Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset compiles the top 2500 datasets from Kaggle, encompassing a diverse range of topics and contributors. It provides insights into dataset creation, usability, popularity, and more, offering valuable information for researchers, analysts, and data enthusiasts.
Research Analysis: Researchers can utilize this dataset to analyze trends in dataset creation, popularity, and usability scores across various categories.
Contributor Insights: Kaggle contributors can explore the dataset to gain insights into factors influencing the success and engagement of their datasets, aiding in optimizing future submissions.
Machine Learning Training: Data scientists and machine learning enthusiasts can use this dataset to train models for predicting dataset popularity or usability based on features such as creator, category, and file types.
Market Analysis: Analysts can leverage the dataset to conduct market analysis, identifying emerging trends and popular topics within the data science community on Kaggle.
Educational Purposes: Educators and students can use this dataset to teach and learn about data analysis, visualization, and interpretation within the context of real-world datasets and community-driven platforms like Kaggle.
Column Definitions:
Dataset Name: Name of the dataset. Created By: Creator(s) of the dataset. Last Updated in number of days: Time elapsed since last update. Usability Score: Score indicating the ease of use. Number of File: Quantity of files included. Type of file: Format of files (e.g., CSV, JSON). Size: Size of the dataset. Total Votes: Number of votes received. Category: Categorization of the dataset's subject matter.
Facebook
Twitterhttps://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/
Case study: How does a bike-share navigate speedy success?
Scenario:
As a data analyst on Cyclistic's marketing team, our focus is on enhancing annual memberships to drive the company's success. We aim to analyze the differing usage patterns between casual riders and annual members to craft a marketing strategy aimed at converting casual riders. Our recommendations, supported by data insights and professional visualizations, await Cyclistic executives' approval to proceed.
About the company
In 2016, Cyclistic launched a bike-share program in Chicago, growing to 5,824 bikes and 692 stations. Initially, their marketing aimed at broad segments with flexible pricing plans attracting both casual riders (single-ride or full-day passes) and annual members. However, recognizing that annual members are more profitable, Cyclistic is shifting focus to convert casual riders into annual members. To achieve this, they plan to analyze historical bike trip data to understand the differences and preferences between the two user groups, aiming to tailor marketing strategies that encourage casual riders to purchase annual memberships.
Project Overview:
This capstone project is a culmination of the skills and knowledge acquired through the Google Professional Data Analytics Certification. It focuses on Track 1, which is centered around Cyclistic, a fictional bike-share company modeled to reflect real-world data analytics scenarios in the transportation and service industry.
Dataset Acknowledgment:
We are grateful to Motivate Inc. for providing the dataset that serves as the foundation of this capstone project. Their contribution has enabled us to apply practical data analytics techniques to a real-world dataset, mirroring the challenges and opportunities present in the bike-sharing sector.
Objective:
The primary goal of this project is to analyze the Cyclistic dataset to uncover actionable insights that could help the company optimize its operations, improve customer satisfaction, and increase its market share. Through comprehensive data exploration, cleaning, analysis, and visualization, we aim to identify patterns and trends that inform strategic business decisions.
Methodology:
Data Collection: Utilizing the dataset provided by Motivate Inc., which includes detailed information on bike usage, customer behavior, and operational metrics. Data Cleaning and Preparation: Ensuring the dataset is accurate, complete, and ready for analysis by addressing any inconsistencies, missing values, or anomalies. Data Analysis: Applying statistical methods and data analytics techniques to extract meaningful insights from the dataset.
Visualization and Reporting:
Creating intuitive and compelling visualizations to present the findings clearly and effectively, facilitating data-driven decision-making. Findings and Recommendations:
Conclusion:
The Cyclistic Capstone Project not only demonstrates the practical application of data analytics skills in a real-world scenario but also provides valuable insights that can drive strategic improvements for Cyclistic. Through this project, showcasing the power of data analytics in transforming data into actionable knowledge, underscoring the importance of data-driven decision-making in today's competitive business landscape.
Acknowledgments:
Special thanks to Motivate Inc. for their support and for providing the dataset that made this project possible. Their contribution is immensely appreciated and has significantly enhanced the learning experience.
