35 datasets found
  1. d

    U.S. Real Estate - Rental Listings - Weekly Snapshots

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RateSpot, U.S. Real Estate - Rental Listings - Weekly Snapshots [Dataset]. https://datarade.ai/data-products/u-s-real-estate-rental-listings-weekly-snapshots-ratespot
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    RateSpot
    Area covered
    United States
    Description

    Customers can upload a customized list of geographic locations (e.g. states, zip codes) into our tool and begin receiving data within 24 hours. We offer an extensive selection of rental listings across the US, providing one of the broadest coverage ranges available. We provide access to detailed information such as property features, location details, pricing, pricing changes, square footage, amenities, and more.

    We also provide insights into real estate market trends, analyze property values, and aid in formulating informed investment strategies. With regular updates, our data feeds are an essential tool for those looking to gain a competitive edge in the real estate market.

  2. U.S. Real Estate Inventory

    • dataandsons.com
    csv, zip
    Updated Jul 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sean Lux (2017). U.S. Real Estate Inventory [Dataset]. https://www.dataandsons.com/categories/sales-and-transactions/u-s-real-estate-inventory
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jul 13, 2017
    Dataset provided by
    Authors
    Sean Lux
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    Feb 1, 2017 - Jun 1, 2017
    Description

    About this Dataset

    Complete listing of U.S. real estate inventory by zip code. Edited data set sourced from www.realtor.com for better clarity and easier use.

    Category

    Sales & Transactions

    Keywords

    Housing,realestate,listings,zipcode

    Row Count

    65501

    Price

    Free

  3. d

    Live Rental Listing Data | US Rental | National Coverage | Bulk | 970k...

    • datarade.ai
    .json, .csv, .xls
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CompCurve (2025). Live Rental Listing Data | US Rental | National Coverage | Bulk | 970k Properties Daily | Rental Data Real Estate Data [Dataset]. https://datarade.ai/data-products/live-rental-listing-data-us-rental-national-coverage-bu-compcurve
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    CompCurve
    Area covered
    United States of America
    Description

    Our extensive database contains approximately 800,000 active rental property listings from across the United States. Updated daily, this comprehensive collection provides real estate professionals, investors, and property managers with valuable market intelligence and business opportunities. Database Contents

    Property Addresses: Complete location data including street address, city, state, ZIP code Listing Dates: Original listing date and most recent update date Availability Status: Currently available, pending, or recently rented properties Geographic Coverage: Properties spanning all 50 states and major metropolitan areas

    Applications & Uses

    Market Analysis: Track rental pricing trends across different regions and property types Investment Research: Identify high-opportunity markets with favorable rental conditions Lead Generation: Connect with property owners potentially needing management services Competitive Intelligence: Monitor listing volumes, vacancy rates, and market saturation Business Development: Target specific neighborhoods or property categories for expansion

    File Format & Delivery

    Organized in easy-to-use CSV format for seamless integration with data analysis tools Accessible through secure download portal or API connection Daily updates ensure you're working with the most current market information Custom filtering options available to narrow results by location, date range, or other criteria

    Data Quality

    Rigorous validation processes to ensure address accuracy Duplicate listing detection and removal Regular verification of active status Standardized format for consistent analysis

    Subscription Benefits

    Access to historical listing archives for trend analysis Advanced search capabilities to target specific property characteristics Regular market reports summarizing key trends and opportunities Custom data exports tailored to your specific business needs

    AK ~ 1,342 listings AL ~ 6,636 listings AR ~ 4,024 listings AZ ~ 25,782 listings CA ~ 102,833 listings CO ~ 14,333 listings CT ~ 10,515 listings DC ~ 1,988 listings DE ~ 1,528 listings FL ~ 152,258 listings GA ~ 28,248 listings HI ~ 3,447 listings IA ~ 4,557 listings ID ~ 3,426 listings IL ~ 42,642 listings IN ~ 8,634 listings KS ~ 3,263 listings KY ~ 5,166 listings LA ~ 11,522 listings MA ~ 53,624 listings MD ~ 12,124 listings ME ~ 1,754 listings MI ~ 12,040 listings MN ~ 7,242 listings MO ~ 10,766 listings MS ~ 2,633 listings MT ~ 1,953 listings NC ~ 22,708 listings ND ~ 1,268 listings NE ~ 1,847 listings NH ~ 2,672 listings NJ ~ 31,286 listings NM ~ 2,084 listings NV ~ 13,111 listings NY ~ 94,790 listings OH ~ 15,843 listings OK ~ 5,676 listings OR ~ 8,086 listings PA ~ 37,701 listings RI ~ 4,345 listings SC ~ 8,018 listings SD ~ 1,018 listings TN ~ 15,983 listings TX ~ 132,620 listings UT ~ 3,798 listings VA ~ 14,087 listings VT ~ 946 listings WA ~ 15,039 listings WI ~ 7,393 listings WV ~ 1,681 listings WY ~ 730 listings

