100+ datasets found
  1. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  2. F

    Real Residential Property Prices for United States

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for United States [Dataset]. https://fred.stlouisfed.org/series/QUSR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.

  3. Average price per square meter of an apartment in Europe 2025, by city

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average price per square meter of an apartment in Europe 2025, by city [Dataset]. https://www.statista.com/statistics/1052000/cost-of-apartments-in-europe-by-city/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    Geneva stands out as Europe's most expensive city for apartment purchases in early 2025, with prices reaching a staggering 15,720 euros per square meter. This Swiss city's real estate market dwarfs even high-cost locations like Zurich and London, highlighting the extreme disparities in housing affordability across the continent. The stark contrast between Geneva and more affordable cities like Nantes, France, where the price was 3,700 euros per square meter, underscores the complex factors influencing urban property markets in Europe. Rental market dynamics and affordability challenges While purchase prices vary widely, rental markets across Europe also show significant differences. London maintained its position as the continent's priciest city for apartment rentals in 2023, with the average monthly costs for a rental apartment amounting to 36.1 euros per square meter. This figure is double the rent in Lisbon, Portugal or Madrid, Spain, and substantially higher than in other major capitals like Paris and Berlin. The disparity in rental costs reflects broader economic trends, housing policies, and the intricate balance of supply and demand in urban centers. Economic factors influencing housing costs The European housing market is influenced by various economic factors, including inflation and energy costs. As of April 2025, the European Union's inflation rate stood at 2.4 percent, with significant variations among member states. Romania experienced the highest inflation at 4.9 percent, while France and Cyprus maintained lower rates. These economic pressures, coupled with rising energy costs, contribute to the overall cost of living and housing affordability across Europe. The volatility in electricity prices, particularly in countries like Italy where rates are projected to reach 153.83 euros per megawatt hour by February 2025, further impacts housing-related expenses for both homeowners and renters.

  4. T

    United States House Price Index YoY

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - Sep 30, 2025
    Area covered
    United States
    Description

    House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

  5. F

    All-Transactions House Price Index for the United States

    • fred.stlouisfed.org
    json
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for the United States [Dataset]. https://fred.stlouisfed.org/series/USSTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.

  6. House Prices in Malaysia (2025)

    • kaggle.com
    zip
    Updated Jan 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jien Weng (2025). House Prices in Malaysia (2025) [Dataset]. https://www.kaggle.com/datasets/lyhatt/house-prices-in-malaysia-2025
    Explore at:
    zip(39697 bytes)Available download formats
    Dataset updated
    Jan 3, 2025
    Authors
    Jien Weng
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Malaysia
    Description

    This dataset contains 2,000 entries of house price data from all states in Malaysia, providing a comprehensive overview of the country’s real estate market for 2025. Sourced from Brickz, a trusted platform for property transaction insights, it includes detailed information such as property location, tenure, type, median prices, and transaction counts. This dataset is ideal for real estate market analysis, predictive modeling, and exploring trends across Malaysia’s diverse property market.

    https://encrypted-tbn1.gstatic.com/licensed-image?q=tbn:ANd9GcR8ttDRWTx7dIxuUegBTsggS4a6tQrnNA6DEW_HJu2DphQNsverV0PYsSkdbSdqm4qRaRuBOh4Txbv11yXMxIKWqh-_WAkeTuQI8Diu-Q" alt="Kuala Lumpur, Malaysia">

    Data Columns (Total 8 Columns):

    1. Township: The specific township where the property is located (e.g., Cheras, Subang Jaya).
    2. Area: The locality or broader area encompassing the township (e.g., Klang Valley, Penang Island).
    3. State: The Malaysian state where the property is situated (e.g., Selangor, Johor, Penang).
    4. Tenure: The property ownership type (e.g., Freehold, Leasehold).
    5. Type: The category of property (e.g., Terrace, Condominium, Semi-Detached).
    6. Median_Price: The median price (in MYR) for properties in the specified township or area.
    7. Median_PSF: The median price per square foot (in MYR) for properties.
    8. Transactions: The number of recorded property transactions.

