25 datasets found
  1. 2023 Census totals by topic for individuals by statistical area 2 – part 1

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Nov 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). 2023 Census totals by topic for individuals by statistical area 2 – part 1 [Dataset]. https://datafinder.stats.govt.nz/layer/120897-2023-census-totals-by-topic-for-individuals-by-statistical-area-2-part-1/
    Explore at:
    mapinfo tab, mapinfo mif, csv, dwg, pdf, geodatabase, shapefile, kml, geopackage / sqliteAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains counts and measures for individuals from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.

    The variables included in this dataset are for the census usually resident population count (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated).

    The variables for part 1 of the dataset are:

    • Census usually resident population count
    • Census night population count
    • Age (5-year groups)
    • Age (life cycle groups)
    • Median age
    • Birthplace (NZ born/overseas born)
    • Birthplace (broad geographic areas)
    • Ethnicity (total responses) for level 1 and ‘Other Ethnicity’ grouped by ‘New Zealander’ and ‘Other Ethnicity nec’
    • Māori descent indicator
    • Languages spoken (total responses)
    • Official language indicator
    • Gender
    • Cisgender and transgender status – census usually resident population count aged 15 years and over
    • Sex at birth
    • Rainbow/LGBTIQ+ indicator for the census usually resident population count aged 15 years and over
    • Sexual identity for the census usually resident population count aged 15 years and over
    • Legally registered relationship status for the census usually resident population count aged 15 years and over
    • Partnership status in current relationship for the census usually resident population count aged 15 years and over
    • Number of children born for the sex at birth female census usually resident population count aged 15 years and over
    • Average number of children born for the sex at birth female census usually resident population count aged 15 years and over
    • Religious affiliation (total responses)
    • Cigarette smoking behaviour for the census usually resident population count aged 15 years and over
    • Disability indicator for the census usually resident population count aged 5 years and over
    • Difficulty communicating for the census usually resident population count aged 5 years and over
    • Difficulty hearing for the census usually resident population count aged 5 years and over
    • Difficulty remembering or concentrating for the census usually resident population count aged 5 years and over
    • Difficulty seeing for the census usually resident population count aged 5 years and over
    • Difficulty walking for the census usually resident population count aged 5 years and over
    • Difficulty washing for the census usually resident population count aged 5 years and over.

    Download lookup file for part 1 from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Te Whata

    Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    Population counts

    Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    Study participation time series

    In the 2013 Census study participation was only collected for the census usually resident population count aged 15 years and over.

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Concept descriptions and quality ratings

    Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.

    Disability indicator

    This data should not be used as an official measure of disability prevalence. Disability prevalence estimates are only available from the 2023 Household Disability Survey. Household Disability Survey 2023: Final content has more information about the survey.

    Activity limitations are measured using the Washington Group Short Set (WGSS). The WGSS asks about six basic activities that a person might have difficulty with: seeing, hearing, walking or climbing stairs, remembering or concentrating, washing all over or dressing, and communicating. A person was classified as disabled in the 2023 Census if there was at least one of these activities that they had a lot of difficulty with or could not do at all.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Measures

    Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.

    Symbol

    -997 Not available

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  2. Meshblock 2022 (Centroid True)

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, Meshblock 2022 (Centroid True) [Dataset]. https://datafinder.stats.govt.nz/layer/106716-meshblock-2022-centroid-true/
    Explore at:
    mapinfo mif, geodatabase, csv, shapefile, dwg, mapinfo tab, geopackage / sqlite, kml, pdfAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This dataset contains the true centroid point layer for the annually released meshblock boundaries for 2022 as defined by Stats NZ (the custodian). The "true" centroid is the centre of mass of that polygon, such that if some flat substance of uniform thickness and density were cut into the shape of that polygon, then that object would balance at the centroid.

    The centroid is a useful way of summarizing the locations of a set of polygons as points, particularly when used for comparative analysis. Note that the centroid could potentially fall outside the meshblock polygon, depending on the shape of the polygon.

    The dataset contains the EASTING and NORTHING attributes of the centroid point in NZGD2000 New Zealand Transverse Mercator (EPSG:2193) and LATITUDE and LONGITUDE of the centroid point in decimal degrees in WGS1984 (EPSG:4326) projection. Non-digitised meshblocks cannot have a centroid.