    Grand Total ~ 977,010 listings

  4. US Gross Rent ACS Statistics

    • kaggle.com
    Updated Aug 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Golden Oak Research Group (2017). US Gross Rent ACS Statistics [Dataset]. https://www.kaggle.com/datasets/goldenoakresearch/acs-gross-rent-us-statistics/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 23, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Golden Oak Research Group
    Description

    What you get:

    Upvote! The database contains +40,000 records on US Gross Rent & Geo Locations. The field description of the database is documented in the attached pdf file. To access, all 325,272 records on a scale roughly equivalent to a neighborhood (census tract) see link below and make sure to upvote. Upvote right now, please. Enjoy!

    Get the full free database with coupon code: FreeDatabase, See directions at the bottom of the description... And make sure to upvote :) coupon ends at 2:00 pm 8-23-2017

    Gross Rent & Geographic Statistics:

    • Mean Gross Rent (double)
    • Median Gross Rent (double)
    • Standard Deviation of Gross Rent (double)
    • Number of Samples (double)
    • Square area of land at location (double)
    • Square area of water at location (double)

    Geographic Location:

    • Longitude (double)
    • Latitude (double)
    • State Name (character)
    • State abbreviated (character)
    • State_Code (character)
    • County Name (character)
    • City Name (character)
    • Name of city, town, village or CPD (character)
    • Primary, Defines if the location is a track and block group.
    • Zip Code (character)
    • Area Code (character)

    Abstract

    The data set originally developed for real estate and business investment research. Income is a vital element when determining both quality and socioeconomic features of a given geographic location. The following data was derived from over +36,000 files and covers 348,893 location records.

    License

    Only proper citing is required please see the documentation for details. Have Fun!!!

    Golden Oak Research Group, LLC. “U.S. Income Database Kaggle”. Publication: 5, August 2017. Accessed, day, month year.

    For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965

    please note: it is my personal number and email is preferred

    Check our data's accuracy: Census Fact Checker

    Access all 325,272 location for Free Database Coupon Code:

    Don't settle. Go big and win big. Optimize your potential**. Access all gross rent records and more on a scale roughly equivalent to a neighborhood, see link below:

    A small startup with big dreams, giving the every day, up and coming data scientist professional grade data at affordable prices It's what we do.

  5. C

    Allegheny County Property Sale Transactions

    • data.wprdc.org
    • datadiscoverystudio.org
    • +3more
    csv, html
    Updated Sep 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2025). Allegheny County Property Sale Transactions [Dataset]. https://data.wprdc.org/dataset/real-estate-sales
    Explore at:
    csv, htmlAvailable download formats
    Dataset updated
    Sep 8, 2025
    Dataset authored and provided by
    Allegheny County
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Allegheny County
    Description

    This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA.

    Before doing any market analysis on property sales, check the sales validation codes. Many property "sales" are not considered a valid representation of the true market value of the property. For example, when multiple lots are together on one deed with one price they are generally coded as invalid ("H") because the sale price for each parcel ID number indicates the total price paid for a group of parcels, not just for one parcel. See the Sales Validation Codes Dictionary for a complete explanation of valid and invalid sale codes.

    Sales Transactions Disclaimer: Sales information is provided from the Allegheny County Department of Administrative Services, Real Estate Division. Content and validation codes are subject to change. Please review the Data Dictionary for details on included fields before each use. Property owners are not required by law to record a deed at the time of sale. Consequently the assessment system may not contain a complete sales history for every property and every sale. You may do a deed search at http://www.alleghenycounty.us/re/index.aspx directly for the most updated information. Note: Ordinance 3478-07 prohibits public access to search assessment records by owner name. It was signed by the Chief Executive in 2007.