STRATEGIES USED
Case Study Roadmap - ASK
●What is the problem you are trying to solve? ●How can your insights drive business decisions?
Key Tasks ● Identify the business task ● Consider key stakeholders
Deliverable ● A clear statement of the business task
Case Study Roadmap - PREPARE
● Where is your data located? ● Are there any problems with the data?
Key tasks ● Download data and store it appropriately. ● Identify how it’s organized.
Deliverable ● A description of all data sources used
Case Study Roadmap - PROCESS
● What tools are you choosing and why? ● What steps have you taken to ensure that your data is clean?
Key tasks ● Choose your tools. ● Document the cleaning process.
Deliverable ● Documentation of any cleaning or manipulation of data
Case Study Roadmap - ANALYZE
● Has your data been properly formaed? ● How will these insights help answer your business questions?
Key tasks ● Perform calculations ● Formatting
Deliverable ● A summary of analysis
Case Study Roadmap - SHARE
● Were you able to answer all questions of stakeholders? ● Can Data visualization help you share findings?
Key tasks ● Present your findings ● Create effective data viz.
Deliverable ● Supporting viz and key findings
**Case Study Roadmap - A...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General
For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.
Summary
A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains
30 completely labeled (segmented) images
71 partly labeled images
altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)
To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects
A set of metrics and a novel ranking score for respective meaningful method benchmarking
An evaluation of three baseline methods in terms of the above metrics and score
Abstract
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.
Dataset documentation:
We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:
FISBe Datasheet
Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.
Files
fisbe_v1.0_{completely,partly}.zip
contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.
fisbe_v1.0_mips.zip
maximum intensity projections of all samples, for convenience.
sample_list_per_split.txt
a simple list of all samples and the subset they are in, for convenience.
view_data.py
a simple python script to visualize samples, see below for more information on how to use it.
dim_neurons_val_and_test_sets.json
a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.
Readme.md
general information
How to work with the image files
Each sample consists of a single 3d MCFO image of neurons of the fruit fly.For each image, we provide a pixel-wise instance segmentation for all separable neurons.Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.The segmentation mask for each neuron is stored in a separate channel.The order of dimensions is CZYX.
We recommend to work in a virtual environment, e.g., by using conda:
conda create -y -n flylight-env -c conda-forge python=3.9conda activate flylight-env
How to open zarr files
Install the python zarr package:
pip install zarr
Opened a zarr file with:
import zarrraw = zarr.open(, mode='r', path="volumes/raw")seg = zarr.open(, mode='r', path="volumes/gt_instances")
Zarr arrays are read lazily on-demand.Many functions that expect numpy arrays also work with zarr arrays.Optionally, the arrays can also explicitly be converted to numpy arrays.
How to view zarr image files
We recommend to use napari to view the image data.
Install napari:
pip install "napari[all]"
Save the following Python script:
import zarr, sys, napari
raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")
viewer = napari.Viewer(ndisplay=3)for idx, gt in enumerate(gts): viewer.add_labels( gt, rendering='translucent', blending='additive', name=f'gt_{idx}')viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')napari.run()
Execute:
python view_data.py /R9F03-20181030_62_B5.zarr
Metrics
S: Average of avF1 and C
avF1: Average F1 Score
C: Average ground truth coverage
clDice_TP: Average true positives clDice
FS: Number of false splits
FM: Number of false merges
tp: Relative number of true positives
For more information on our selected metrics and formal definitions please see our paper.
Baseline
To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..For detailed information on the methods and the quantitative results please see our paper.
License
The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Citation
If you use FISBe in your research, please use the following BibTeX entry:
@misc{mais2024fisbe, title = {FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures}, author = {Lisa Mais and Peter Hirsch and Claire Managan and Ramya Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller}, year = 2024, eprint = {2404.00130}, archivePrefix ={arXiv}, primaryClass = {cs.CV} }
Acknowledgments
We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuablediscussions.P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.This work was co-funded by Helmholtz Imaging.
Changelog
There have been no changes to the dataset so far.All future change will be listed on the changelog page.
