100+ datasets found
  1. European real estate market prospects 2026, by city

    • statista.com
    Updated Nov 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). European real estate market prospects 2026, by city [Dataset]. https://www.statista.com/statistics/377422/europe-real-estate-investment-existing-big-cities-ranking/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Europe
    Description

    London maintains its dominance in European real estate with the highest prospect score of 2.66 for 2026, significantly ahead of Madrid and Paris, which scored 2.22 and 2.04, respectively. This ranking reflects a comprehensive assessment of factors that real estate investors consider crucial, including market size, economic performance, and connectivity. The gap between London and other major cities highlights its resilience despite Brexit concerns and points to continued investor confidence in the British capital's property market fundamentals. Key factors driving city rankings Market size, liquidity, and economic performance emerge as the most critical factors determining a city's investment attractiveness for 2026. London's top position is reinforced by its established market infrastructure and global connectivity, while Madrid and Paris benefit from strong economic forecasts. However, investors face mounting challenges that could impact these markets, with construction costs, capital expenditure requirements, and increasing environmental sustainability regulations cited as major concerns. Industry experts note that these factors could particularly affect development-heavy investments in emerging European markets. (1062070, 376877) Sectoral growth opportunities Data centers represent the most promising real estate investment sector in Europe for 2026, with London, Frankfurt, and Dublin emerging as primary destinations due to their growing data center capacity. New energy infrastructure and student housing follow closely as high-potential sectors. This trend reflects the broader shift toward technology-driven and specialized real estate assets. While traditional suburban offices face diminishing prospects, cities with strong digital infrastructure like London and Frankfurt are positioned to capitalize on the demand for data-focused real estate developments, potentially strengthening their overall market position in the coming years.

  2. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  3. F

    Data from: Existing Home Sales

    • fred.stlouisfed.org
    json
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Existing Home Sales [Dataset]. https://fred.stlouisfed.org/series/EXHOSLUSM495S
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Existing Home Sales (EXHOSLUSM495S) from Oct 2024 to Oct 2025 about headline figure, sales, housing, and USA.

  4. F

    Housing Inventory: Median Listing Price per Square Feet in the United States...

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Median Listing Price per Square Feet in the United States [Dataset]. https://fred.stlouisfed.org/series/MEDLISPRIPERSQUFEEUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Housing Inventory: Median Listing Price per Square Feet in the United States (MEDLISPRIPERSQUFEEUS) from Jul 2016 to Oct 2025 about square feet, listing, median, price, and USA.