    Future Plans:

    • Expanded Coverage: This dataset will be regularly updated with additional property data to make it even more versatile.
    • Enhanced Features: Future updates may include rental prices, amenities, or property-specific details to offer deeper insights into Malaysia’s housing market.
  7. F

    All-Transactions House Price Index for San Francisco-San Mateo-Redwood City,...

    • fred.stlouisfed.org
    json
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for San Francisco-San Mateo-Redwood City, CA (MSAD) [Dataset]. https://fred.stlouisfed.org/series/ATNHPIUS41884Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Redwood City, San Francisco, California
    Description

    Graph and download economic data for All-Transactions House Price Index for San Francisco-San Mateo-Redwood City, CA (MSAD) (ATNHPIUS41884Q) from Q3 1975 to Q3 2025 about San Francisco, appraisers, CA, HPI, housing, price index, indexes, price, and USA.

  8. Real house price index in select countries in Europe 2010-2025, by quarter

    • statista.com
    Updated Nov 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Real house price index in select countries in Europe 2010-2025, by quarter [Dataset]. https://www.statista.com/statistics/722946/house-price-index-in-real-terms-in-eu-28/
    Explore at:
    Dataset updated
    Nov 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    In 2025, Turkey had the highest inflation-adjusted house price index out of the ** European countries under observation, making it the country where house prices have increased the most since 2010. In Turkey, the house price index exceeded *** index points in the second quarter of 2025, showing an increase in real terms of *** percent since 2010, the baseline year for the index. Iceland and Hungary completed the top three, with an index value of *** and *** index points. In the past year, however, many European countries saw house prices decline in real terms. Where can I find other metrics on different housing markets in Europe? To assess the valuation in different housing markets, one can compare the house-price-to-income ratios of different countries worldwide. These ratios are calculated by dividing nominal house prices by nominal disposable income per head. There are also ratios that look at how residential property prices relate to domestic rents, such as the house-price-to-rent ratio for the United Kingdom. Unfortunately, these numbers are not available in a European overview. An overview of the price per square meter of an apartment in the EU-28 countries is available, however. One region, different markets An important trait of the European housing market is that there is not one market, but multiple. Property policy in Europe lies with the domestic governments, not with the European Union. This leads to significant differences between European countries, which shows in, for example, the homeownership rate (the share of owner-occupied dwellings of all homes). These differences also lead to another problem: the availability of data. Non-Europeans might be surprised to see that house price statistics vary in depth, as every country has their own methodology and no European body exists that tracks this data for the whole continent.

  9. US Luxury Residential Real Estate Market Size, Share & Growth Trends - 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). US Luxury Residential Real Estate Market Size, Share & Growth Trends - 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/united-states-luxury-residential-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 8, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    United States Luxury Residential Real Estate Market Report is Segmented by Property Type (Apartments and Condominiums, and Villas and Landed Houses), by Business Model (Sales and Rental), by Mode of Sale (Primary (New-Build) and Secondary (Existing-Home Resale)), and by Region (Northeast, Midwest, Southeast, West and Southwest). The Market Forecasts are Provided in Terms of Value (USD).

  10. Urban House Prices in Europe

    • kaggle.com
    zip
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacopo Ferretti (2024). Urban House Prices in Europe [Dataset]. https://www.kaggle.com/datasets/jacopoferretti/urban-house-prices-in-europe
    Explore at:
    zip(32708 bytes)Available download formats
    Dataset updated
    Aug 20, 2024
    Authors
    Jacopo Ferretti
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Europe
    Description

    This dataset gives the house prices of 50 European cities, plus other features (like local GDP per capita, population density, ...). This can be used either for data analysis or for linear regression.

  11. Case Shiller National Home Price Index in the U.S. 2015-2025, by month

    • statista.com
    Updated Oct 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Case Shiller National Home Price Index in the U.S. 2015-2025, by month [Dataset]. https://www.statista.com/statistics/398370/case-shiller-national-home-price-index-monthly-usa/
    Explore at:
    Dataset updated
    Oct 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - Aug 2025
    Area covered
    United States
    Description