Contributing
If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.
All contributions are welcome!
Facebook
TwitterThis dataset contains 55,000 entries of synthetic customer transactions, generated using Python's Faker library. The goal behind creating this dataset was to provide a resource for learners like myself to explore, analyze, and apply various data analysis techniques in a context that closely mimics real-world data.
About the Dataset: - CID (Customer ID): A unique identifier for each customer. - TID (Transaction ID): A unique identifier for each transaction. - Gender: The gender of the customer, categorized as Male or Female. - Age Group: Age group of the customer, divided into several ranges. - Purchase Date: The timestamp of when the transaction took place. - Product Category: The category of the product purchased, such as Electronics, Apparel, etc. - Discount Availed: Indicates whether the customer availed any discount (Yes/No). - Discount Name: Name of the discount applied (e.g., FESTIVE50). - Discount Amount (INR): The amount of discount availed by the customer. - Gross Amount: The total amount before applying any discount. - Net Amount: The final amount after applying the discount. - Purchase Method: The payment method used (e.g., Credit Card, Debit Card, etc.). - Location: The city where the purchase took place.
Use Cases: 1. Exploratory Data Analysis (EDA): This dataset is ideal for conducting EDA, allowing users to practice techniques such as summary statistics, visualizations, and identifying patterns within the data. 2. Data Preprocessing and Cleaning: Learners can work on handling missing data, encoding categorical variables, and normalizing numerical values to prepare the dataset for analysis. 3. Data Visualization: Use tools like Python’s Matplotlib, Seaborn, or Power BI to visualize purchasing trends, customer demographics, or the impact of discounts on purchase amounts. 4. Machine Learning Applications: After applying feature engineering, this dataset is suitable for supervised learning models, such as predicting whether a customer will avail a discount or forecasting purchase amounts based on the input features.
This dataset provides an excellent sandbox for honing skills in data analysis, machine learning, and visualization in a structured but flexible manner.
This is not a real dataset. This dataset was generated using Python's Faker library for the sole purpose of learning
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterExplore the world of data visualization with this Power BI dataset containing HR Analytics and Sales Analytics datasets. Gain insights, create impactful reports, and craft engaging dashboards using real-world data from HR and sales domains. Sharpen your Power BI skills and uncover valuable data-driven insights with this powerful dataset. Happy analyzing!
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
🧠 data_jobs Dataset
A dataset of real-world data analytics job postings from 2023, collected and processed by Luke Barousse.
Background
I've been collecting data on data job postings since 2022. I've been using a bot to scrape the data from Google, which come from a variety of sources. You can find the full dataset at my app datanerd.tech.
Serpapi has kindly supported my work by providing me access to their API. Tell them I sent you and get 20% off paid plans.… See the full description on the dataset page: https://huggingface.co/datasets/lukebarousse/data_jobs.
Facebook
Twitter
According to our latest research, the AI-Generated Synthetic Tabular Dataset market size reached USD 1.42 billion in 2024 globally, reflecting the rapid adoption of artificial intelligence-driven data generation solutions across numerous industries. The market is expected to expand at a robust CAGR of 34.7% from 2025 to 2033, reaching a forecasted value of USD 19.17 billion by 2033. This exceptional growth is primarily driven by the increasing need for high-quality, privacy-preserving datasets for analytics, model training, and regulatory compliance, particularly in sectors with stringent data privacy requirements.
One of the principal growth factors propelling the AI-Generated Synthetic Tabular Dataset market is the escalating demand for data-driven innovation amidst tightening data privacy regulations. Organizations across healthcare, finance, and government sectors are facing mounting challenges in accessing and sharing real-world data due to GDPR, HIPAA, and other global privacy laws. Synthetic data, generated by advanced AI algorithms, offers a solution by mimicking the statistical properties of real datasets without exposing sensitive information. This enables organizations to accelerate AI and machine learning development, conduct robust analytics, and facilitate collaborative research without risking data breaches or non-compliance. The growing sophistication of generative models, such as GANs and VAEs, has further increased confidence in the utility and realism of synthetic tabular data, fueling adoption across both large enterprises and research institutions.