  5. c

    Housing Market Study Typologies

    • data.cityofrochester.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Feb 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). Housing Market Study Typologies [Dataset]. https://data.cityofrochester.gov/datasets/housing-market-study-typologies
    Explore at:
    Dataset updated
    Feb 18, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    DisclaimerBefore using this layer, please review the 2018 Rochester Citywide Housing Market Study for the full background and context that is required for interpreting and portraying this data. Please click here to access the study. Please also note that the housing market typologies were based on analysis of property data from 2008 to 2018, and is a snapshot of market conditions within that time frame. For an accurate depiction of current housing market typologies, this analysis would need to be redone with the latest available data.About the DataThis is a polygon feature layer containing the boundaries of all census blockgroups in the city of Rochester. Beyond the unique identifier fields including GEOID, the only other field is the housing market typology for that blockgroup.Information from the 2018 Housing Market Study- Housing Market TypologiesThe City of Rochester commissioned a Citywide Housing Market Study in 2018 as a technical study to inform development of the City's new Comprehensive Plan, Rochester 2034, and retained czb, LLC – a firm with national expertise based in Alexandria, VA – to perform the analysis.Any understanding of Rochester’s housing market – and any attempt to develop strategies to influence the market in ways likely to achieve community goals – must begin with recognition that market conditions in the city are highly uneven. On some blocks, competition for real estate is strong and expressed by pricing and investment levels that are above city averages. On other blocks, private demand is much lower and expressed by above average levels of disinvestment and physical distress. Still other blocks are in the middle – both in terms of condition of housing and prevailing prices. These block-by-block differences are obvious to most residents and shape their options, preferences, and actions as property owners and renters. Importantly, these differences shape the opportunities and challenges that exist in each neighborhood, the types of policy and investment tools to utilize in response to specific needs, and the level and range of available resources, both public and private, to meet those needs. The City of Rochester has long recognized that a one-size-fits-all approach to housing and neighborhood strategy is inadequate in such a diverse market environment and that is no less true today. To concisely describe distinct market conditions and trends across the city in this study, a Housing Market Typology was developed using a wide range of indicators to gauge market health and investment behaviors. This section of the Citywide Housing Market Study introduces the typology and its components. In later sections, the typology is used as a tool for describing and understanding demographic and economic patterns within the city, the implications of existing market patterns on strategy development, and how existing or potential policy and investment tools relate to market conditions.Overview of Housing Market Typology PurposeThe Housing Market Typology in this study is a tool for understanding recent market conditions and variations within Rochester and informing housing and neighborhood strategy development. As with any typology, it is meant to simplify complex information into a limited number of meaningful categories to guide action. Local context and knowledge remain critical to understanding market conditions and should always be used alongside the typology to maximize its usefulness.Geographic Unit of Analysis The Block Group – a geographic unit determined by the U.S. Census Bureau – is the unit of analysis for this typology, which utilizes parcel-level data. There are over 200 Block Groups in Rochester, most of which cover a small cluster of city blocks and are home to between 600 and 3,000 residents. For this tool, the Block Group provides geographies large enough to have sufficient data to analyze and small enough to reveal market variations within small areas.Four Components for CalculationAnalysis of multiple datasets led to the identification of four typology components that were most helpful in drawing out market variations within the city:• Terms of Sale• Market Strength• Bank Foreclosures• Property DistressThose components are described one-by-one on in the full study document (LINK), with detailed methodological descriptions provided in the Appendix.A Spectrum of Demand The four components were folded together to create the Housing Market Typology. The seven categories of the typology describe a spectrum of housing demand – with lower scores indicating higher levels of demand, and higher scores indicating weaker levels of demand. Typology 1 are areas with the highest demand and strongest market, while typology 3 are the weakest markets. For more information please visit: https://www.cityofrochester.gov/HousingMarketStudy2018/Dictionary: STATEFP10: The two-digit Federal Information Processing Standards (FIPS) code assigned to each US state in the 2010 census. New York State is 36. COUNTYFP10: The three-digit Federal Information Processing Standards (FIPS) code assigned to each US county in the 2010 census. Monroe County is 055. TRACTCE10: The six-digit number assigned to each census tract in a US county in the 2010 census. BLKGRPCE10: The single-digit number assigned to each block group within a census tract. The number does not indicate ranking or quality, simply the label used to organize the data. GEOID10: A unique geographic identifier based on 2010 Census geography, typically as a concatenation of State FIPS code, County FIPS code, Census tract code, and Block group number. NAMELSAD10: Stands for Name, Legal/Statistical Area Description 2010. A human-readable field for BLKGRPCE10 (Block Groups). MTFCC10: Stands for MAF/TIGER Feature Class Code 2010. For this dataset, G5030 represents the Census Block Group. BLKGRP: The GEOID that identifies a specific block group in each census tract. TYPOLOGYFi: The point system for Block Groups. Lower scores indicate higher levels of demand – including housing values and value appreciation that are above the Rochester average and vulnerabilities to distress that are below average. Higher scores indicate lower levels of demand – including housing values and value appreciation that are below the Rochester average and above presence of distressed or vulnerable properties. Points range from 1.0 to 3.0. For more information on how the points are calculated, view page 16 on the Rochester Citywide Housing Study 2018. Shape_Leng: The built-in geometry field that holds the length of the shape. Shape_Area: The built-in geometry field that holds the area of the shape. Shape_Length: The built-in geometry field that holds the length of the shape. Source: This data comes from the City of Rochester Department of Neighborhood and Business Development.

  6. Real estate transactions of houses: ranking of municipalities Spain 2015

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Real estate transactions of houses: ranking of municipalities Spain 2015 [Dataset]. https://www.statista.com/statistics/775324/transactions-from-households-by-municipalities-ranking-spain/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2015
    Area covered
    Spain
    Description

    This statistic presents the ranking of municipalities with the highest number of housing real estate transactions in Spain in 2015. During this year, Madrid led the ranking with more than ****** housing purchase transactions.

  7. E

    Vietnam Commercial Real Estate Market Size, Share, Growth Analysis Report...

