Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://cdn.vectorstock.com/i/preview-1x/58/33/shwedish-town-silhouette-vector-9305833.webp">
My dataset is a valuable collection of real estate information sourced from REALTING.com, an international affiliate sales system known for facilitating safe and convenient property transactions worldwide. REALTING.com has a strong foundation, with its founders boasting approximately 20 years of experience in creating information technologies for the real estate market. This dataset offers insights into various properties across the globe, making it a valuable resource for real estate market analysis, property valuation, and trend prediction.
The dataset contains information on a diverse range of properties, each represented by a row of data. Here are the key columns and their contents:
This dataset is rich in real estate-related information, making it suitable for various analytical tasks such as market research, property comparison, geographical analysis, and more. The dataset's global scope and diverse property attributes provide a comprehensive view of the international real estate market, offering ample opportunities for data-driven insights and decision-making.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is web scrapped from a real estate website, collecting all the necessary infos on the resale and new properties. It has around 14000+ rows of data having properties from various Indian cities like Chennai, Mumbai, Bangalore, Delhi, Pune, Kolkata and Hyderabad. Columns:
Name: Property Name, Property Title: Property Ad Title, Price: Property Price Location: Property Located Locality and Region Total Area: Total SQFT of the property Price Per SQFT: Price of Per SQFT of the property Description: Small paragraph about the property Baths: Number of baths in the property Balcony: Whether the Property has balcony or not
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Real estate datasets from various websites cover all major real estate data points including: property type, size, location, price, bedrooms, baths, address, history, images, and much more. Popular use cases include: forecast housing demand, analyze price fluctuations, improve customer satisfaction, see past prices to monitor market trends, and more.
Facebook
TwitterThe Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment. Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. Some municipalities may not report data for certain years because when a municipality implements a revaluation, they are not required to submit sales data for the twelve months following implementation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
High-quality, free real estate dataset from all around the United States, in CSV format. Over 10.000 records relevant to Real Estate investors, agents, and data scientists. We are working on complete datasets from a wide variety of countries. Don't hesitate to contact us for more information.
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
This dataset contains real estate listings from Utah, comprising 4,440 entries and 14 columns. The data includes various attributes of properties such as type, description, year built, number of bedrooms and bathrooms, garage spaces, lot size, square footage, stories, listing price, and the date the property was last sold. The data was ethically mined and is to be used for educational and non-commercial purposes only.
Given the size of the dataset (4,440 entries) and the available columns, this dataset is well-suited for various data science applications, including but not limited to:
lastSoldOn column.This dataset was ethically mined from Realtor.com using an API provided by Apify. The data collection process ensured compliance with ethical standards and respect for the source of the information. The dataset is intended for educational and analytical purposes, promoting transparency and responsible data use.
Facebook
TwitterZillow reigns supreme in the U.S. real estate website landscape, attracting a staggering ***** million monthly visits in 2024. This figure dwarfs its closest competitor, Realtor.com, which garnered less than half of Zillow's traffic. Online platforms are extremely popular, with the majority of homebuyers using a mobile device during the buying process. The rise of Zillow Founded in 2006, the Seattle-headquartered proptech Zillow has steadily grown over the years, establishing itself as the most popular U.S. real estate website. In 2023, the listing platform recorded about *** million unique monthly users across its mobile applications and website. Despite holding an undisputed position as a market leader, Zillow's revenue has decreased since 2021. A probable cause for the decline is the plummeting of housing transactions and the negative housing sentiment. Performance and trends in the proptech market The proptech market has shown remarkable performance, with companies like Opendoor and Redfin experiencing significant stock price increase in 2023. This growth is particularly notable in the residential brokerage segment. Meanwhile, major players in proptech fundraising, such as Fifth Wall and Hidden Hill Capital, have raised billions in direct investment, further fueling the sector's development. As technology continues to reshape the real estate industry, online platforms like Zillow are likely to play an increasingly crucial role in how people search for and purchase homes. (1477916, 1251604)
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Real Estate DataSet consists of 506 examples, including home prices in the Boston suburbs and various residential and environmental characteristics.
