58 datasets found
  1. d

    U.S. Real Estate - Rental Listings - Weekly Snapshots

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RateSpot, U.S. Real Estate - Rental Listings - Weekly Snapshots [Dataset]. https://datarade.ai/data-products/u-s-real-estate-rental-listings-weekly-snapshots-ratespot
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    RateSpot
    Area covered
    United States
    Description

    Customers can upload a customized list of geographic locations (e.g. states, zip codes) into our tool and begin receiving data within 24 hours. We offer an extensive selection of rental listings across the US, providing one of the broadest coverage ranges available. We provide access to detailed information such as property features, location details, pricing, pricing changes, square footage, amenities, and more.

    We also provide insights into real estate market trends, analyze property values, and aid in formulating informed investment strategies. With regular updates, our data feeds are an essential tool for those looking to gain a competitive edge in the real estate market.

  2. Redfin properties dataset

    • crawlfeeds.com
    csv, zip
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Redfin properties dataset [Dataset]. https://crawlfeeds.com/datasets/redfin-properties-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Our dataset features comprehensive housing market data, extracted from 250,000 records sourced directly from Redfin USA. Our Crawl Feeds team utilized proprietary in-house tools to meticulously scrape and compile this valuable data.

    Key Benefits of Our Housing Market Data:

    • In-Depth Market Analysis: Gain insights into the real estate market with up-to-date data on recently sold properties.

    • Price Trend Identification: Track and analyze price trends across different cities.

    • Accurate Price Estimation: Estimate property values based on key factors such as area, number of beds and baths, square footage, and more.

    • Detailed Real Estate Statistics: Access detailed statistics segmented by zip code, area, and state.

    Unlock the Power of Redfin Data for Real Estate Professionals

    Leveraging our Redfin properties dataset allows real estate professionals to make data-driven decisions. With detailed insights into property listings, sales history, and pricing trends, agents and investors can identify opportunities in the market more effectively. The data is particularly useful for comparing neighborhood trends, understanding market demand, and making informed investment decisions.

    Enhance Your Real Estate Research with Custom Filters and Analysis

    Our Redfin dataset is not only extensive but also customizable, allowing users to apply filters based on specific criteria such as property type, listing status, and geographic location. This flexibility enables researchers and analysts to drill down into the data, uncovering patterns and insights that can guide strategic planning and market entry decisions. Whether you're tracking the performance of single-family homes or exploring multi-family property trends, this dataset offers the depth and accuracy needed for thorough analysis.

    Looking for deeper insights or a custom data pull from Redfin?
    Send a request with just one click and explore detailed property listings, price trends, and housing data.
    đź”— Request Redfin Real Estate Data

  3. a

    Home Sales Trends in the United States

    • attomdata.com
    attom api +4
    Updated Oct 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ATTOM Data Solutions (2018). Home Sales Trends in the United States [Dataset]. https://www.attomdata.com/data/real-estate-market-analytics/sales-trend/
    Explore at:
    attom api, neighborhood navigator, excel, attom cloud, csvAvailable download formats
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    ATTOM Data Solutions
    Description

    Home sales data aggregated by boundaries (neighborhood, zip code, city, etc) in increments of month, quarter, or year

  4. F

    Average Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/ASPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.

  5. U.S. Real Estate Inventory

    • dataandsons.com
    csv, zip
    Updated Jul 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sean Lux (2017). U.S. Real Estate Inventory [Dataset]. https://www.dataandsons.com/categories/sales-and-transactions/u-s-real-estate-inventory
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jul 13, 2017
    Dataset provided by
    Authors
    Sean Lux
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    Feb 1, 2017 - Jun 1, 2017
    Description

    About this Dataset

    Complete listing of U.S. real estate inventory by zip code. Edited data set sourced from www.realtor.com for better clarity and easier use.

    Category

    Sales & Transactions

    Keywords

    Housing,realestate,listings,zipcode

    Row Count

    65501

    Price

    Free

  6. t

    US National Rental Data | 14M+ Records in 16,000+ ZIP Codes | Rental Data...

    • data.thewarrengroup.com
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Warren Group (2024). US National Rental Data | 14M+ Records in 16,000+ ZIP Codes | Rental Data Lease Terms & Pricing Trends [Dataset]. https://data.thewarrengroup.com/products/us-national-rental-data-14m-records-in-16-000-zip-codes-the-warren-group
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    W A Warren, Inc.
    Authors
    The Warren Group
    Area covered
    United States
    Description

    Rental data is essential for making informed decisions. Property managers streamline operations, investors find opportunities, and asset managers enhance valuation tools using this critical resource. With verified listings and broad market coverage, our rental data outperforms traditional sources.