Another significant driver is the surge in digital transformation initiatives and the proliferation of AI and machine learning applications across industries. As businesses strive to leverage predictive analytics, automation, and intelligent decision-making, the need for large, diverse, and high-quality datasets has become paramount. However, real-world data is often siloed, incomplete, or inaccessible due to privacy concerns. AI-generated synthetic tabular datasets bridge this gap by providing scalable, customizable, and bias-mitigated data for model training and validation. This not only accelerates AI deployment but also enhances model robustness and generalizability. The flexibility of synthetic data generation platforms, which can simulate rare events and edge cases, is particularly valuable in sectors like finance and healthcare, where such scenarios are underrepresented in real datasets but critical for risk assessment and decision support.
The rapid evolution of the AI-Generated Synthetic Tabular Dataset market is also underpinned by technological advancements and growing investments in AI infrastructure. The availability of cloud-based synthetic data generation platforms, coupled with advancements in natural language processing and tabular data modeling, has democratized access to synthetic datasets for organizations of all sizes. Strategic partnerships between technology providers, research institutions, and regulatory bodies are fostering innovation and establishing best practices for synthetic data quality, utility, and governance. Furthermore, the integration of synthetic data solutions with existing data management and analytics ecosystems is streamlining workflows and reducing barriers to adoption, thereby accelerating market growth.
Regionally, North America dominates the AI-Generated Synthetic Tabular Dataset market, accounting for the largest share in 2024 due to the presence of leading AI technology firms, strong regulatory frameworks, and early adoption across industries. Europe follows closely, driven by stringent data protection laws and a vibrant research ecosystem. The Asia Pacific region is emerging as a high-growth market, fueled by rapid digitalization, government initiatives, and increasing investments in AI research and development. Latin America and the Middle East & Africa are also witnessing growing interest, particularly in sectors like finance and government, though market maturity varies across countries. The regional landscape is expected to evolve dynamically as regulatory harmonization, cross-border data collaboration, and technological advancements continue to shape market trajectories globally.
Facebook
Twitterhttp://www.apache.org/licenses/LICENSE-2.0http://www.apache.org/licenses/LICENSE-2.0
causRCA is a collection of time series datasets recorded from the CNC control of an industrial vertical lathe.
The datasets comprise real-world recordings from normal factory operation and labeled fault data from a hardware-in-the-loop simulation. The fault datasets come with labels for the underlying (simulated) cause of the failure, a labeled diagnosis, and a causal model of all variables in the datasets.
The extensive metadata and provided ground truth causal structure enable benchmarking of methods in causal discovery, root cause analysis, anomaly detection, and fault diagnosis in general.
data/
┣ real_op/
┣ dig_twin/
┃ ┣ exp_coolant/
┃ ┣ exp_hydraulics/
┃ ┗ exp_probe/
┣ expert_graph/
┗ README_DATASET.md
The data folder contains:
| (Sub-)graph | #Nodes | #Edges | #Datasets normal | #Datasets Fault | #Fault Scenarios | #Different Diagnoses | #Causing Variables |
| Lathe (Full graph) | 92 | 104 | 170 | 100 | 19 | 10 | 14 |
| --Probe | 11 | 15 | 170 | 34 | 6 | 3 | 2 |
| --Hydraulics | 17 | 18 | 170 | 41 | 9 | 5 | 6 |
| --Coolant | 15 | 10 | 170 | 25 | 4 | 2 | 6 |
| --(Other Vars) | 49 | 61 | 170 | - | - | - | - |
*datasets from normal operation contain all machine variables and therefore all subgraphs and their respective variables within it.
real_op)Data were recorded through an OPC UA interface during normal production cycles on a vertical lathe. These files capture baseline machine behavior under standard operating conditions, without induced or known faults.
dig_twin)A hardware-in-the-loop digital twin was developed by connecting the original machine controller to a real-time simulation. Faults (e.g., valve leaks, filter clogs) were injected by manipulating specific twin variables, providing known ground-truth causes. Data were recorded via the same OPC UA interface to ensure consistent structure.