2) Data Utilization (1) Real Estate DataSet has characteristics that: • The dataset provides 13 continuous variables and one binary variable, including crime rate, house size, environmental pollution, accessibility, tax rate, and population characteristics. (2) Real Estate DataSet can be used to: • House Price Forecast: It can be used to develop a regression model that predicts the median price (MEDV) of a house based on various residential and environmental factors. • Analysis of Urban Planning and Policy: It can be used for urban development and policy making by analyzing the impact of residential environmental factors such as crime rates, environmental pollution, and educational environment on housing values.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Looking to analyze the real estate market across the USA? Our Redfin real estate dataset provides a detailed sample of property listings, including prices, addresses, property features, and images. This dataset is perfect for analysts, developers, and real estate enthusiasts looking to gain insights into housing trends and market dynamics.
The dataset includes fields such as price, currency, address, property details, number of beds and baths, square footage, listing status, images, and more, giving you a robust foundation for analysis.
You can explore the full dataset and download the sample from Redfin real estate dataset. This makes it easy to integrate into your analytics pipelines, machine learning models, or market research projects.
Whether you're building a property analytics dashboard, testing real estate algorithms, or simply exploring housing trends, this dataset provides rich, up-to-date information directly from Redfin listings across the USA.
Start analyzing the USA housing market today with our Redfin dataset sample and make data-driven decisions with confidence.
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The US Office Real Estate Market Report is Segmented by Building Grade (Grade A, Grade B, and More), by Transaction Type (Rental and Sales), by End Use (Information Technology (IT & ITES), BFSI (Banking, Financial Services and Insurance), and More) and by States (Texas, California, Florida and More). The Report Offers Market Size and Forecasts in Value (USD) for all the Above Segments.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
The Housing Data Extracted from Homes.com (USA) dataset is a comprehensive collection of 2 million real estate listings sourced from Homes.com, one of the leading real estate platforms in the United States. This dataset offers detailed insights into the U.S. housing market, making it an invaluable resource for real estate professionals, investors, researchers, and analysts.
The dataset contains extensive property details, including location, price, property type (single-family homes, condos, apartments), number of bedrooms and bathrooms, square footage, lot size, year built, and availability status. Organized in CSV format, it provides users with easy access to structured data for analyzing trends, developing investment strategies, or building real estate applications.
Key Features:
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Allan Kirwa
Released under Apache 2.0
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
Residential Real Estate Market is Segmented by Property Type (Apartments & Condominiums, and Landed Houses & Villas), by Price Band (Affordable, Mid-Market, and Luxury/Super-prime), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (North America, South America, Europe, Asia-Pacific, and Middle East & Africa). The Market Forecasts are Provided in Terms of Value (USD).
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
This dataset comprises detailed real estate listings scraped from Realtor.com, providing a snapshot of various property types across Chicago. It includes 2,000 entries with information on property characteristics such as type, size, age, price, and features. This dataset was ethically collected using an API provided by Apify, ensuring all data scraping adhered to ethical standards.
This dataset is ideal for a variety of data science applications, including but not limited to: - Predictive Modeling: Forecast property prices based on various features like location, size, and age. - Market Analysis: Understand trends in real estate, including the types of properties being sold, pricing trends, and the influence of property features on market value. - Natural Language Processing: Analyze the textual descriptions provided for each listing to extract additional features or perform sentiment analysis. - Anomaly Detection: Identify unusual listings or potential outliers in the data, which could indicate errors in data collection or unique investment opportunities.
This dataset was responsibly and ethically mined, adhering to all legal standards of data collection. The use of Apify's API ensures that the data collection process respects privacy and the platform's terms of service.
We thank Realtor.com for maintaining a comprehensive and accessible database, and Apify for providing the tools necessary for ethical data scraping. Their contributions have been invaluable in the creation of this dataset. Credits to Dall E3 for thumbnail image.
This dataset is provided for non-commercial and educational purposes only. Users are encouraged to use this data to enhance learning, contribute to academic or personal projects, and develop skills in data science and real estate market analysis.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Real Estate Market size was valued at USD 79.7 Trillion in 2024 and is projected to reach USD 103.6 Trillion by 2031, growing at a CAGR of 5.1% during the forecasted period 2024 to 2031
Global Real Estate Market Drivers
Population Growth and Urbanization: In order to meet the demands of businesses, housing needs, and infrastructure development, there is a constant need for residential and commercial properties as populations and urban areas rise.