    • expertmarketresearch.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claight Corporation (Expert Market Research), Vietnam Commercial Real Estate Market Size, Share, Growth Analysis Report and Forecast Trends (2025-2034) [Dataset]. https://www.expertmarketresearch.com/reports/vietnam-commercial-real-estate-market
    Explore at:
    pdf, excel, csv, pptAvailable download formats
    Dataset authored and provided by
    Claight Corporation (Expert Market Research)
    License

    https://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy

    Time period covered
    2025 - 2034
    Area covered
    Vietnam
    Variables measured
    CAGR, Forecast Market Value, Historical Market Value
    Measurement technique
    Secondary market research, data modeling, expert interviews
    Dataset funded by
    Claight Corporation (Expert Market Research)
    Description

    The Vietnam commercial real estate market reached approximately USD 16.61 Billion in 2024. The market is projected to grow at a CAGR of 13.80% between 2025 and 2034, reaching a value of around USD 60.51 Billion by 2034.

  8. F

    Real Residential Property Prices for Hong Kong SAR

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for Hong Kong SAR [Dataset]. https://fred.stlouisfed.org/series/QHKR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Real Residential Property Prices for Hong Kong SAR (QHKR628BIS) from Q4 1979 to Q2 2025 about Hong Kong, residential, HPI, housing, real, price index, indexes, and price.

  9. House Price Prediction Dataset

    • kaggle.com
    zip
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zafar (2024). House Price Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/zafarali27/house-price-prediction-dataset
    Explore at:
    zip(29372 bytes)Available download formats
    Dataset updated
    Sep 21, 2024
    Authors
    Zafar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    House Price Prediction Dataset.

    The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.

    1. Dataset Features

    The dataset is designed to capture essential attributes for predicting house prices, including:

    Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.

    2. Feature Distributions

    Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.

    3. Correlation Between Features

    A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.

    4. Potential Use Cases

    The dataset is well-suited for various machine learning and data analysis applications, including:

    House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.

    5. Limitations and ...

  10. T

    United States Total Housing Inventory

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Total Housing Inventory [Dataset]. https://tradingeconomics.com/united-states/total-housing-inventory
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 30, 1982 - Oct 31, 2025
    Area covered
    United States
    Description

    Total Housing Inventory in the United States decreased to 1520 Thousands in October from 1530 Thousands in September of 2025. This dataset includes a chart with historical data for the United States Total Housing Inventory.

  11. C

    China Real Residential Property Price Index

    • ceicdata.com
    Updated May 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). China Real Residential Property Price Index [Dataset]. https://www.ceicdata.com/en/indicator/china/real-residential-property-price-index
    Explore at:
    Dataset updated
    May 15, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 1, 2022 - Jun 1, 2025
    Area covered
    China
    Variables measured
    Consumer Prices
    Description

    Key information about China Gold Production

    • China Real Residential Property Price Index was reported at 90.676 2010=100 in Jun 2025.
    • This records a decrease from the previous number of 91.615 2010=100 for Mar 2025.
    • China Real Residential Property Price Index data is updated quarterly, averaging 93.824 2010=100 from Jun 2005 to Jun 2025, with 81 observations.
    • The data reached an all-time high of 112.991 2010=100 in Sep 2021 and a record low of 87.950 2010=100 in Jun 2005.
    • China Real Residential Property Price Index data remains active status in CEIC and is reported by Bank for International Settlements.
    • The data is categorized under World Trend Plus’s Association: Property Sector – Table RK.BIS.RPPI: Selected Real Residential Property Price Index: 2010=100: Quarterly. [COVID-19-IMPACT]

  12. Thailand Real Estate Market - Size, Share & Industry Analysis 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Thailand Real Estate Market - Size, Share & Industry Analysis 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/analysis-of-real-estate-market-in-thailand
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Oct 24, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Thailand
    Description

    The Thailand Real Estate Market Report is Segmented by Property Type (Residential and Commercial), by Business Model (Sales and Rental), by End User (Individuals/Households, Corporates & SMEs and Others), and by Major Cities (Bangkok, Phuket, and More). The Report Offers Market Size and Forecasts in Value (USD) for all the Above Segments.

  13. Average resale house prices Canada 2011-2024, with a forecast until 2026, by...

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average resale house prices Canada 2011-2024, with a forecast until 2026, by province [Dataset]. https://www.statista.com/statistics/587661/average-house-prices-canada-by-province/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Canada
    Description

    The average resale house price in Canada was forecast to reach nearly ******* Canadian dollars in 2026, according to a January forecast. In 2024, house prices increased after falling for the first time since 2019. One of the reasons for the price correction was the notable drop in transaction activity. Housing transactions picked up in 2024 and are expected to continue to grow until 2026. British Columbia, which is the most expensive province for housing, is projected to see the average house price reach *** million Canadian dollars in 2026. Affordability in Vancouver Vancouver is the most populous city in British Columbia and is also infamously expensive for housing. In 2023, the city topped the ranking for least affordable housing market in Canada, with the average homeownership cost outweighing the average household income. There are a multitude of reasons for this, but most residents believe that foreigners investing in the market cause the high housing prices. Victoria housing market The capital of British Columbia is Victoria, where housing prices are also very high. The price of a single family home in Victoria's most expensive suburb, Oak Bay was *** million Canadian dollars in 2024.