Data was sampled via an OPC UA interface. The timestamps only reflect the published time of value change by the CNC and do not necessarily reflect the exact time of value changes.
Consequently, the chronological order of changes across different variables is not strictly guaranteed. This may impact time-series analyses that are highly sensitive to precise temporal ordering.
The authors gratefully acknowledge the contributions of:
During the preparation of the dataset, the author(s) used generative AI tools to enhance the dataset's applicability by structuring data in an accessible format with extensive metadata, assist in coding transformations, and draft description content. All AI-generated output was reviewed and edited under human oversight, and no original dataset content was created by AI.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset is a synthetic yet realistic representation of personal auto insurance data, crafted using real-world statistics. While actual insurance data is sensitive and unavailable for public use, this dataset bridges the gap by offering a safe and practical alternative for building robust data science projects.
Why This Dataset? - Realistic Foundation: Synthetic data generated from real-world statistical patterns ensures practical relevance. - Safe for Use: No personal or sensitive information—completely anonymized and compliant with data privacy standards. - Flexible Applications: Ideal for testing models, developing prototypes, and showcasing portfolio projects.
How You Can Use It: - Build machine learning models for predicting customer conversion and retention. - Design risk assessment tools or premium optimization algorithms. - Create dashboards to visualize trends in customer segmentation and policy data. - Explore innovative solutions for the insurance industry using a realistic data foundation.
This dataset empowers you to work on real-world insurance scenarios without compromising on data sensitivity.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
HPC-ODA is a collection of datasets acquired on production HPC systems, which are representative of several real-world use cases in the field of Operational Data Analytics (ODA) for the improvement of reliability and energy efficiency. The datasets are composed of monitoring sensor data, acquired from the components of different HPC systems depending on the specific use case. Two tools, whose overhead is proven to be very light, were used to acquire data in HPC-ODA: these are the DCDB and LDMS monitoring frameworks.
The aim of HPC-ODA is to provide several vertical slices (here named segments) of the monitoring data available in a large-scale HPC installation. The segments all have different granularities, in terms of data sources and time scale, and provide several use cases on which models and approaches to data processing can be evaluated. While having a production dataset from a whole HPC system - from the infrastructure down to the CPU core level - at a fine time granularity would be ideal, this is often not feasible due to the confidentiality of the data, as well as the sheer amount of storage space required. HPC-ODA includes 6 different segments:
Power Consumption Prediction: a fine-granularity dataset that was collected from a single compute node in a HPC system. It contains both node-level data as well as per-CPU core metrics, and can be used to perform regression tasks such as power consumption prediction.
Fault Detection: a medium-granularity dataset that was collected from a single compute node while it was subjected to fault injection. It contains only node-level data, as well as the labels for both the applications and faults being executed on the HPC node in time. This dataset can be used to perform fault classification.
Application Classification: a medium-granularity dataset that was collected from 16 compute nodes in a HPC system while running different parallel MPI applications. Data is at the compute node level, separated for each of them, and is paired with the labels of the applications being executed. This dataset can be used for tasks such as application classification.
Infrastructure Management: a coarse-granularity dataset containing cluster-wide data from a HPC system, about its warm water cooling system as well as power consumption. The data is at the rack level, and can be used for regression tasks such as outlet water temperature or removed heat prediction.
Cross-architecture: a medium-granularity dataset that is a variant of the Application Classification one, and shares the same ODA use case. Here, however, single-node configurations of the applications were executed on three different compute node types with different CPU architectures. This dataset can be used to perform cross-architecture application classification, or performance comparison studies.
DEEP-EST Dataset: this medium-granularity dataset was collected on the modular DEEP-EST HPC system and consists of three parts.These were collected on 16 compute nodes each, while running several MPI applications under different warm-water cooling configurations. This dataset can be used for CPU and GPU temperature prediction, or for thermal characterization.
The HPC-ODA dataset collection includes a readme document containing all necessary usage information, as well as a lightweight Python framework to carry out the ODA tasks described for each dataset.