  3. Netherlands NL: Time Spent Dealing with the Requirements of Government...

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Netherlands NL: Time Spent Dealing with the Requirements of Government Regulations: % of Senior Management Time [Dataset]. https://www.ceicdata.com/en/netherlands/company-statistics/nl-time-spent-dealing-with-the-requirements-of-government-regulations--of-senior-management-time
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2020
    Area covered
    Netherlands
    Variables measured
    Enterprises Statistics
    Description

    Netherlands NL: Time Spent Dealing with the Requirements of Government Regulations: % of Senior Management Time data was reported at 6.300 % in 2020. Netherlands NL: Time Spent Dealing with the Requirements of Government Regulations: % of Senior Management Time data is updated yearly, averaging 6.300 % from Dec 2020 (Median) to 2020, with 1 observations. The data reached an all-time high of 6.300 % in 2020 and a record low of 6.300 % in 2020. Netherlands NL: Time Spent Dealing with the Requirements of Government Regulations: % of Senior Management Time data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Netherlands – Table NL.World Bank.WDI: Company Statistics. Time spent dealing with the requirements of government regulations is the proportion of senior management's time, in a typical week, that is spent dealing with the requirements imposed by government regulations (e.g., taxes, customs, labor regulations, licensing and registration, including dealings with officials, and completing forms).;World Bank, Enterprise Surveys (http://www.enterprisesurveys.org/).;Unweighted average;

  4. E

    Social Media Marketing Statistics By Sales, Usage, Platform, Content, AI and...

    • electroiq.com
    Updated Mar 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Electro IQ (2025). Social Media Marketing Statistics By Sales, Usage, Platform, Content, AI and Advertising [Dataset]. https://electroiq.com/stats/social-media-marketing-statistics/
    Explore at:
    Dataset updated
    Mar 24, 2025
    Dataset authored and provided by
    Electro IQ
    License

    https://electroiq.com/privacy-policyhttps://electroiq.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Social Media Marketing Statistics: Social media marketing is a key part of any digital marketing plan today. With over 50% of the world’s population using social media, brands need to be active on these platforms. But it’s not just about making profiles and posting content. Effective social media marketing involves keeping up with changing algorithms and trends and understanding the behaviors of your target audience. Social media’s interactive and engaging nature helps businesses connect with their audience in ways they couldn’t before.

    This opens up new opportunities for engaging with people, building the brand, and doing direct marketing. We shall shed more light on Social Media Marketing Statistics through this article.

  5. H

    Replication Data for: A Practical Method to Reduce Privacy Loss when...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raj Chetty; John Friedman (2022). Replication Data for: A Practical Method to Reduce Privacy Loss when Disclosing Statistics Based on Small Samples [Dataset]. http://doi.org/10.7910/DVN/RCHDXX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Raj Chetty; John Friedman
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RCHDXXhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RCHDXX

    Description

    This dataset contains replication files for "A Practical Method to Reduce Privacy Loss when Disclosing Statistics Based on Small Samples" by Raj Chetty and John Friedman. For more information, see https://opportunityinsights.org/paper/differential-privacy/. A summary of the related publication follows. Releasing statistics based on small samples – such as estimates of social mobility by Census tract, as in the Opportunity Atlas – is very valuable for policy but can potentially create privacy risks by unintentionally disclosing information about specific individuals. To mitigate such risks, we worked with researchers at the Harvard Privacy Tools Project and Census Bureau staff to develop practical methods of reducing the risks of privacy loss when releasing such data. This paper describes the methods that we developed, which can be applied to disclose any statistic of interest that is estimated using a sample with a small number of observations. We focus on the case where the dataset can be broken into many groups (“cells”) and one is interested in releasing statistics for one or more of these cells. Building on ideas from the differential privacy literature, we add noise to the statistic of interest in proportion to the statistic’s maximum observed sensitivity, defined as the maximum change in the statistic from adding or removing a single observation across all the cells in the data. Intuitively, our approach permits the release of statistics in arbitrarily small samples by adding sufficient noise to the estimates to protect privacy. Although our method does not offer a formal privacy guarantee, it generally outperforms widely used methods of disclosure limitation such as count-based cell suppression both in terms of privacy loss and statistical bias. We illustrate how the method can be implemented by discussing how it was used to release estimates of social mobility by Census tract in the Opportunity Atlas. We also provide a step-by-step guide and illustrative Stata code to implement our approach.