    Home prices in the U.S. reach new heights The American housing market continues to show remarkable resilience, with the S&P/Case Shiller U.S. National Home Price Index reaching an all-time high of 331.69 in June 2025. This figure represents a significant increase from the index value of 166.23 recorded in January 2015, highlighting the substantial growth in home prices over the past decade. The S&P Case Shiller National Home Price Index is based on the prices of single-family homes and is the leading indicator of the American housing market and one of the indicators of the state of the broader economy. The S&P Case Shiller National Home Price Index series also includes S&P/Case Shiller 20-City Composite Home Price Index and S&P/Case Shiller 10-City Composite Home Price Index – measuring the home price changes in the major U.S. metropolitan areas, as well as twenty composite indices for the leading U.S. cities. Market fluctuations and recovery Despite the overall upward trend, the housing market has experienced some fluctuations in recent years. During the housing boom in 2021, the number of existing home sales reached the highest level since 2006. However, transaction volumes quickly plummeted, as the soaring interest rates and out-of-reach prices led to housing sentiment deteriorating. Factors influencing home prices Several factors have contributed to the rise in home prices, including a chronic supply shortage, the gradual decline in interest rates, and the spike in demand during the COVID-19 pandemic. During the subprime mortgage crisis (2007-2010), the construction of new homes declined dramatically. Although it has gradually increased since then, the number of new building permits, home starts, and completions are still shy from the levels before the crisis. With demand outweighing supply, competition for homes can be fierce, leading to bidding wars and soaring prices. The supply of existing homes is further constrained, as homeowners are less likely to sell and move homes due to the worsened lending conditions.

  12. Average prices of detached houses in Poland 2024, by city

    • statista.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average prices of detached houses in Poland 2024, by city [Dataset]. https://www.statista.com/statistics/1414128/poland-average-prices-of-detached-houses/
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2024
    Area covered
    Poland
    Description

    In March 2024, the highest average price of detached houses in Poland was in Warsaw reaching more than 10.6 thousand zloty per square meter.

  13. T

    Canada Average House Prices

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Canada Average House Prices [Dataset]. https://tradingeconomics.com/canada/average-house-prices
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2005 - Oct 31, 2025
    Area covered
    Canada
    Description

    Average House Prices in Canada increased to 688800 CAD in October from 687600 CAD in September of 2025. This dataset includes a chart with historical data for Canada Average House Prices.

  14. Countries with the highest inflation-adjusted house price growth worldwide...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Countries with the highest inflation-adjusted house price growth worldwide 2025 [Dataset]. https://www.statista.com/statistics/237527/house-price-changes-five-year-trend/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In the second quarter of 2025, North Macedonia, Portugal, and Bulgaria registered the highest house price increase in real terms (adjusted for inflation). In North Macedonia, house prices outgrew inflation by nearly ** percent. When comparing the nominal price change, which does not take inflation into consideration, the average house price growth was even higher.

    Meanwhile, many countries experienced declining prices, with Hong Kong recording the biggest decline, at ***** percent. That has to do with a broader trend of a slowing global housing market.

  15. t

    House Price Index | India | 2013 - 2025 | Data, Charts and Analysis

    • themirrority.com
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). House Price Index | India | 2013 - 2025 | Data, Charts and Analysis [Dataset]. https://www.themirrority.com/data/house_price_index
    Explore at:
    Dataset updated
    Jun 15, 2025
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 2013 - Mar 31, 2025
    Area covered
    India
    Variables measured
    House Price Index
    Description

    India's residential house prices - quarterly and annual changes in house prices across cities, expert analysis and comparison with global peers.

  16. São Paulo House Prices

    • kaggle.com
    zip
    Updated Dec 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ricardo Rodrigues Baptista (2022). São Paulo House Prices [Dataset]. https://www.kaggle.com/datasets/ex0ticone/house-prices-of-sao-paulo-city
    Explore at:
    zip(3809698 bytes)Available download formats
    Dataset updated
    Dec 22, 2022
    Authors
    Ricardo Rodrigues Baptista
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    São Paulo
    Description

    This dataset was obtained after a good research from famous brazilian real estate listing websites.

    House prices for both sale and rental listings from São Paulo city.

    Listings from 2011 to 2019, making this dataset a great choice to produce price forecasts using regression techniques.