Facebook
TwitterBackground: Chemicals in consumer products are a major contributor to human chemical co-exposures. Consumers purchase and use a wide variety of products containing potentially thousands of chemicals. There is a need to identify potential real-world chemical co-exposures in order to prioritize in vitro toxicity screening. However, due to the vast number of potential chemical combinations, this has been a major challenge. Objectives: We aim to develop and implement a data-driven procedure for identifying prevalent chemical combinations to which humans are exposed through purchase and use of consumer products. Methods: We applied frequent itemset mining on an integrated dataset linking consumer product chemical ingredient data with product purchasing data from sixty thousand households to identify chemical combinations resulting from co-use of consumer products. Results: We identified co-occurrence patterns of chemicals over all households as well as those specific to demographic groups based on race/ethnicity, income, education, and family composition. We also identified chemicals with the highest potential for aggregate exposure by identifying chemicals occurring in multiple products used by the same household. Lastly, a case study of chemicals active in estrogen and androgen receptor in silico models revealed priority chemical combinations co-targeting receptors involved in important biological signaling pathways. Discussion: Integration and comprehensive analysis of household purchasing data and product-chemical information provided a means to assess human near-field exposure and inform selection of chemical combinations for high-throughput screening in in vitro assays. This dataset is associated with the following publication: Stanfield, Z., C. Addington, K. Dionisio, D. Lyons, R. Tornero-Velez, K. Phillips, T. Buckley, and K. Isaacs. Mining of consumer product and purchasing data to identify potential chemical co-exposures.. ENVIRONMENTAL HEALTH PERSPECTIVES. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA, 129(6): N/A, (2021).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Synthetic Healthcare Dataset
Overview
This dataset is a synthetic healthcare dataset created for use in data analysis. It mimics real-world patient healthcare data and is intended for applications within the healthcare industry.
Data Generation
The data has been generated using the Faker Python library, which produces randomized and synthetic records that resemble real-world data patterns. It includes various healthcare-related fields such as patient… See the full description on the dataset page: https://huggingface.co/datasets/vrajakishore/dummy_health_data.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Real World Evidence Solutions Market size was valued at USD 1.30 Billion in 2024 and is projected to reach USD 3.71 Billion by 2032, growing at a CAGR of 13.92% during the forecast period 2026-2032.Global Real World Evidence Solutions Market DriversThe market drivers for the Real World Evidence Solutions Market can be influenced by various factors. These may include:Growing Need for Evidence-Based Healthcare: Real-world evidence (RWE) is becoming more and more important in healthcare decision-making, according to stakeholders such as payers, providers, and regulators. In addition to traditional clinical trial data, RWE solutions offer important insights into the efficacy, safety, and value of healthcare interventions in real-world situations.Growing Use of RWE by Pharmaceutical Companies: RWE solutions are being used by pharmaceutical companies to assist with market entry, post-marketing surveillance, and drug development initiatives. Pharmaceutical businesses can find new indications for their current medications, improve clinical trial designs, and convince payers and providers of the worth of their products with the use of RWE.Increasing Priority for Value-Based Healthcare: The emphasis on proving the cost- and benefit-effectiveness of healthcare interventions in real-world settings is growing as value-based healthcare models gain traction. To assist value-based decision-making, RWE solutions are essential in evaluating the economic effect and real-world consequences of healthcare interventions.Technological and Data Analytics Advancements: RWE solutions are becoming more capable due to advances in machine learning, artificial intelligence, and big data analytics. With the use of these technologies, healthcare stakeholders can obtain actionable insights from the analysis of vast and varied datasets, including patient-generated data, claims data, and electronic health records.Regulatory Support for RWE Integration: RWE is being progressively integrated into regulatory decision-making processes by regulatory organisations including the European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA). The FDA's Real-World Evidence Programme and the EMA's Adaptive Pathways and PRIority MEdicines (PRIME) programme are two examples of initiatives that are making it easier to incorporate RWE into regulatory submissions and drug development.Increasing Emphasis on Patient-Centric Healthcare: The value of patient-reported outcomes and real-world experiences in healthcare decision-making is becoming more widely acknowledged. RWE technologies facilitate the collection and examination of patient-centered data, offering valuable insights into treatment efficacy, patient inclinations, and quality of life consequences.Extension of RWE Use Cases: RWE solutions are being used in medication development, post-market surveillance, health economics and outcomes research (HEOR), comparative effectiveness research, and market access, among other healthcare fields. The necessity for a variety of RWE solutions catered to the needs of different stakeholders is being driven by the expansion of RWE use cases.