  6. Local authority housing statistics data returns for 2017 to 2018

    • gov.uk
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2020). Local authority housing statistics data returns for 2017 to 2018 [Dataset]. https://www.gov.uk/government/statistical-data-sets/local-authority-housing-statistics-data-returns-for-2017-to-2018
    Explore at:
    Dataset updated
    Jul 16, 2020
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    Dataset of all the data supplied by each local authority and imputed figures used for national estimates.

    This file is no longer being updated to include any late revisions local authorities may have reported to the department. Please use instead the Local authority housing statistics open data file for the latest data.

    https://assets.publishing.service.gov.uk/media/60e580d4e90e0764d3614396/Local_Authority_Housing_Statistics_data_returns_2017_to_2018_final.xlsx">Local authority housing statistics data returns for 2017 to 2018

    MS Excel Spreadsheet, 1.26 MB

    This file may not be suitable for users of assistive technology.

    Request an accessible format.
    If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
  7. TRMM Radar Rainfall Statistics L3 1 month (5 x 5) and (0.5 x 0.5) degree V7...

    • data.nasa.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +3more
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). TRMM Radar Rainfall Statistics L3 1 month (5 x 5) and (0.5 x 0.5) degree V7 (TRMM_3A25) at GES DISC [Dataset]. https://data.nasa.gov/dataset/trmm-radar-rainfall-statistics-l3-1-month-5-x-5-and-0-5-x-0-5-degree-v7-trmm-3a25-at-ges-d
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The new version of these data is in GPM-like format (consistent with the GPM Dual-frequency Radar data format), and can be found under the name GPM_3PR. This product consists of monthly statistics of the PR measurements at both a low (5 degrees x 5 degrees) and a high (0.5 degrees x 0.5 degrees) horizontal resolution. The low resolution grids are in the Planetary Grid 1 structure and include 1) mean and standard deviation of the rain rate, reflectivity, path-integrated attenuation (PIA), storm height, Xi, bright band height and the NUBF (Non-Uniform Beam Filling) correction; 2) rain fractions; 3) histograms of the storm height, bright-band height, snow-ice layer, reflectivity, rain rate, path-attenuation and NUBF correction; 4) correlation coefficients. The high resolution grids are in the Planetary Grid 2 structure and contain mean rain rate along with standard deviation and rain fractions.

  8. U

    United States Avg Weekly Earnings: 1982-84p: Utilities

    • ceicdata.com
    Updated Dec 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). United States Avg Weekly Earnings: 1982-84p: Utilities [Dataset]. https://www.ceicdata.com/en/united-states/current-employment-statistics-survey-real-average-weekly-and-hourly-earnings
    Explore at:
    Dataset updated
    Dec 8, 2019
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 1, 2018 - Jan 1, 2019
    Area covered
    United States
    Description

    Avg Weekly Earnings: 1982-84p: Utilities data was reported at 696.530 USD in Jan 2019. This records a decrease from the previous number of 699.100 USD for Dec 2018. Avg Weekly Earnings: 1982-84p: Utilities data is updated monthly, averaging 633.480 USD from Mar 2006 (Median) to Jan 2019, with 155 observations. The data reached an all-time high of 700.920 USD in Oct 2016 and a record low of 586.380 USD in Aug 2006. Avg Weekly Earnings: 1982-84p: Utilities data remains active status in CEIC and is reported by Bureau of Labor Statistics. The data is categorized under Global Database’s United States – Table US.G038: Current Employment Statistics Survey: Real Average Weekly and Hourly Earnings.