  17. b

    Median Price of Homes Sold - City

    • data.baltimorecity.gov
    • vital-signs-bniajfi.hub.arcgis.com
    • +1more
    Updated Mar 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Median Price of Homes Sold - City [Dataset]. https://data.baltimorecity.gov/datasets/bniajfi::median-price-of-homes-sold-city
    Explore at:
    Dataset updated
    Mar 24, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The median home sales price is the middle value of the prices for which homes are sold (both market and private transactions) within a calendar year. The median value is used as opposed to the average so that both extremely high and extremely low prices do not distort the prices for which homes are sold. This measure does not take into account the assessed value of a property. Source: First American Real Estate Solutions (FARES) and RBIntel Years Available: 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2022, 2023

  18. U.S. housing: Case Shiller Portland Home Price Index 2017-2024

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. housing: Case Shiller Portland Home Price Index 2017-2024 [Dataset]. https://www.statista.com/statistics/398476/case-shiller-portland-home-price-index/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2017 - Aug 2024
    Area covered
    United States
    Description

    The S&P Case Shiller Portland Home Price Index has increased steadily in recent years. The index measures changes in the prices of existing single-family homes. The index value was equal to 100 as of January 2000, so if the index value is equal to *** in a given month, for example, it means that the house prices have increased by ** percent since 2000. The value of the S&P Case Shiller Portland Home Price Index amounted to ***** in August 2024. That was higher the national average.

  19. a

    Housing Market Study Typologies

    • hub.arcgis.com
    • data.cityofrochester.gov
    • +1more
    Updated Feb 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). Housing Market Study Typologies [Dataset]. https://hub.arcgis.com/maps/RochesterNY::housing-market-study-typologies
    Explore at:
    Dataset updated
    Feb 18, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    DisclaimerBefore using this layer, please review the 2018 Rochester Citywide Housing Market Study for the full background and context that is required for interpreting and portraying this data. Please click here to access the study. Please also note that the housing market typologies were based on analysis of property data from 2008 to 2018, and is a snapshot of market conditions within that time frame. For an accurate depiction of current housing market typologies, this analysis would need to be redone with the latest available data.About the DataThis is a polygon feature layer containing the boundaries of all census blockgroups in the city of Rochester. Beyond the unique identifier fields including GEOID, the only other field is the housing market typology for that blockgroup.Information from the 2018 Housing Market Study- Housing Market TypologiesThe City of Rochester commissioned a Citywide Housing Market Study in 2018 as a technical study to inform development of the City's new Comprehensive Plan, Rochester 2034, and retained czb, LLC – a firm with national expertise based in Alexandria, VA – to perform the analysis.Any understanding of Rochester’s housing market – and any attempt to develop strategies to influence the market in ways likely to achieve community goals – must begin with recognition that market conditions in the city are highly uneven. On some blocks, competition for real estate is strong and expressed by pricing and investment levels that are above city averages. On other blocks, private demand is much lower and expressed by above average levels of disinvestment and physical distress. Still other blocks are in the middle – both in terms of condition of housing and prevailing prices. These block-by-block differences are obvious to most residents and shape their options, preferences, and actions as property owners and renters. Importantly, these differences shape the opportunities and challenges that exist in each neighborhood, the types of policy and investment tools to utilize in response to specific needs, and the level and range of available resources, both public and private, to meet those needs. The City of Rochester has long recognized that a one-size-fits-all approach to housing and neighborhood strategy is inadequate in such a diverse market environment and that is no less true today. To concisely describe distinct market conditions and trends across the city in this study, a Housing Market Typology was developed using a wide range of indicators to gauge market health and investment behaviors. This section of the Citywide Housing Market Study introduces the typology and its components. In later sections, the typology is used as a tool for describing and understanding demographic and economic patterns within the city, the implications of existing market patterns on strategy development, and how existing or potential policy and investment tools relate to market conditions.Overview of Housing Market Typology PurposeThe Housing Market Typology in this study is a tool for understanding recent market conditions and variations within Rochester and informing housing and neighborhood strategy development. As with any typology, it is meant to simplify complex information into a limited number of meaningful categories to guide action. Local context and knowledge remain critical to understanding market conditions and should always be used alongside the typology to maximize its usefulness.Geographic Unit of Analysis The Block Group – a geographic unit determined by the U.S. Census Bureau – is the unit of analysis for this typology, which utilizes parcel-level data. There are over 200 Block Groups in Rochester, most of which cover a small cluster of city blocks and are home to between 600 and 3,000 residents. For this tool, the Block Group provides geographies large enough to have sufficient data to analyze and small enough to reveal market variations within small areas.Four Components for CalculationAnalysis of multiple datasets led to the identification of four typology components that were most helpful in drawing out market variations within the city:• Terms of Sale• Market Strength• Bank Foreclosures• Property DistressThose components are described one-by-one on in the full study document (LINK), with detailed methodological descriptions provided in the Appendix.A Spectrum of Demand The four components were folded together to create the Housing Market Typology. The seven categories of the typology describe a spectrum of housing demand – with lower scores indicating higher levels of demand, and higher scores indicating weaker levels of demand. Typology 1 are areas with the highest demand and strongest market, while typology 3 are the weakest markets. For more information please visit: https://www.cityofrochester.gov/HousingMarketStudy2018/Dictionary: STATEFP10: The two-digit Federal Information Processing Standards (FIPS) code assigned to each US state in the 2010 census. New York State is 36. COUNTYFP10: The three-digit Federal Information Processing Standards (FIPS) code assigned to each US county in the 2010 census. Monroe County is 055. TRACTCE10: The six-digit number assigned to each census tract in a US county in the 2010 census. BLKGRPCE10: The single-digit number assigned to each block group within a census tract. The number does not indicate ranking or quality, simply the label used to organize the data. GEOID10: A unique geographic identifier based on 2010 Census geography, typically as a concatenation of State FIPS code, County FIPS code, Census tract code, and Block group number. NAMELSAD10: Stands for Name, Legal/Statistical Area Description 2010. A human-readable field for BLKGRPCE10 (Block Groups). MTFCC10: Stands for MAF/TIGER Feature Class Code 2010. For this dataset, G5030 represents the Census Block Group. BLKGRP: The GEOID that identifies a specific block group in each census tract. TYPOLOGYFi: The point system for Block Groups. Lower scores indicate higher levels of demand – including housing values and value appreciation that are above the Rochester average and vulnerabilities to distress that are below average. Higher scores indicate lower levels of demand – including housing values and value appreciation that are below the Rochester average and above presence of distressed or vulnerable properties. Points range from 1.0 to 3.0. For more information on how the points are calculated, view page 16 on the Rochester Citywide Housing Study 2018. Shape_Leng: The built-in geometry field that holds the length of the shape. Shape_Area: The built-in geometry field that holds the area of the shape. Shape_Length: The built-in geometry field that holds the length of the shape. Source: This data comes from the City of Rochester Department of Neighborhood and Business Development.