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This document provides a clear and practical guide to understanding missing data mechanisms, including Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). Through real-world scenarios and examples, it explains how different types of missingness impact data analysis and decision-making. It also outlines common strategies for handling missing data, including deletion techniques and imputation methods such as mean imputation, regression, and stochastic modeling.Designed for researchers, analysts, and students working with real-world datasets, this guide helps ensure statistical validity, reduce bias, and improve the overall quality of analysis in fields like public health, behavioral science, social research, and machine learning.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Annotated Benchmark of Real-World Data for Approximate Functional Dependency Discovery
This collection consists of ten open access relations commonly used by the data management community. In addition to the relations themselves (please take note of the references to the original sources below), we added three lists in this collection that describe approximate functional dependencies found in the relations. These lists are the result of a manual annotation process performed by two independent individuals by consulting the respective schemas of the relations and identifying column combinations where one column implies another based on its semantics. As an example, in the claims.csv file, the AirportCode implies AirportName, as each code should be unique for a given airport.
The file ground_truth.csv is a comma separated file containing approximate functional dependencies. table describes the relation we refer to, lhs and rhs reference two columns of those relations where semantically we found that lhs implies rhs.
The file excluded_candidates.csv and included_candidates.csv list all column combinations that were excluded or included in the manual annotation, respectively. We excluded a candidate if there was no tuple where both attributes had a value or if the g3_prime value was too small.
Dataset References
Facebook
TwitterWe provide instructions, codes and datasets for replicating the article by Kim, Lee and McCulloch (2024), "A Topic-based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews." This repository provides a user-friendly R package for any researchers or practitioners to apply A Topic-based Segmentation Model with Unstructured Texts (latent class regression with group variable selection) to their datasets. First, we provide a R code to replicate the illustrative simulation study: see file 1. Second, we provide the user-friendly R package with a very simple example code to help apply the model to real-world datasets: see file 2, Package_MixtureRegression_GroupVariableSelection.R and Dendrogram.R. Third, we provide a set of codes and instructions to replicate the empirical studies of customer-level segmentation and restaurant-level segmentation with Yelp reviews data: see files 3-a, 3-b, 4-a, 4-b. Note, due to the dataset terms of use by Yelp and the restriction of data size, we provide the link to download the same Yelp datasets (https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset/versions/6). Fourth, we provided a set of codes and datasets to replicate the empirical study with professor ratings reviews data: see file 5. Please see more details in the description text and comments of each file. [A guide on how to use the code to reproduce each study in the paper] 1. Full codes for replicating Illustrative simulation study.txt -- [see Table 2 and Figure 2 in main text]: This is R source code to replicate the illustrative simulation study. Please run from the beginning to the end in R. In addition to estimated coefficients (posterior means of coefficients), indicators of variable selections, and segment memberships, you will get dendrograms of selected groups of variables in Figure 2. Computing time is approximately 20 to 30 minutes 3-a. Preprocessing raw Yelp Reviews for Customer-level Segmentation.txt: Code for preprocessing the downloaded unstructured Yelp review data and preparing DV and IVs matrix for customer-level segmentation study. 