  6. Trulia (Phila. only)

    • data.wu.ac.at
    html, rss
    Updated Jan 5, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Trulia (2015). Trulia (Phila. only) [Dataset]. https://data.wu.ac.at/schema/www_opendataphilly_org/MDcxOTU3NDgtYWIzOS00YjlmLTkyNjktN2FjYjdjOGU3NTlk
    Explore at:
    html, rssAvailable download formats
    Dataset updated
    Jan 5, 2015
    Dataset provided by
    Trulia
    Truliahttp://www.trulia.com/
    Area covered
    Philadelphia
    Description

    Searchable, interactive real-estate database, which users can use to browse and evaluate properties for rent/sale based on a variety of parameters (size, pricing, proximity to amenities), metrics, and other tools (guides, map visualizations.) Users search by location (address, zipcode, neighborhood), to explore property information accompanied by a map with marked property location features, photos, as well as area/neighborhood user reviews and applicable real-estate trends. Free registration entails saved history and/or preferences, information sharing privileges with friends/family, and personalized updates. URL is specific to Philadelphia, while database is national. Users can also access real-estate data about recent listings by structuring customized data request processes or feeds (API, RSS).

  7. F

    Housing Inventory: Active Listing Count in the United States

    • fred.stlouisfed.org
    json
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Active Listing Count in the United States [Dataset]. https://fred.stlouisfed.org/series/ACTLISCOUUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Housing Inventory: Active Listing Count in the United States (ACTLISCOUUS) from Jul 2016 to Jul 2025 about active listing, listing, and USA.

  8. d

    US National Rental Data | 14M+ Records in 16,000+ ZIP Codes | Rental Data...

    • datarade.ai
    .csv, .xls, .txt
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Warren Group (2024). US National Rental Data | 14M+ Records in 16,000+ ZIP Codes | Rental Data Lease Terms & Pricing Trends [Dataset]. https://datarade.ai/data-products/us-national-rental-data-14m-records-in-16-000-zip-codes-the-warren-group
    Explore at:
    .csv, .xls, .txtAvailable download formats
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    W A Warren, Inc.
    Authors
    The Warren Group
    Area covered
    United States of America
    Description

    What is Rental Data?

    Rental data encompasses detailed information about residential rental properties, including single-family homes, multifamily units, and large apartment complexes. This data often includes key metrics such as rental prices, occupancy rates, property amenities, and detailed property descriptions. Advanced rental datasets integrate listings directly sourced from property management software systems, ensuring real-time accuracy and eliminating reliance on outdated or scraped information.

    Additional Rental Data Details

    The rental data is sourced from over 20,000 property managers via direct feeds and property management platforms, covering over 30 percent of the national rental housing market for diverse and broad representation. Real-time updates ensure data remains current, while verified listings enhance accuracy, avoiding errors typical of survey-based or scraped datasets. The dataset includes 14+ million rental units with detailed descriptions, rich photography, and amenities, offering address-level granularity for precise market analysis. Its extensive coverage of small multifamily and single-family rentals sets it apart from competitors focused on premium multifamily properties.

    Rental Data Includes:

    • Property Types
    • Single-Family Rentals
    • Small Multi-family Units
    • Premium Apartments
    • 16,000+ ZIP Codes
    • 800+ MSAs
    • Pricing Trends
    • Lease Terms Amenities
  9. F

    Housing Inventory: Active Listing Count in Florida

    • fred.stlouisfed.org
    json
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Active Listing Count in Florida [Dataset]. https://fred.stlouisfed.org/series/ACTLISCOUFL
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    Florida
    Description

    Graph and download economic data for Housing Inventory: Active Listing Count in Florida (ACTLISCOUFL) from Jul 2016 to Jul 2025 about active listing, FL, listing, and USA.

