Existing-Home Resale)), and by Region (Northeast, Midwest, Southeast, West and Southwest). The Market Forecasts are Provided in Terms of Value (USD).

  17. D

    Real Estate Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Real Estate Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-real-estate-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Real Estate Market Outlook



    The global real estate market size was valued at approximately USD 10 trillion in 2023 and is projected to reach around USD 15 trillion by 2032, growing at a compound annual growth rate (CAGR) of 4.5%. The primary growth factor driving this market is the increasing urbanization and the growing need for residential and commercial spaces. Rapid urbanization, economic development, and increasing investments in infrastructure are contributing to this growth.



    Urbanization is a key driver for the real estate market. As urban areas expand, there is a heightened demand for residential, commercial, and industrial properties. This trend is particularly noticeable in emerging economies where migration from rural to urban areas is accelerating. In addition to providing housing, urbanization necessitates the development of commercial and industrial spaces to support economic activities and provide employment opportunities. This cycle of development and demand continues to fuel the real estate market globally.



    Furthermore, economic development plays a crucial role in the growth of the real estate market. As countries develop economically, there is an increase in disposable incomes, which in turn drives demand for better housing and commercial facilities. This economic growth often leads to increased investments from both domestic and international investors, further boosting the real estate market. The development of infrastructure such as roads, bridges, and public facilities also supports the growth of the real estate sector by making locations more accessible and attractive for development.



    The growth of the real estate market is also supported by government initiatives and policies aimed at promoting housing and infrastructure development. Many governments around the world offer incentives such as tax benefits, subsidies, and relaxed regulations to encourage investment in the real estate sector. These policies not only stimulate the construction of new properties but also help in the renovation and improvement of existing structures. Additionally, the introduction of smart cities and sustainable development projects is creating new opportunities within the real estate market.



    Real Estate Services play a pivotal role in the expansion and management of the real estate market. These services encompass a wide range of activities including property management, brokerage, appraisal, and consulting. They are essential for facilitating transactions, ensuring compliance with regulations, and maximizing the value of real estate assets. As the market grows, the demand for specialized real estate services increases, providing opportunities for companies to offer tailored solutions that meet the diverse needs of property owners, investors, and tenants. The integration of technology into real estate services is also transforming the industry, enabling more efficient and transparent processes.



    Regionally, the real estate market is experiencing varied growth patterns. For instance, Asia Pacific is witnessing rapid growth due to its expanding population and increasing urbanization. North America and Europe, on the other hand, are seeing steady growth driven by economic stability and significant investments in technology and sustainability. Meanwhile, regions like Latin America and the Middle East & Africa are slowly catching up, with increasing investments in infrastructure and real estate developments. These regional dynamics play a crucial role in shaping the overall growth trajectory of the global real estate market.



    Property Type Analysis



    The real estate market is segmented by property type into residential, commercial, industrial, and land. The residential segment is one of the most significant contributors to the market, driven by the increasing population and the growing need for housing. With urbanization on the rise, there is a continuous demand for new residential properties. This segment includes single-family homes, multi-family units, condominiums, and apartments. The trend towards nuclear families and the demand for better living standards are also contributing to the growth of the residential real estate segment.



    Commercial real estate is another critical segment within the market, encompassing office spaces, retail centers, hotels, and other commercial establishments. The growth of the commercial real estate segment is closely linked to economic development, as businesses requir

  18. u

    45+ Crucial Real Estate Industry Statistics [Updated]

    • upmetrics.co
    webpage
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Upmetrics (2024). 45+ Crucial Real Estate Industry Statistics [Updated] [Dataset]. https://upmetrics.co/blog/real-estate-industry-statistics
    Explore at:
    webpageAvailable download formats
    Dataset updated
    Feb 22, 2024
    Dataset authored and provided by
    Upmetrics
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    An in-depth analysis offering key statistics on the real estate market's size, growth, and trends, including market value, investment trends, demographic influences, and the impact of digital transformation.

  19. U.S. National Association of Realtors: number of members 2009-2023

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. National Association of Realtors: number of members 2009-2023 [Dataset]. https://www.statista.com/statistics/196269/us-national-association-of-realtors-number-of-members-since-1910/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of members of the National Association of Realtors (NAR) in 2023 declined for the first time since 2012. This trend also reflects the recovery of the property market after the financial crisis of 2007-2009, as the volume of home sales began to climb from 2011. The NAR is a North American trade association for real estate workers formed in 1908 and currently based in Chicago, Illinois. In 2022, the association had nearly *** million members.Employment in the real estate sector The upward in NRA membership is mirrored in overall employment in the real estate sector in the United States. In 2023, *** million people were employed in the sector, which indicates that the majority of workers are members of the NAR. Employees in the real estate, rental, and leasing industry in the U.S. earned slightly above the average wage in the country. Membership growth ties in with growth in home sales The growth in NAR membership also correlates with the growth of residential property sales. For instance, the number of new houses sold in the U.S. has been on the rise since 2011. American adults as a whole have been steady in their view that homeownership is an important part of the American Dream. However, the share of American Millennials – those born between 1981 and 1996 - who view homeownership as important has been fluctuating since 2010. This adds an element of uncertainty to the future of the housing market because millennials are in their mid-twenties and thirties, which is widely viewed as the best time to buy a home from a home equity perspective.

  20. d

    Tax Administration's Real Estate - Sales Data

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Apr 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Fairfax (2023). Tax Administration's Real Estate - Sales Data [Dataset]. https://catalog.data.gov/dataset/tax-administrations-real-estate-sales-data-d73c9
    Explore at:
    Dataset updated
    Apr 22, 2023
    Dataset provided by
    County of Fairfax
    Description

    This table contains property sales information including sale date, price, and amounts for properties within Fairfax County. There is a one to many relationship to the parcel data. Refer to this document for descriptions of the data in the table.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.ct.gov (2024). Real Estate Sales 2001-2022 GL [Dataset]. https://catalog.data.gov/dataset/real-estate-sales-2001-2018

Real Estate Sales 2001-2022 GL

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 20, 2024
Dataset provided by
data.ct.gov
Description

The Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment. Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. Some municipalities may not report data for certain years because when a municipality implements a revaluation, they are not required to submit sales data for the twelve months following implementation.

Search
Clear search
Close search
Google apps
Main menu