  14. d

    Grepsr | Real Estate Products, Property Listing, Sold Properties, Rankings,...

    • datarade.ai
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr (2024). Grepsr | Real Estate Products, Property Listing, Sold Properties, Rankings, Agent Datasets | Middle East Coverage with Custom and On-demand Datasets [Dataset]. https://datarade.ai/data-products/grepsr-real-estate-products-property-listing-sold-propert-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    Grepsr
    Area covered
    Jordan, United Arab Emirates, Saudi Arabia, Yemen, Iraq, Bahrain, Lebanon, Oman, Qatar, Iran (Islamic Republic of)
    Description

    Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.

    A. Usecase/Applications possible with the data:

    1. Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data

    2. Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.

    3. Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.

    4. Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.

    5. Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.

    6. Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.

    7. Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.

    How does it work?

    • Analyze sample data
    • Customize parameters to suit your needs
    • Add to your projects
    • Contact support for further customization
  15. n

    Production Value of Buying and Selling of Own Real Estate

    • nationmaster.com
    Updated Mar 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NationMaster (2021). Production Value of Buying and Selling of Own Real Estate [Dataset]. https://www.nationmaster.com/nmx/ranking/production-value-of-buying-and-selling-of-own-real-estate
    Explore at:
    Dataset updated
    Mar 14, 2021
    Dataset authored and provided by
    NationMaster
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    2008 - 2019
    Area covered
    Serbia, Italy, Bosnia and Herzegovina, Portugal, Greece, Luxembourg, Bulgaria, Iceland, Romania, United Kingdom
    Description

    Germany rose 2.5% of Production Value of Buying and Selling of Own Real Estate in 2019, from a year earlier.

  16. Average bid residential real estate square meter prices in Europe 2024, by...

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average bid residential real estate square meter prices in Europe 2024, by country [Dataset]. https://www.statista.com/statistics/722905/average-residential-square-meter-prices-in-eu-28-per-country/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Europe
    Description

    The average bid price of new housing in Europe was the highest in Luxembourg, at 8,760 euros per square meter. Since there is no central body that collects and tracks transaction activity or house prices across the whole continent or the European Union, only bid prices were considered. House prices have been soaring, with Sweden topping the ranking Considering the RHPI of houses in Europe (the price index in real terms, which measures price changes of single-family properties adjusted for the impact of inflation), however, the picture changes. Sweden, Luxembourg and Norway top this ranking, meaning residential property prices have surged the most in these countries. Real values were calculated using the so-called Personal Consumption Expenditure Deflator (PCE), This PCE uses both consumer prices as well as consumer expenditures, like medical and health care expenses paid by employers. It is meant to show how expensive housing is compared to the way of living in a country. Home ownership highest in Eastern Europe The home ownership rate in Europe varied from country to country. In 2020, roughly half of all homes in Germany were owner-occupied whereas home ownership was at nearly ** percent in Romania or around ** percent in Slovakia and Lithuania. These numbers were considerably higher than in France or Italy, where homeowners made up ** percent and ** percent of their respective populations.For more information on the topic of property in Europe, visit the following pages as a starting point for your research: real estate investments in Europe and residential real estate in Europe.

  17. n

    Production Value of Real Estate

    • nationmaster.com
    Updated Mar 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NationMaster (2021). Production Value of Real Estate [Dataset]. https://www.nationmaster.com/nmx/ranking/production-value-of-real-estate
    Explore at:
    Dataset updated
    Mar 14, 2021
    Dataset authored and provided by
    NationMaster
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    2005 - 2019
    Area covered
    Bulgaria, Poland, Denmark, United Kingdom, Romania, Ireland, Iceland, Bosnia and Herzegovina, Spain, Macedonia
    Description

    Denmark rose 6.4% of Production Value of Real Estate in 2019, compared to the previous year.