  7. F

    Housing Inventory: Active Listing Count in the United States

    • fred.stlouisfed.org
    json
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Active Listing Count in the United States [Dataset]. https://fred.stlouisfed.org/series/ACTLISCOUUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Housing Inventory: Active Listing Count in the United States (ACTLISCOUUS) from Jul 2016 to Jul 2025 about active listing, listing, and USA.

  8. d

    Live Rental Listing Data | US Rental | National Coverage | Bulk | 970k...

    • datarade.ai
    .json, .csv, .xls
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CompCurve (2025). Live Rental Listing Data | US Rental | National Coverage | Bulk | 970k Properties Daily | Rental Data Real Estate Data [Dataset]. https://datarade.ai/data-products/live-rental-listing-data-us-rental-national-coverage-bu-compcurve
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    CompCurve
    Area covered
    United States of America
    Description

    Our extensive database contains approximately 800,000 active rental property listings from across the United States. Updated daily, this comprehensive collection provides real estate professionals, investors, and property managers with valuable market intelligence and business opportunities. Database Contents

    Property Addresses: Complete location data including street address, city, state, ZIP code Listing Dates: Original listing date and most recent update date Availability Status: Currently available, pending, or recently rented properties Geographic Coverage: Properties spanning all 50 states and major metropolitan areas

    Applications & Uses

    Market Analysis: Track rental pricing trends across different regions and property types Investment Research: Identify high-opportunity markets with favorable rental conditions Lead Generation: Connect with property owners potentially needing management services Competitive Intelligence: Monitor listing volumes, vacancy rates, and market saturation Business Development: Target specific neighborhoods or property categories for expansion

    File Format & Delivery

    Organized in easy-to-use CSV format for seamless integration with data analysis tools Accessible through secure download portal or API connection Daily updates ensure you're working with the most current market information Custom filtering options available to narrow results by location, date range, or other criteria

    Data Quality

    Rigorous validation processes to ensure address accuracy Duplicate listing detection and removal Regular verification of active status Standardized format for consistent analysis

    Subscription Benefits

    Access to historical listing archives for trend analysis Advanced search capabilities to target specific property characteristics Regular market reports summarizing key trends and opportunities Custom data exports tailored to your specific business needs

    AK ~ 1,342 listings AL ~ 6,636 listings AR ~ 4,024 listings AZ ~ 25,782 listings CA ~ 102,833 listings CO ~ 14,333 listings CT ~ 10,515 listings DC ~ 1,988 listings DE ~ 1,528 listings FL ~ 152,258 listings GA ~ 28,248 listings HI ~ 3,447 listings IA ~ 4,557 listings ID ~ 3,426 listings IL ~ 42,642 listings IN ~ 8,634 listings KS ~ 3,263 listings KY ~ 5,166 listings LA ~ 11,522 listings MA ~ 53,624 listings MD ~ 12,124 listings ME ~ 1,754 listings MI ~ 12,040 listings MN ~ 7,242 listings MO ~ 10,766 listings MS ~ 2,633 listings MT ~ 1,953 listings NC ~ 22,708 listings ND ~ 1,268 listings NE ~ 1,847 listings NH ~ 2,672 listings NJ ~ 31,286 listings NM ~ 2,084 listings NV ~ 13,111 listings NY ~ 94,790 listings OH ~ 15,843 listings OK ~ 5,676 listings OR ~ 8,086 listings PA ~ 37,701 listings RI ~ 4,345 listings SC ~ 8,018 listings SD ~ 1,018 listings TN ~ 15,983 listings TX ~ 132,620 listings UT ~ 3,798 listings VA ~ 14,087 listings VT ~ 946 listings WA ~ 15,039 listings WI ~ 7,393 listings WV ~ 1,681 listings WY ~ 730 listings

    Grand Total ~ 977,010 listings

  9. Zillow Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Zillow Datasets [Dataset]. https://brightdata.com/products/datasets/zillow
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 19, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain a complete view of the real estate market with our Zillow datasets. Track price trends, rental/sale status, and price per square foot with the Zillow Price History dataset and explore detailed listings with prices, locations, and features using the Zillow Properties Listing dataset. Over 134M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:

    Zpid
    City
    State
    Home Status
    Street Address
    Zipcode
    Home Type
    Living Area Value
    Bedrooms
    Bathrooms
    Price
    Property Type
    Date Sold
    Annual Homeowners Insurance
    Price Per Square Foot
    Rent Zestimate
    Tax Assessed Value
    Zestimate
    Home Values
    Lot Area
    Lot Area Unit
    Living Area
    Living Area Units
    Property Tax Rate
    Page View Count
    Favorite Count
    Time On Zillow
    Time Zone
    Abbreviated Address
    Brokerage Name
    And much more
    
  10. USA Housing Dataset

    • kaggle.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArnavGupta (2025). USA Housing Dataset [Dataset]. https://www.kaggle.com/datasets/arnavgupta1205/usa-housing-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    ArnavGupta
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    United States
    Description

    This USA Housing Market Dataset (Synthetic) contains 300 rows and 10 columns of real estate-related data designed for housing price prediction, trend analysis, and investment insights. It includes key property details such as price, number of bedrooms and bathrooms, square footage, year built, garage spaces, lot size, zip code, crime rate, and school ratings.

    This dataset is ideal for: âś… Machine Learning Models for predicting housing prices âś… Market Research & Investment Analysis âś… Exploring Property Trends in the USA âś… Educational Purposes for Data Science and Analytics

    This dataset provides a realistic yet synthetic view of the real estate market, making it useful for data-driven decision-making in the housing industry.

    Let me know if you need any modifications!

  11. Trulia real-estate property listings dataset

    • crawlfeeds.com
    json, zip
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Trulia real-estate property listings dataset [Dataset]. https://crawlfeeds.com/datasets/trulia-real-estate-property-listings-dataset
    Explore at:
    json, zipAvailable download formats
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    This dataset contains over 1.1 million property listings extracted from Trulia, one of the largest U.S. real estate marketplaces. Compiled and structured by the CrawlFeeds team, this dataset includes residential property data across the United States — making it a valuable resource for real estate analytics, machine learning, and location-based modeling.

    Key Features:

    • Full listing info: title, description, URL

    • Detailed location data: city, ZIP code, latitude, longitude

    • Property specs: bedrooms, bathrooms, floor space, features

    • Pricing details: current price, currency, status

    • Metadata: timestamps, image URLs, and breadcrumbs

    • Format: Clean CSV, ready for modeling and analysis

    Ideal for:

    • Housing price prediction models

    • Real estate investment analysis

    • Location clustering & zip code segmentation

    • Building property recommendation engines

    • Mapping visualizations & geospatial applications

    Last crawled: September 2, 2021
    Data format: CSV (1.4M+ records)

    Need the latest data?

    Create a custom request through CrawlFeeds if you need to re-extract updated listings from Trulia or slice by region, price range, or timestamp.

  12. Annual home price appreciation in the U.S. 2025, by state

    • statista.com
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual home price appreciation in the U.S. 2025, by state [Dataset]. https://www.statista.com/statistics/1240802/annual-home-price-appreciation-by-state-usa/
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    House prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.

  13. T

    Vital Signs: Home Prices - Bay Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Oct 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices - Bay Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-Bay-Area-2022-/2uf4-6aym
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Oct 26, 2022
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

  14. US Gross Rent ACS Statistics

    • kaggle.com
    Updated Aug 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Golden Oak Research Group (2017). US Gross Rent ACS Statistics [Dataset]. https://www.kaggle.com/datasets/goldenoakresearch/acs-gross-rent-us-statistics/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 23, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Golden Oak Research Group
    Description

    What you get:

    Upvote! The database contains +40,000 records on US Gross Rent & Geo Locations. The field description of the database is documented in the attached pdf file. To access, all 325,272 records on a scale roughly equivalent to a neighborhood (census tract) see link below and make sure to upvote. Upvote right now, please. Enjoy!

    Get the full free database with coupon code: FreeDatabase, See directions at the bottom of the description... And make sure to upvote :) coupon ends at 2:00 pm 8-23-2017

    Gross Rent & Geographic Statistics:

    • Mean Gross Rent (double)
    • Median Gross Rent (double)
    • Standard Deviation of Gross Rent (double)
    • Number of Samples (double)
    • Square area of land at location (double)
    • Square area of water at location (double)

    Geographic Location:

    • Longitude (double)
    • Latitude (double)
    • State Name (character)
    • State abbreviated (character)
    • State_Code (character)
    • County Name (character)
    • City Name (character)
    • Name of city, town, village or CPD (character)
    • Primary, Defines if the location is a track and block group.
    • Zip Code (character)
    • Area Code (character)

    Abstract

    The data set originally developed for real estate and business investment research. Income is a vital element when determining both quality and socioeconomic features of a given geographic location. The following data was derived from over +36,000 files and covers 348,893 location records.