Low Interest Rates: By making borrowing more accessible, low interest rates encourage both individuals and businesses to make real estate investments. Reduced borrowing costs result in reduced mortgage rates, opening up homeownership and encouraging real estate investments and purchases.
Economic Growth: A thriving real estate market is a result of positive economic growth indicators like GDP growth, rising incomes, and low unemployment rates. Robust economies establish advantageous circumstances for real estate investment, growth, and customer assurance in the housing sector. Job growth and income increases: As more people look for rental or purchase close to their places of employment, housing demand is influenced by these factors. The housing market is driven by employment opportunities and rising salaries, which in turn drive home buying, renting, and property investment activity. Infrastructure Development: The demand and property values in the surrounding areas can be greatly impacted by investments made in infrastructure projects such as public facilities, utilities, and transportation networks. Accessibility, convenience, and beauty are all improved by improved infrastructure, which encourages real estate development and investment.
Government Policies and Incentives: Tax breaks, subsidies, and first-time homebuyer programs are a few examples of government policies and incentives that can boost the real estate market and homeownership. Market stability and growth are facilitated by regulatory actions that promote affordable housing, urban redevelopment, and real estate development.
Foreign Investment: Foreign capital can be used to stimulate demand, diversify property portfolios, and pump capital into the real estate market through direct property purchases or real estate investment funds. Foreign investors are drawn to the local real estate markets by favorable exchange rates, stable political environments, and appealing returns.
Demographic Trends: Shifting demographic trends affect housing preferences and demand for various property kinds. These trends include aging populations, household formation rates, and migration patterns. It is easier for real estate developers and investors to match supply with changing market demand when they are aware of demographic fluctuations.
Technological Innovations: New technologies that are revolutionizing the marketing, transactions, and management of properties include digital platforms, data analytics, and virtual reality applications. In the real estate industry, technology adoption increases market reach, boosts customer experiences, and increases operational efficiency.
Environmental Sustainability: Decisions about real estate development and investment are influenced by the growing knowledge of environmental sustainability and green building techniques. Market activity in environmentally aware real estate categories is driven by demand for eco-friendly neighborhoods, sustainable design elements, and energy-efficient buildings.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
This dataset contains over 1.1 million property listings extracted from Trulia, one of the largest U.S. real estate marketplaces. Compiled and structured by the CrawlFeeds team, this dataset includes residential property data across the United States — making it a valuable resource for real estate analytics, machine learning, and location-based modeling.
Full listing info: title, description, URL
Detailed location data: city, ZIP code, latitude, longitude
Property specs: bedrooms, bathrooms, floor space, features
Pricing details: current price, currency, status
Metadata: timestamps, image URLs, and breadcrumbs
Format: Clean CSV, ready for modeling and analysis
Housing price prediction models
Real estate investment analysis
Location clustering & zip code segmentation
Building property recommendation engines
Mapping visualizations & geospatial applications
Last crawled: September 2, 2021
Data format: CSV (1.4M+ records)
Create a custom request through CrawlFeeds if you need to re-extract updated listings from Trulia or slice by region, price range, or timestamp.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees, Real Estate (CES5553100001) from Jan 1990 to Sep 2025 about real estate, establishment survey, financial, employment, and USA.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Residential Real Estate Market Size 2025-2029
The residential real estate market size is valued to increase USD 485.2 billion, at a CAGR of 4.5% from 2024 to 2029. Growing residential sector globally will drive the residential real estate market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 55% growth during the forecast period.
By Mode Of Booking - Sales segment was valued at USD 926.50 billion in 2023
By Type - Apartments and condominiums segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 41.01 billion
Market Future Opportunities: USD 485.20 billion
CAGR : 4.5%
APAC: Largest market in 2023
Market Summary
The market is a dynamic and ever-evolving sector that continues to shape the global economy. With increasing marketing initiatives and the growing residential sector globally, the market presents significant opportunities for growth. However, regulatory uncertainty looms large, posing challenges for stakeholders. According to recent reports, technology adoption in residential real estate has surged, with virtual tours and digital listings becoming increasingly popular. In fact, over 40% of homebuyers in the US prefer virtual property viewings. Core technologies such as artificial intelligence and blockchain are revolutionizing the industry, offering enhanced customer experiences and streamlined processes.