  10. a

    Parcels Shapefile

    • hub.arcgis.com
    • maps.leegov.com
    Updated Aug 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lee County Florida GIS (2022). Parcels Shapefile [Dataset]. https://hub.arcgis.com/datasets/80708a2f5f56426f94c8be97c182176b
    Explore at:
    Dataset updated
    Aug 9, 2022
    Dataset authored and provided by
    Lee County Florida GIS
    Area covered
    Description

    Parcels and property data maintained and provided by Lee County Property Appraiser. This dataset includes condominium units. Property attribute data joined to parcel GIS layer by Lee County Government GIS.Projected coordinate system name: NAD_1983_StatePlane_Florida_West_FIPS_0902_FeetGeographic coordinate system name: GCS_North_American_1983

     Name
     Type
     Length
     Description
    
    
     STRAP
     String
     25
     17-digit Property ID (Section, Township, Range, Area, Block, Lot)
    
    
     BLOCK
     String
     10
     5-digit portion of STRAP (positions 9-13)
    
    
     LOT
     String
     8
     Last 4-digits of STRAP
    
    
     FOLIOID
     Double
     8
     Unique Property ID
    
    
     MAINTDATE
     Date
     8
     Date LeePA staff updated record
    
    
     MAINTWHO
     String
     20
     LeePA staff who updated record
    
    
     UPDATED
     Date
     8
     Data compilation date
    
    
     HIDE_STRAP
     String
     1
     Confidential parcel ownership
    
    
     TRSPARCEL
     String
     17
     Parcel ID sorted by Township, Range & Section
    
    
     DORCODE
     String
     2
     Department of Revenue property classification code
    
    
     CONDOTYPE
     String
     1
     Type of condominium: C (commercial) or R (residential)
    
    
     UNITOFMEAS
     String
     2
     Type of Unit of Measure (ex: AC=acre, LT=lot, FF=frontage in feet)
    
    
     NUMUNITS
     Double
     8
     Number of Land Units (units defined in UNITOFMEAS)
    
    
     FRONTAGE
     Integer
     4
     Road Frontage in Feet
    
    
     DEPTH
     Integer
     4
     Property Depth in Feet
    
    
     GISACRES
     Double
     8
     Total Computed Acres from GIS
    
    
     TAXINGDIST
     String
     3
     Taxing District of Property
    
    
     TAXDISTDES
     String
     60
     Taxing District Description
    
    
     FIREDIST
     String
     3
     Fire District of Property
    
    
     FIREDISTDE
     String
     60
     Fire District Description
    
    
     ZONING
     String
     10
     Zoning of Property
    
    
     ZONINGAREA
     String
     3
     Governing Area for Zoning
    
    
     LANDUSECOD
     SmallInteger
     2
     Land Use Code
    
    
     LANDUSEDES
     String
     60
     Land Use Description
    
    
     LANDISON
     String
     5
     BAY,CANAL,CREEK,GULF,LAKE,RIVER & GOLF
    
    
     SITEADDR
     String
     55
     Lee County Addressing/E911
    
    
     SITENUMBER
     String
     10
     Property Location - Street Number
    
    
     SITESTREET
     String
     40
     Street Name
    
    
     SITEUNIT
     String
     5
     Unit Number
    
    
     SITECITY
     String
     20
     City
    
    
     SITEZIP
     String
     5
     Zip Code
    
    
     JUST
     Double
     8
     Market Value
    
    
     ASSESSED
     Double
     8
     Building Value + Land Value
    
    
     TAXABLE
     Double
     8
     Taxable Value
    
    
     LAND
     Double
     8
     Land Value
    
    
     BUILDING
     Double
     8
     Building Value
    
    
     LXFV
     Double
     8
     Land Extra Feature Value
    
    
     BXFV
     Double
     8
     Building Extra Feature value
    
    
     NEWBUILT
     Double
     8
     New Construction Value
    
    
     AGAMOUNT
     Double
     8
     Agriculture Exemption Value
    
    
     DISAMOUNT
     Double
     8
     Disability Exemption Value
    
    
     HISTAMOUNT
     Double
     8
     Historical Exemption Value
    
    
     HSTDAMOUNT
     Double
     8
     Homestead Exemption Value
    
    
     SNRAMOUNT
     Double
     8
     Senior Exemption Value
    
    
     WHLYAMOUNT
     Double
     8
     Wholly Exemption Value
    
    
     WIDAMOUNT
     Double
     8
     Widow Exemption Value
    
    
     WIDRAMOUNT
     Double
     8
     Widower Exemption Value
    
    
     BLDGCOUNT
     SmallInteger
     2
     Total Number of Buildings on Parcel
    
    
     MINBUILTY
     SmallInteger
     2
     Oldest Building Built
    
    
     MAXBUILTY
     SmallInteger
     2
     Newest Building Built
    
    
     TOTALAREA
     Double
     8
     Total Building Area
    
    
     HEATEDAREA
     Double
     8
     Total Heated Area
    
    
     MAXSTORIES
     Double
     8
     Tallest Building on Parcel
    
    
     BEDROOMS
     Integer
     4
     Total Number of Bedrooms
    
    
     BATHROOMS
     Double
     8
     Total Number of Bathrooms / Not For Comm
    
    
     GARAGE
     String
     1
     Garage on Property 'Y'
    