    License

    Only proper citing is required please see the documentation for details. Have Fun!!!

    Golden Oak Research Group, LLC. “U.S. Income Database Kaggle”. Publication: 5, August 2017. Accessed, day, month year.

    For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965

    please note: it is my personal number and email is preferred

    Check our data's accuracy: Census Fact Checker

    Access all 325,272 location for Free Database Coupon Code:

    Don't settle. Go big and win big. Optimize your potential**. Access all gross rent records and more on a scale roughly equivalent to a neighborhood, see link below:

    A small startup with big dreams, giving the every day, up and coming data scientist professional grade data at affordable prices It's what we do.

  15. F

    Housing Inventory: Active Listing Count in Florida

    • fred.stlouisfed.org
    json
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Active Listing Count in Florida [Dataset]. https://fred.stlouisfed.org/series/ACTLISCOUFL
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    Florida
    Description

    Graph and download economic data for Housing Inventory: Active Listing Count in Florida (ACTLISCOUFL) from Jul 2016 to Jul 2025 about active listing, FL, listing, and USA.

  16. d

    Property Owner Data | USA Coverage | 74% Right Party Contact Rate

    • datarade.ai
    Updated Jul 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BatchData (2024). Property Owner Data | USA Coverage | 74% Right Party Contact Rate [Dataset]. https://datarade.ai/data-products/batchservice-s-usa-property-data-for-real-estate-investors-h-batchservice
    Explore at:
    .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jul 27, 2024
    Dataset authored and provided by
    BatchData
    Area covered
    United States
    Description

    This essential dataset is tailored for real estate investors, home service providers, and Proptech companies, offering in-depth information that drives strategic decision-making and market analysis for Property Owner Data.

    The dataset includes detailed address data, owner data, and mailing address data, providing a thorough understanding of each property’s profile. Real estate investors can leverage this data to identify high-potential investment opportunities and analyze market trends with greater accuracy. Home service providers can utilize the mailing address data to target specific properties and optimize their outreach efforts. For Proptech companies, this dataset enhances the development of innovative solutions and data-driven platforms.

    Powered by BatchData, a leader in high-quality, up-to-date property information, this dataset ensures you receive the most accurate and current data available. Explore BatchService’s USA Property Owner Data to gain a competitive edge and make informed decisions in the dynamic real estate market.

    Basic Property Data Includes: - Property ID - Address City - Address County - Address County FIPS Code - Address Hash - Address House Number - Address Latitude - Address Longitude - Address State - Address Street - Address Zip - Address Zip+4 Code - APN (Assessor's Parcel Number) - Property Owner Full Name - Property Owner First Name - Property Owner Middle Name - Property Owner Last Name - Property Owner Mailing Address City - Property Owner Mailing Address County - Property Owner Mailing Address State - Property Owner Mailing Address Street - Property Owner Mailing Address Zip - Property Owner Mailing Address Zip+4 code

    BatchService also has 700+ additional datapoints available ranging from listing information, property characteristics, mortgage data, contact information and more.

  17. Philadelphia Real Estate

    • kaggle.com
    Updated May 12, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harry (2017). Philadelphia Real Estate [Dataset]. https://www.kaggle.com/forums/f/3472/philadelphia-real-estate
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 12, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Harry
    Area covered
    Philadelphia
    Description

    Context

    Real estate data set of Philly.

    Content

    Data set included Addresses, sales price, crime rate and rank by zipcode, school ratings and rank by zipcode, walkscore and rank by zip code, approximate rehab cost,

    Acknowledgements

    Data from phila.gov and other sites

    Inspiration

    Find out how data could impact house price.

  18. C

    Allegheny County Property Sale Transactions

    • data.wprdc.org
    • datadiscoverystudio.org
    • +3more
    csv, html
    Updated Sep 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2025). Allegheny County Property Sale Transactions [Dataset]. https://data.wprdc.org/dataset/real-estate-sales
    Explore at:
    csv, htmlAvailable download formats
    Dataset updated
    Sep 8, 2025
    Dataset authored and provided by
    Allegheny County
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Allegheny County
    Description

    This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA.