Despite these advancements, regulatory compliance remains a major concern, with varying regulations across regions adding complexity to market operations. The market is a complex and intriguing space, with ongoing activities and evolving patterns shaping its future trajectory.
What will be the Size of the Residential Real Estate Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Residential Real Estate Market Segmented and what are the key trends of market segmentation?
The residential real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Mode Of Booking
Sales
Rental or lease
Type
Apartments and condominiums
Landed houses and villas
Location
Urban
Suburban
Rural
End-user
Mid-range housing
Affordable housing
Luxury housing
Geography
North America
US
Canada
Mexico
Europe
France
Germany
UK
APAC
Australia
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Mode Of Booking Insights
The sales segment is estimated to witness significant growth during the forecast period.
Request Free Sample
The Sales segment was valued at USD 926.50 billion in 2019 and showed a gradual increase during the forecast period.
Request Free Sample
Regional Analysis
APAC is estimated to contribute 55% to the growth of the global market during the forecast period.Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How Residential Real Estate Market Demand is Rising in APAC Request Free Sample
The market in the Asia Pacific (APAC) region holds a significant share and is projected to lead the global market growth. Factors fueling this expansion include the region's rapid urbanization and increasing consumer spending power. Notably, residential and commercial projects in countries like India and China are experiencing robust development. The residential real estate sector in China plays a pivotal role in the economy and serves as a major growth driver for the market.
With these trends continuing, the APAC the market is poised for continued expansion during the forecast period.
Market Dynamics
Our researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
In the Residential Real Estate Market, understanding the impact property tax rates home values and effect interest rates mortgage affordability is essential for buyers and investors. Key factors affecting home price appreciation and factors influencing housing affordability shape market trends, while the importance property due diligence process and requirements environmental site assessment ensure informed decisions. Investors benefit from methods calculating rental property roi, process home equity loan application, and benefits real estate portfolio diversification. Tools like property management software efficiency and techniques effective property marketing help tackle challenges managing rental properties. Additionally, strategies successf
Facebook
Twitterhttps://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy
The United States real estate market was valued at USD 3.43 Trillion in 2024. The industry is expected to grow at a CAGR of 2.80% during the forecast period of 2025-2034 to reach a value of USD 4.52 Trillion by 2034. The market growth is mainly driven by the rising corporate investment, particularly in addressing the nation’s affordable housing shortage.
Major corporations are actively investing to integrate housing stability with social responsibility, supporting both new construction and the preservation of existing homes. In September 2024, UnitedHealth Group surpassed USD 1 billion in investments for affordable and mixed-income housing through direct capital and tax credits. These projects span 31 states and have delivered over 25,000 homes, simultaneously improved community health and providing secure housing for low- and moderate-income households.
Such corporate involvements are reshaping trends in United States real estate market by expanding the supply of affordable housing, reducing barriers for renters and homeowners, and stimulating development in high-demand urban and suburban areas. By aligning financial resources with strategic planning, corporations are enabling scalable solutions that meet social and economic objectives while enhancing overall market efficiency.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://cdn.vectorstock.com/i/preview-1x/58/33/shwedish-town-silhouette-vector-9305833.webp">
My dataset is a valuable collection of real estate information sourced from REALTING.com, an international affiliate sales system known for facilitating safe and convenient property transactions worldwide. REALTING.com has a strong foundation, with its founders boasting approximately 20 years of experience in creating information technologies for the real estate market. This dataset offers insights into various properties across the globe, making it a valuable resource for real estate market analysis, property valuation, and trend prediction.
The dataset contains information on a diverse range of properties, each represented by a row of data. Here are the key columns and their contents:
This dataset is rich in real estate-related information, making it suitable for various analytical tasks such as market research, property comparison, geographical analysis, and more. The dataset's global scope and diverse property attributes provide a comprehensive view of the international real estate market, offering ample opportunities for data-driven insights and decision-making.