    
     CARPORT
     String
     1
     Carport on Property 'Y'
    
    
     POOL
     String
     1
     Pool on Property 'Y'
    
    
     BOATDOCK
     String
     1
     Boat Dock on Property 'Y'
    
    
     SEAWALL
     String
     1
     Sea Wall on Property 'Y'
    
    
     NBLDGCOUNT
     SmallInteger
     2
     Total Number of New Buildings on ParcelTotal Number of New Buildings on Parcel
    
    
     NMINBUILTY
     SmallInteger
     2
     Oldest New Building Built
    
    
     NMAXBUILTY
     SmallInteger
     2
     Newest New Building Built
    
    
     NTOTALAREA
     Double
     8
     Total New Building Area
    
    
     NHEATEDARE
     Double
     8
     Total New Heated Area
    
    
     NMAXSTORIE
     Double
     8
     Tallest New Building on Parcel
    
    
     NBEDROOMS
     Integer
     4
     Total Number of New Bedrooms
    
    
     NBATHROOMS
     Double
     8
     Total Number of New Bathrooms/Not For Comm
    
    
     NGARAGE
     String
     1
     New Garage on Property 'Y'
    
    
     NCARPORT
     String
     1
     New Carport on Property 'Y'
    
    
     NPOOL
     String
     1
     New Pool on Property 'Y'
    
    
     NBOATDOCK
     String
     1
     New Boat Dock on Property 'Y'
    
    
     NSEAWALL
     String
     1
     New Sea Wall on Property 'Y'
    
    
     O_NAME
     String
     30
     Owner Name
    
    
     O_OTHERS
     String
     120
     Other Owners
    
    
     O_CAREOF
     String
     30
     In Care Of Line
    
    
     O_ADDR1
     String
     30
     Owner Mailing Address Line 1
    
    
     O_ADDR2
     String
     30
     Owner Mailing Address Line 2
    
    
     O_CITY
     String
     30
     Owner Mailing City
    
    
     O_STATE
     String
     2
     Owner Mailing State
    
    
     O_ZIP
     String
     9
     Owner Mailing Zip
    
    
     O_COUNTRY
     String
     30
     Owner Mailing Country
    
    
     S_1DATE
     Date
     8
     Most Current Sale Date > $100.00
    
    
     S_1AMOUNT
     Double
     8
     Sale Amount
    
    
     S_1VI
     String
     1
     Sale Vacant or Improved
    
    
     S_1TC
     String
     2
     Sale Transaction Code
    
    
     S_1TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_1OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_2DATE
     Date
     8
     Previous Sale Date > $100.00
    
    
     S_2AMOUNT
     Double
     8
     Sale Amount
    
    
     S_2VI
     String
     1
     Sale Vacant or Improved
    
    
     S_2TC
     String
     2
     Sale Transaction Code
    
    
     S_2TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_2OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_3DATE
     Date
     8
     Next Previous Sale Date > $100.00
    
    
     S_3AMOUNT
     Double
     8
     Sale Amount
    
    
     S_3VI
     String
     1
     Sale Vacant or Improved
    
    
     S_3TC
     String
     2
     Sale Transaction Code
    
    
     S_3TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_3OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_4DATE
     Date
     8
     Next Previous Sale Date > $100.00
    
    
     S_4AMOUNT
     Double
     8
     Sale Amount
    
    
     S_4VI
     String
     1
     Sale Vacant or Improved
    
    
     S_4TC
     String
     2
     Sale Transaction Code
    
    
     S_4TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_4OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     LEGAL
     String
     255
     Full Legal Description (On Deed)
    
    
     GARBDIST
     String
     3
     County Garbage Hauling Area
    
    
     GARBTYPE
     String
     1
     County Garbage Pick-up Type
    
    
     GARBCOMCAT
     String
     1
     County Garbage Commercial Category
    
    
     GARBHEADER
     String
     1
     Garbage Header Code
    
    
     GARBUNITS
     Double
     8
     Number of Garbage Units
    
    
     CREATEYEAR
    
  11. Apartment rental offers in Germany

    • kaggle.com
    Updated Apr 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CorrieBar (2020). Apartment rental offers in Germany [Dataset]. https://www.kaggle.com/datasets/corrieaar/apartment-rental-offers-in-germany/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 20, 2020
    Dataset provided by
    Kaggle
    Authors
    CorrieBar
    Area covered
    Germany
    Description

    Where is the data from?