  18. m

    Marcus & Millichap Inc - Depreciation

    • macro-rankings.com
    csv, excel
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Marcus & Millichap Inc - Depreciation [Dataset]. https://www.macro-rankings.com/markets/stocks/mmi-nyse/cashflow-statement/depreciation
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Depreciation Time Series for Marcus & Millichap Inc. Marcus & Millichap, Inc., an investment brokerage company, provides real estate investment brokerage and financing services to sellers and buyers of commercial real estate in the United States and Canada. The company offers real estate services comprising commercial real estate investment sales, financing, research, and advisory services for multifamily, retail, office, industrial, single-tenant net lease, seniors housing, self-storage, hospitality, medical office, and manufactured housing, as well as capital markets/financing. It also operates as a financial intermediary that provides commercial real estate capital markets solutions, including senior debt, mezzanine debt, joint venture, preferred equity, and securitization services, as well as loan sales and due diligence services to commercial real estate owners, developers, and investors. In addition, the company provides advisory and consulting services, which include opinions of value, operating and financial performance benchmarking analysis, specific asset buy-sell strategies, market and submarket analysis and ranking, portfolio strategies by property type, market strategy, development and redevelopment feasibility studies, and other services; and leasing services for tenants and/or landlords in connection with commercial real estate leases. Marcus & Millichap, Inc. was founded in 1971 and is headquartered in Calabasas, California.

  19. Nominal house price index in select countries in APAC region 2010-2025, by...

    • statista.com
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Nominal house price index in select countries in APAC region 2010-2025, by quarter [Dataset]. https://www.statista.com/topics/5466/global-housing-market/
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In 2025, India was the country with the highest increase in house prices since 2010 among the Asia-Pacific (APAC) countries under observation. In the second quarter of the year, the nominal house price index in India reached over 359 index points. This suggests an increase of 259 percent since 2010, the baseline year when the index value was set to 100. It is important to note that the nominal index does not account for the effects of inflation, meaning when adjusted for inflation, price growth in real terms was slower.

  20. a

    Septic Tank Limitations/ Land Use - Wayne County

    • gis-odnr.opendata.arcgis.com
    Updated Nov 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ohio Department of Natural Resources (2024). Septic Tank Limitations/ Land Use - Wayne County [Dataset]. https://gis-odnr.opendata.arcgis.com/documents/7c9b9e4a2cf243f69aa02f9a60845d38
    Explore at:
    Dataset updated
    Nov 6, 2024
    Dataset authored and provided by
    Ohio Department of Natural Resources
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Download .zipThis theme combines limitations for septic tank absorption fields from the Wayne County Soil Survey with land use/ land cover interpreted by the ODNR, Remote Sensing Unit to indicate developed lands not suitable for septic tanks.

    Original coverage data was converted from the .e00 file to a more standard ESRI shapefile(s) in November 2014.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesReal Estate & Land ManagementReal Estate and Lands Management2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov Data Update Frequency: As Needed

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). European real estate market prospects 2026, by city [Dataset]. https://www.statista.com/statistics/377422/europe-real-estate-investment-existing-big-cities-ranking/
Organization logo

European real estate market prospects 2026, by city

Explore at:
Dataset updated
Nov 29, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2025
Area covered
Europe
Description

London maintains its dominance in European real estate with the highest prospect score of 2.66 for 2026, significantly ahead of Madrid and Paris, which scored 2.22 and 2.04, respectively. This ranking reflects a comprehensive assessment of factors that real estate investors consider crucial, including market size, economic performance, and connectivity. The gap between London and other major cities highlights its resilience despite Brexit concerns and points to continued investor confidence in the British capital's property market fundamentals. Key factors driving city rankings Market size, liquidity, and economic performance emerge as the most critical factors determining a city's investment attractiveness for 2026. London's top position is reinforced by its established market infrastructure and global connectivity, while Madrid and Paris benefit from strong economic forecasts. However, investors face mounting challenges that could impact these markets, with construction costs, capital expenditure requirements, and increasing environmental sustainability regulations cited as major concerns. Industry experts note that these factors could particularly affect development-heavy investments in emerging European markets. (1062070, 376877) Sectoral growth opportunities Data centers represent the most promising real estate investment sector in Europe for 2026, with London, Frankfurt, and Dublin emerging as primary destinations due to their growing data center capacity. New energy infrastructure and student housing follow closely as high-potential sectors. This trend reflects the broader shift toward technology-driven and specialized real estate assets. While traditional suburban offices face diminishing prospects, cities with strong digital infrastructure like London and Frankfurt are positioned to capitalize on the demand for data-focused real estate developments, potentially strengthening their overall market position in the coming years.

Search
Clear search
Close search
Google apps
Main menu