  9. g

    WISE NEA/COMET DISCOVERY STATISTICS | gimi9.com

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WISE NEA/COMET DISCOVERY STATISTICS | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_wise-nea-comet-discovery-statistics
    Explore at:
    Description

    These tables show discovery statistics for NEAs and comets discovered by NASA's WISE mission - now renamed to NEOWISE. The first small table shows the number of NEAs, PHAs (a sub-group of NEAs), and comets discovered to-date (within a day or two). The second table shows each object discovered, sorted by designation, with selected parameters describing the object's orbit. http://neo.jpl.nasa.gov/stats/wise/

  10. Czech Republic CZ: Time Spent Dealing with the Requirements of Government...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Czech Republic CZ: Time Spent Dealing with the Requirements of Government Regulations: % of Senior Management Time [Dataset]. https://www.ceicdata.com/en/czech-republic/company-statistics/cz-time-spent-dealing-with-the-requirements-of-government-regulations--of-senior-management-time
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2002 - Dec 1, 2019
    Area covered
    Czechia
    Variables measured
    Enterprises Statistics
    Description

    Czech Republic CZ: Time Spent Dealing with the Requirements of Government Regulations: % of Senior Management Time data was reported at 13.200 % in 2019. This records a decrease from the previous number of 13.800 % for 2013. Czech Republic CZ: Time Spent Dealing with the Requirements of Government Regulations: % of Senior Management Time data is updated yearly, averaging 10.400 % from Dec 2002 (Median) to 2019, with 5 observations. The data reached an all-time high of 13.800 % in 2013 and a record low of 1.700 % in 2002. Czech Republic CZ: Time Spent Dealing with the Requirements of Government Regulations: % of Senior Management Time data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Czech Republic – Table CZ.World Bank.WDI: Company Statistics. Time spent dealing with the requirements of government regulations is the proportion of senior management's time, in a typical week, that is spent dealing with the requirements imposed by government regulations (e.g., taxes, customs, labor regulations, licensing and registration, including dealings with officials, and completing forms).;World Bank, Enterprise Surveys (http://www.enterprisesurveys.org/).;Unweighted average;

  11. g

    Data.gouv.fr consultation statistics | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data.gouv.fr consultation statistics | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_5a22644f88ee3848529af925
    Explore at:
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    These datasets correspond to the daily statistics of the website data.gouv.fr cut out by year. The data comes from stats.data.gouv.fr and is compiled at the end of each year. Starting in 2020, the statistics of the site and the API are now separated. This dataset only applies to the site from 2020. Data before 2020 and from 2020 are not comparable. Documentation of the different columns is available here.

  12. Statistics on Money and Financial Markets - Table 340-45012 : Money Supply...

    • data.gov.hk
    Updated Nov 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2018). Statistics on Money and Financial Markets - Table 340-45012 : Money Supply (Hong Kong Dollar and Foreign Currency) | DATA.GOV.HK [Dataset]. https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-340-45012
    Explore at:
    Dataset updated
    Nov 11, 2018
    Dataset provided by
    data.gov.hk
    Area covered
    Hong Kong
    Description

    Statistics on Money and Financial Markets - Table 340-45012 : Money Supply (Hong Kong Dollar and Foreign Currency)

  13. s

    Statistics Finland Service Interface (WFS) Dataset Collection 2024 -...

    • store.smartdatahub.io
    Updated Nov 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Statistics Finland Service Interface (WFS) Dataset Collection 2024 - Datasets - This service has been deprecated - please visit https://www.smartdatahub.io/ to access data. See the About page for details. // [Dataset]. https://store.smartdatahub.io/dataset/fi_tilastokeskus_tilastointialueet_avi4500k_2024
    Explore at:
    Dataset updated
    Nov 11, 2024
    Area covered
    Finland
    Description

    This collection of datasets originates from the Statistics Center's service interface, known as Tilastokeskus (Statistics Finland), in Finland. The collection is composed of related data tables, with each table presenting a variety of related data in a structured format of columns and rows. The data in this collection is highly detailed and organized, providing a valuable resource for those seeking to understand specific statistical areas. The datasets in this collection are current as of 2024. This dataset is licensed under CC BY 4.0 (Creative Commons Attribution 4.0, https://creativecommons.org/licenses/by/4.0/deed.fi).

  14. T

    Japan New Job Offers

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Japan New Job Offers [Dataset]. https://tradingeconomics.com/japan/job-vacancies
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1960 - May 31, 2025
    Area covered
    Japan
    Description

    Job Vacancies in Japan decreased to 804.69 Thousand in May from 839.68 Thousand in April of 2025. This dataset provides - Japan Job Vacancies - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  15. s

    TikTok Revenue

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). TikTok Revenue [Dataset]. https://www.searchlogistics.com/learn/statistics/tiktok-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In 2020, TikTok brought in $33.4 billion in revenue.