    The data was scraped from Immoscout24, the biggest real estate platform in Germany. Immoscout24 has listings for both rental properties and homes for sale, however, the data only contains offers for rental properties. The scraping process is described in this blog post and the corresponding code for scraping and minimal processing afterwards can be found in this Github repo. At a given time, all available offers were scraped from the site and saved. This process was repeated three times, so the data set contains offers from the dates 2018-09-22, 2019-05-10 and 2019-10-08.

    Content

    The data set contains most of the important properties, such as living area size, the rent, both base rent as well as total rent (if applicable), the location (street and house number, if available, ZIP code and state), type of energy etc. It also has two variables containing longer free text descriptions: description with a text describing the offer and facilities describing all available facilities, newest renovation etc. The date column was added to give the time of scraping.

    Inspiration

    Did rents increase over time? Which areas are the most expensive? Which areas saw the largest increase, which areas became cheaper? Are there any duplicates? How many? What could be gained from a text analysis of the free text variables?

    Acknowledgements

    The data belongs to www.immobilienscount24.de and is for research purposes only. The data was created with .

  12. d

    Urban Planning | Real Estate Data | Demographic data | Global coverage |...

    • datarade.ai
    .csv
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Urban Planning | Real Estate Data | Demographic data | Global coverage | Population Trends [Dataset]. https://datarade.ai/data-products/geopostcodes-real-estate-data-urban-planning-data-demogra-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Oct 15, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    French Southern Territories, Saint Lucia, Bermuda, Burundi, French Polynesia, Mali, United Arab Emirates, Réunion, Åland Islands, Sao Tome and Principe
    Description

    A global database of Real Estate Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.

    Leverage up-to-date urban planning data with population trends for real estate, market research, audience targeting, and sales territory mapping.

    Self-hosted commercial real estate dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The Urban Planning Data is standardized, unified, and ready to use.

    Use cases for the Global Population Database (Urban Planning Data)

    • Ad targeting

    • B2B Market Intelligence

    • Customer analytics

    • Real Estate Data Estimations

    • Marketing campaign analysis

    • Demand forecasting

    • Sales territory mapping

    • Retail site selection

    • Reporting

    • Audience targeting

    Demographic data export methodology

    Our location data packages are offered in CSV format. All Demographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Product Features

    • Historical population data (55 years)

    • Changes in population density

    • Urbanization Patterns

    • Accurate at zip code and administrative level

    • Optimized for easy integration

    • Easy customization

    • Global coverage

    • Updated yearly

    • Standardized and reliable

    • Self-hosted delivery

    • Fully aggregated (ready to use)

    • Rich attributes

    Why do companies choose our Real Estate databases

    • Standardized and unified demographic data structure

    • Seamless integration in your system

    • Dedicated location data expert

    Note: Custom population data packages are available. Please submit a request via the above contact button for more details.