  20. Average price for properties for sale in Rome, Italy 2024, by area

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average price for properties for sale in Rome, Italy 2024, by area [Dataset]. https://www.statista.com/statistics/670698/asking-price-for-properties-for-sale-in-rome-by-area-italy/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2024
    Area covered
    Italy
    Description

    House prices in the historical center of Rome were, unsurprisingly, the highest in the whole city. Indeed, residential properties in the city center could fetch on average ***** euros per square meter. This figure is more than double the average price for a residential property recorded in the entire city. Pricey districts in Italy Rome is not the only city in Italy where many people would want to live, with fancy and attractive districts. In fact, Milan is the city that boasts the districts with the highest prices in the country. Furthermore, the districts of San Marco and Rialto in Venice are also very on demand: a residential property in the most central areas of the city island cost over ***** euros per square meter. Residential real estate in Italy House prices in Italy decreased steadily since 2012, and so did interest rates on new mortgage loans. These favorable conditions brought new life to the residential real estate market in the country. The number of transactions increased steadily after reaching an all-time low in 2013. Moreover, low prices in many Italian cities attract individuals interested in purchasing residential real estate for investment.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
Organization logo

Housing Prices Dataset

Housing Prices Prediction - Regression Problem

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
zip(4740 bytes)Available download formats
Dataset updated
Jan 12, 2022
Authors
M Yasser H
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

Description:

A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

Acknowledgement:

Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Objective:

  • Understand the Dataset & cleanup (if required).
  • Build Regression models to predict the sales w.r.t a single & multiple feature.
  • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
Search
Clear search
Close search
Google apps
Main menu