  16. Regional trade in goods statistics by month dataset: December 2019

    • gov.uk
    Updated Mar 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Revenue & Customs (2020). Regional trade in goods statistics by month dataset: December 2019 [Dataset]. https://www.gov.uk/government/statistical-data-sets/regional-trade-in-goods-statistics-by-month-dataset-december-2019
    Explore at:
    Dataset updated
    Mar 17, 2020
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Revenue & Customs
    Description

    The following table contain EU and Non-EU import and export data for December 2019.

    https://assets.publishing.service.gov.uk/media/5e6b9fbd86650c7272f4c5c6/RTS_monthly_Dec_2019_Datasheet.xlsx">Regional trade in goods statistics by month dataset: December 2019

    MS Excel Spreadsheet, 65.5 KB

    This file may not be suitable for users of assistive technology.

    Request an accessible format.
    If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email different.format@hmrc.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
  17. f

    Data_Sheet_2_Dwarfs on the Shoulders of Giants: Bayesian Analysis With...

    • frontiersin.figshare.com
    • figshare.com
    xls
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anne Hecksteden; Sabrina Forster; Florian Egger; Felix Buder; Ralf Kellner; Tim Meyer (2023). Data_Sheet_2_Dwarfs on the Shoulders of Giants: Bayesian Analysis With Informative Priors in Elite Sports Research and Decision Making.xls [Dataset]. http://doi.org/10.3389/fspor.2022.793603.s002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Anne Hecksteden; Sabrina Forster; Florian Egger; Felix Buder; Ralf Kellner; Tim Meyer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    While sample sizes in elite sports are necessarily small, so are the effects that may be relevant. This conundrum is complicated by an understandable reluctance of athletes to comply with extensive study requirements. In Bayesian analyses, pre-existing knowledge (e.g., from sub-elite trials) can be formally included to supplement scarce data. Moreover, some design specifics for small sample research extend to the extreme case of a single subject. This provides the basis for actionable feedback (e.g., about individual responses) thereby incentivising participation. As a proof-of-concept, we conducted a replicated cross-over trial on the effect of cold-water immersion (CWI) on sprint performance recovery in soccer players. Times for 30 m linear sprint and the initial 5 m section, respectively, were measured by light gates before and 24 h after induction of fatigue. Data were analysed by Bayesian and by standard frequentist methods. Informative priors are based on a published metaanalysis. Seven players completed the trial. Sprint performance was 4.156 ± 0.193 s for 30 m linear sprint and 0.978 ± 0.064 s for the initial 5 m section. CWI improved recovery of sprint time for the initial 5 m section (difference to control: −0.060 ± 0.060 s, p = 0.004) but not for the full 30 m sprint (0.002 ± 0.115 s, p = 0.959), with general agreement between Bayesian and frequentist interval estimates. On the individual level, relevant differences between analytical approaches were present for most players. Changes in the two performance measures are correlated (p = 0.009) with a fairly good reproducibility of individual response patterns. Bayesian analyses with informative priors may be a practicable and meaningful option particularly for very small samples and when the analytical aim is decision making (use / don't use in the specific setting) rather than generalizable inference.

  18. o

    Annual statistics of the number of ships and types of goods on each berth -...

    • opendata.gov.jo
    Updated Apr 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Annual statistics of the number of ships and types of goods on each berth - Dataset - Open Government Data [Dataset]. https://opendata.gov.jo/dataset/annual-statistics-of-the-number-of-ships-and-types-of-goods-on-each-berth-2072-2023
    Explore at:
    Dataset updated
    Apr 26, 2023
    Description

    Annual statistics of the number of ships and types of goods (on each dock)

  19. N

    Williamstown, Massachusetts annual median income by work experience and sex...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Williamstown, Massachusetts annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a540ad75-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Williamstown, Massachusetts
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Williamstown town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Williamstown town, the median income for all workers aged 15 years and older, regardless of work hours, was $32,328 for males and $26,288 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 19% between the median incomes of males and females in Williamstown town. With women, regardless of work hours, earning 81 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetown of Williamstown town.