  13. g

    DATA - REQUEST FOR GREAT EAST FUNCTIONAL VALUES

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DATA - REQUEST FOR GREAT EAST FUNCTIONAL VALUES [Dataset]. https://gimi9.com/dataset/eu_66bbe412b23fb3b9cbf29a7d
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Metadata The ‘Requests for land values’ database, or DVF, lists all sales of land over the last five years, in mainland France and in the overseas departments and territories — except in Mayotte and Alsace-Moselle. The properties concerned can be built (apartment and house) or unbuilt (plots and farms). The data are produced by Bercy, i.e. by the Directorate-General for Public Finance. They come from the deeds registered with notaries and the information contained in the cadastre. Legal framework: The DVF database does not contain personal data, such as the name of the seller or the buyer of a good. It contains only information on transactions: type of property sold, area, selling price and so on. As these data can be cross-checked with other data already online, the Directorate-General for Public Finance recalls that the use of data from the DVF database cannot have the purpose or effect of allowing the re-identification of data subjects, nor should it be indexed on online search engines. Consult the general conditions of use: https://static.data.gouv.fr/resources/request-de-valeurs-foncieres/20190419-091643/conditions-generales-dutilisation.pdf Fields code_service_ch: not provided reference_document: not entered articles_cgi1: not entered articles_cgi2: not entered articles_cgi3: not entered articles_cgi4: not entered articles_cgi5: No_provision: Each provision of a document has a number. Only the provisions concerning transfers for consideration are returned to the file. The provisions concerning transfers free of charge are removed from the register by the application. The disposition numbers used do not therefore necessarily follow the numerical order date_mutation: Date of signature of nature_mutation document: Sale, sale in the future state of completion, sale of building land, tendering, expropriation or exchange of land value: This is the price or valuation declared in the context of a transfer for consideration. It can correspond to several properties. The details are not traced in the information system no_voie: Number in track b_t_q: Repetition index type_of_way: Track type (example: Street, Avenue,...) code_voie: Track code: Wording of the code_postal route: Common postal code: Wording of the commune code_departement: Common_code department code: Common code prefix_of_section: Prefix of cadastral section section: Cadastral section no_plan: Cadastral plan no_volume: Cadastral volume A condominium lot consists of a private part (apartment, cellar, etc.) and a share of the common part (tenths). Only the first 5 lots are mentioned. If the number of lots exceeds 5, they will not be returned. 1st lot surface_carrez_du_1er_lot: surface area CARREZ of the 1st lot 2nd_lot: 2nd lot surface_carrez_du_2eme_lot: surface area CARREZ of the 2nd lot 3rd_lot: 3rd lot surface_carrez_du_3eme_lot: CARREZ surface area of the third lot, fourth lot: 4th lot surface_carrez_du_4eme_lot: surface area CARREZ of the 4th lot 5th_lot: 5th lot surface_carrez_du_5eme_lot: surface area CARREZ of the 5th lot number_of_lots: Total number of lots per layout code_type_local: Local type code type_local 1: House, 2: apartment, 3: dependency (isolated), 4: Industrial and commercial premises or similar identifier_local: This is the number that identifies each room. The local is a tax concept of built property. The file includes one line per number (per local) with the corresponding real area surface_reelle_bati next to it: The real area is attached to the local identifier. This is the sum of the actual surface area of the premises and the surface areas of the outbuildings (see real estate lexicon) number_pieces_principal: Number of main nature_culture parts: Nature of culture nature_culture_speciale: Nature of special crop surface_terrain: Building land capacity: indicates the presence of racks (non-zero local_type) nb_line: Number of lines of the transaction (number of lines on grouping of a single value of the department code set, common code, date of transfer, nature of transfer, land value, no_disposition) id_parcelle: PCI-type parcel identifier

  14. C

    Affordable Rental Housing Developments

    • chicago.gov
    • data.cityofchicago.org
    • +3more
    csv, xlsx, xml
    Updated Dec 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2024). Affordable Rental Housing Developments [Dataset]. https://www.chicago.gov/city/en/depts/doh/provdrs/renters/svcs/affordable-rental-housing-resource-list.html
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 30, 2024
    Dataset authored and provided by
    City of Chicago
    Description

    The rental housing developments listed below are among the thousands of affordable units that are supported by City of Chicago programs to maintain affordability in local neighborhoods. The list is updated periodically when construction is completed for new projects or when the compliance period for older projects expire, typically after 30 years. The list is provided as a courtesy to the public. It does not include every City-assisted affordable housing unit that may be available for rent, nor does it include the hundreds of thousands of naturally occurring affordable housing units located throughout Chicago without City subsidies. For information on rents, income requirements and availability for the projects listed, contact each property directly. For information on other affordable rental properties in Chicago and Illinois, call (877) 428-8844, or visit www.ILHousingSearch.org.

  15. F

    Housing Inventory: Active Listing Count in California

    • fred.stlouisfed.org
    json
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Active Listing Count in California [Dataset]. https://fred.stlouisfed.org/series/ACTLISCOUCA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    California
    Description

    Graph and download economic data for Housing Inventory: Active Listing Count in California (ACTLISCOUCA) from Jul 2016 to Jul 2025 about active listing, CA, listing, and USA.