    Before doing any market analysis on property sales, check the sales validation codes. Many property "sales" are not considered a valid representation of the true market value of the property. For example, when multiple lots are together on one deed with one price they are generally coded as invalid ("H") because the sale price for each parcel ID number indicates the total price paid for a group of parcels, not just for one parcel. See the Sales Validation Codes Dictionary for a complete explanation of valid and invalid sale codes.

    Sales Transactions Disclaimer: Sales information is provided from the Allegheny County Department of Administrative Services, Real Estate Division. Content and validation codes are subject to change. Please review the Data Dictionary for details on included fields before each use. Property owners are not required by law to record a deed at the time of sale. Consequently the assessment system may not contain a complete sales history for every property and every sale. You may do a deed search at http://www.alleghenycounty.us/re/index.aspx directly for the most updated information. Note: Ordinance 3478-07 prohibits public access to search assessment records by owner name. It was signed by the Chief Executive in 2007.

  19. Census of Population and Housing, 1980: Summary Tape File 3B

    • archive.ciser.cornell.edu
    Updated Feb 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1980: Summary Tape File 3B [Dataset]. http://doi.org/10.6077/j5/gwagmn
    Explore at:
    Dataset updated
    Feb 13, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    Bureau of the Census
    Variables measured
    Individual, HousingUnit
    Description

    This data collection is a component of Summary Tape File (STF) 3, which consists of four sets of data files containing detailed tabulations of the nation's population and housing characteristics produced from the 1980 Census. The STF 3 files contain sample data inflated to represent the total United States population. The files also contain 100-percent counts and unweighted sample counts of persons and housing units. All files in the STF 3 series are identical, containing 321 substantive data variables organized in the form of 150 "tables," as well as standard geographic identification variables. Population items tabulated for each person include demographic data and information on schooling, Spanish origin, language spoken at home and ability to speak English, labor force status in 1979, residency in 1975, number of children ever born, means of transportation to work, current occupation, industry, and 1979 details on occupation, hours worked, and income. Housing items include size and condition of the housing unit as well as information on value, age, water, sewage and heating, number of vehicles, and monthly owner costs (e.g., sum of payments for real estate taxes, property insurance, utilities, and regular mortgage payments). Selected aggregates and medians are also provided. Each dataset in STF 3 provides different geographic coverage. Summary Tape File 3B provides summaries for each 5-digit ZIP-code area within a state, and for 5-digit ZIP-code areas within states that were contained within Standard Metropolitan Statistical Areas (SMSAs), portions of SMSAs, or within counties, county portions, or county equivalents. All persons and housing units in the United States were sampled. Population and housing items include household relationship, sex, race, age, marital status, Hispanic origin, number of units at address, complete plumbing facilities, number of rooms, whether owned or rented, vacancy status, and value for noncondominiums. The Census Bureau's machine-readable data dictionary for STF 3 is also available through CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: CENSUS SOFTWARE PACKAGE (CENSPAC) VERSION 3.2 WITH STF4 DATA DICTIONARIES (ICPSR 7789), the software package designed specifically by the Census Bureau for use with the 1980 Census data files. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR -- https://doi.org/10.3886/ICPSR08318.v1. We highly recommend using the ICPSR version as they made this dataset available in multiple data formats.

  20. T

    Vital Signs: Home Prices by Metro Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices by Metro Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-by-Metro-Area-2022-/rgc5-3kcq
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 2, 2022
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
RateSpot, U.S. Real Estate - Rental Listings - Weekly Snapshots [Dataset]. https://datarade.ai/data-products/u-s-real-estate-rental-listings-weekly-snapshots-ratespot

U.S. Real Estate - Rental Listings - Weekly Snapshots

Explore at:
.bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
Dataset authored and provided by
RateSpot
Area covered
United States
Description

Customers can upload a customized list of geographic locations (e.g. states, zip codes) into our tool and begin receiving data within 24 hours. We offer an extensive selection of rental listings across the US, providing one of the broadest coverage ranges available. We provide access to detailed information such as property features, location details, pricing, pricing changes, square footage, amenities, and more.

We also provide insights into real estate market trends, analyze property values, and aid in formulating informed investment strategies. With regular updates, our data feeds are an essential tool for those looking to gain a competitive edge in the real estate market.

Search
Clear search
Close search
Google apps
Main menu