    - Full-time workers, aged 15 years and older: In Williamstown town, among full-time, year-round workers aged 15 years and older, males earned a median income of $133,906, while females earned $76,250, leading to a 43% gender pay gap among full-time workers. This illustrates that women earn 57 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Williamstown town offers better opportunities for women in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Williamstown town median household income by race. You can refer the same here

  20. N

    Rochester, IL Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Rochester, IL Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b24feec9-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Rochester, Illinois
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Rochester by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Rochester across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 51.82% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Rochester is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Rochester total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rochester Population by Race & Ethnicity. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stats NZ (2024). 2023 Census totals by topic for individuals by statistical area 2 – part 1 [Dataset]. https://datafinder.stats.govt.nz/layer/120897-2023-census-totals-by-topic-for-individuals-by-statistical-area-2-part-1/
Organization logo

2023 Census totals by topic for individuals by statistical area 2 – part 1

Explore at:
mapinfo tab, mapinfo mif, csv, dwg, pdf, geodatabase, shapefile, kml, geopackage / sqliteAvailable download formats
Dataset updated
Nov 25, 2024
Dataset provided by
Statistics New Zealandhttp://www.stats.govt.nz/
Authors
Stats NZ
License

https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

Area covered
Description

Dataset contains counts and measures for individuals from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.

The variables included in this dataset are for the census usually resident population count (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated).

The variables for part 1 of the dataset are:

  • Census usually resident population count
  • Census night population count
  • Age (5-year groups)
  • Age (life cycle groups)
  • Median age
  • Birthplace (NZ born/overseas born)
  • Birthplace (broad geographic areas)
  • Ethnicity (total responses) for level 1 and ‘Other Ethnicity’ grouped by ‘New Zealander’ and ‘Other Ethnicity nec’
  • Māori descent indicator
  • Languages spoken (total responses)
  • Official language indicator
  • Gender
  • Cisgender and transgender status – census usually resident population count aged 15 years and over
  • Sex at birth
  • Rainbow/LGBTIQ+ indicator for the census usually resident population count aged 15 years and over
  • Sexual identity for the census usually resident population count aged 15 years and over
  • Legally registered relationship status for the census usually resident population count aged 15 years and over
  • Partnership status in current relationship for the census usually resident population count aged 15 years and over
  • Number of children born for the sex at birth female census usually resident population count aged 15 years and over
  • Average number of children born for the sex at birth female census usually resident population count aged 15 years and over
  • Religious affiliation (total responses)
  • Cigarette smoking behaviour for the census usually resident population count aged 15 years and over
  • Disability indicator for the census usually resident population count aged 5 years and over
  • Difficulty communicating for the census usually resident population count aged 5 years and over
  • Difficulty hearing for the census usually resident population count aged 5 years and over
  • Difficulty remembering or concentrating for the census usually resident population count aged 5 years and over
  • Difficulty seeing for the census usually resident population count aged 5 years and over
  • Difficulty walking for the census usually resident population count aged 5 years and over
  • Difficulty washing for the census usually resident population count aged 5 years and over.

Download lookup file for part 1 from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

Footnotes

Te Whata

Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.

Geographical boundaries

Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

Subnational census usually resident population

The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

Population counts

Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.

Caution using time series

Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

Study participation time series

In the 2013 Census study participation was only collected for the census usually resident population count aged 15 years and over.

About the 2023 Census dataset

For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

Data quality

The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

Concept descriptions and quality ratings

Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.

Disability indicator

This data should not be used as an official measure of disability prevalence. Disability prevalence estimates are only available from the 2023 Household Disability Survey. Household Disability Survey 2023: Final content has more information about the survey.

Activity limitations are measured using the Washington Group Short Set (WGSS). The WGSS asks about six basic activities that a person might have difficulty with: seeing, hearing, walking or climbing stairs, remembering or concentrating, washing all over or dressing, and communicating. A person was classified as disabled in the 2023 Census if there was at least one of these activities that they had a lot of difficulty with or could not do at all.

Using data for good

Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

Confidentiality

The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

Measures

Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.

Percentages

To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.

Symbol

-997 Not available

-999 Confidential

Inconsistencies in definitions

Please note that there may be differences in definitions between census classifications and those used for other data collections.

Search
Clear search
Close search
Google apps
Main menu