  16. Annual home price appreciation in the U.S. 2025, by state

    • statista.com
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual home price appreciation in the U.S. 2025, by state [Dataset]. https://www.statista.com/statistics/1240802/annual-home-price-appreciation-by-state-usa/
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    House prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.

  17. d

    Commercial Property Data | 52M+ POI | SafeGraph Property Dataset

    • datarade.ai
    .csv
    Updated Jun 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SafeGraph (2024). Commercial Property Data | 52M+ POI | SafeGraph Property Dataset [Dataset]. https://datarade.ai/data-products/commercial-property-data-52m-poi-safegraph-property-dataset-safegraph
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jun 25, 2024
    Dataset authored and provided by
    SafeGraph
    Area covered
    Sweden, Poland, Dominica, Saint Kitts and Nevis, El Salvador, India, Turks and Caicos Islands, Luxembourg, Niue, Syrian Arab Republic
    Description

    SafeGraph Places provides baseline location information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).

    SafeGraph Places is a point of interest (POI) data offering with varying coverage and properties depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.

    SafeGraph provides clean and accurate geospatial datasets on 51M+ physical places/points of interest (POI) globally. Hundreds of industry leaders like Mapbox, Verizon, Clear Channel, and Esri already rely on SafeGraph POI data to unlock business insights and drive innovation.

  18. A

    Data from: Property Assessment

    • data.boston.gov
    csv, doc, pdf
    Updated Dec 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Assessing Department (2024). Property Assessment [Dataset]. https://data.boston.gov/dataset/property-assessment
    Explore at:
    csv, pdf(169774), pdf(55727), pdf, pdf(169623), csv(78955927), csv(58745214), pdf(67350), pdf(166253), doc, csv(78312685), csv(76057731), csv(79499599), csv(75198520), pdf(169361), csv(40268204)Available download formats
    Dataset updated
    Dec 30, 2024
    Dataset authored and provided by
    Assessing Department
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Gives property, or parcel, ownership together with value information, which ensures fair assessment of Boston taxable and non-taxable property of all types and classifications. To preserve their integrity, the identifiers PID, CM_ID, GIS_ID, ZIPCODE, and MAIL_ZIPCODE all are marked with an underscore ("_") as the last character.

    Year-specific documentation for the FY2008 through FY2013 files is not currently available, but the format of those files is equivalent to that described in the FY2014 documentation.

  19. m

    MassGIS Data: Property Tax Parcels

    • mass.gov
    Updated Aug 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS (Bureau of Geographic Information) (2025). MassGIS Data: Property Tax Parcels [Dataset]. https://www.mass.gov/info-details/massgis-data-property-tax-parcels
    Explore at:
    Dataset updated
    Aug 19, 2025
    Dataset authored and provided by
    MassGIS (Bureau of Geographic Information)
    Area covered
    Massachusetts
    Description

    August 2025

  20. F

    Housing Inventory: Active Listing Count in Phoenix-Mesa-Scottsdale, AZ...

    • fred.stlouisfed.org
    json
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Active Listing Count in Phoenix-Mesa-Scottsdale, AZ (CBSA) [Dataset]. https://fred.stlouisfed.org/series/ACTLISCOU38060
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    Scottsdale, Arizona, Mesa
    Description

    Graph and download economic data for Housing Inventory: Active Listing Count in Phoenix-Mesa-Scottsdale, AZ (CBSA) (ACTLISCOU38060) from Jul 2016 to Jul 2025 about Phoenix, AZ, active listing, listing, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
RateSpot, U.S. Real Estate - Rental Listings - Weekly Snapshots [Dataset]. https://datarade.ai/data-products/u-s-real-estate-rental-listings-weekly-snapshots-ratespot

U.S. Real Estate - Rental Listings - Weekly Snapshots

Explore at:
.bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
Dataset authored and provided by
RateSpot
Area covered
United States
Description

Customers can upload a customized list of geographic locations (e.g. states, zip codes) into our tool and begin receiving data within 24 hours. We offer an extensive selection of rental listings across the US, providing one of the broadest coverage ranges available. We provide access to detailed information such as property features, location details, pricing, pricing changes, square footage, amenities, and more.

We also provide insights into real estate market trends, analyze property values, and aid in formulating informed investment strategies. With regular updates, our data feeds are an essential tool for those looking to gain a competitive edge in the real estate market.

Search
Clear search
Close search
Google apps
Main menu