3-b. Instruction for replicating Customer-level Segmentation analysis.txt -- [see Table 10 in main text; Tables F-1, F-2, and F-3 and Figure F-1 in Web Appendix]: Code for replicating customer-level segmentation study with Yelp data. You will get estimated coefficients (posterior means of coefficients), indicators of variable selections, and segment memberships. Computing time is approximately 3 to 4 hours. 4-a. Preprocessing raw Yelp reviews_Restaruant Segmentation (1).txt: R code for preprocessing the downloaded unstructured Yelp data and preparing DV and IVs matrix for restaurant-level segmentation study. 4-b. Instructions for replicating restaurant-level segmentation analysis.txt -- [see Tables 5, 6 and 7 in main text; Tables E-4 and E-5 and Figure H-1 in Web Appendix]: Code for replicating restaurant-level segmentation study with Yelp. you will get estimated coefficients (posterior means of coefficients), indicators of variable selections, and segment memberships. Computing time is approximately 10 to 12 hours. [Guidelines for running Benchmark models in Table 6] Unsupervised Topic model: 'topicmodels' package in R -- after determining the number of topics(e.g., with 'ldatuning' R package), run 'LDA' function in the 'topicmodels'package. Then, compute topic probabilities per restaurant (with 'posterior' function in the package) which can be used as predictors. Then, conduct prediction with regression Hierarchical topic model (HDP): 'gensimr' R package -- 'model_hdp' function for identifying topics in the package (see https://radimrehurek.com/gensim/models/hdpmodel.html or https://gensimr.news-r.org/). Supervised topic model: 'lda' R package -- 'slda.em' function for training and 'slda.predict' for prediction. Aggregate regression: 'lm' default function in R. Latent class regression without variable selection: 'flexmix' function in 'flexmix' R package. Run flexmix with a certain number of segments (e.g., 3 segments in this study). Then, with estimated coefficients and memberships, conduct prediction of dependent variable per each segment. Latent class regression with variable selection: 'Unconstraind_Bayes_Mixture' function in Kim, Fong and DeSarbo(2012)'s package. Run the Kim et al's model (2012) with a certain number of segments (e.g., 3 segments in this study). Then, with estimated coefficients and memberships, we can do prediction of dependent variables per each segment. The same R package ('KimFongDeSarbo2012.zip') can be downloaded at: https://sites.google.com/scarletmail.rutgers.edu/r-code-packages/home 5. Instructions for replicating Professor ratings review study.txt -- [see Tables G-1, G-2, G-4 and G-5, and Figures G-1 and H-2 in Web Appendix]: Code to replicate the Professor ratings reviews study. Computing time is approximately 10 hours. [A list of the versions of R, packages, and computer...
Facebook
TwitterQuadrant provides Insightful, accurate, and reliable mobile location data.
Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.
These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.
We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.
We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.
Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.
Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Dirty Retail Store Sales dataset contains 12,575 rows of synthetic data representing sales transactions from a retail store. The dataset includes eight product categories with 25 items per category, each having static prices. It is designed to simulate real-world sales data, including intentional "dirtiness" such as missing or inconsistent values. This dataset is suitable for practicing data cleaning, exploratory data analysis (EDA), and feature engineering.
retail_store_sales.csv| Column Name | Description | Example Values |
|---|---|---|
Transaction ID | A unique identifier for each transaction. Always present and unique. | TXN_1234567 |
Customer ID | A unique identifier for each customer. 25 unique customers. | CUST_01 |
Category | The category of the purchased item. | Food, Furniture |
Item | The name of the purchased item. May contain missing values or None. | Item_1_FOOD, None |
Price Per Unit | The static price of a single unit of the item. May contain missing or None values. | 4.00, None |
Quantity | The quantity of the item purchased. May contain missing or None values. | 1, None |
Total Spent | The total amount spent on the transaction. Calculated as Quantity * Price Per Unit. | 8.00, None |
Payment Method | The method of payment used. May contain missing or invalid values. | Cash, Credit Card |
Location | The location where the transaction occurred. May contain missing or invalid values. | In-store, Online |
Transaction Date | The date of the transaction. Always present and valid. | 2023-01-15 |
Discount Applied | Indicates if a discount was applied to the transaction. May contain missing values. | True, False, None |
The dataset includes the following categories, each containing 25 items with corresponding codes, names, and static prices:
| Item Code | Item Name | Price |
|---|---|---|
| Item_1_EHE | Blender | 5.0 |
| Item_2_EHE | Microwave | 6.5 |
| Item_3_EHE | Toaster | 8.0 |
| Item_4_EHE | Vacuum Cleaner | 9.5 |
| Item_5_EHE | Air Purifier | 11.0 |
| Item_6_EHE | Electric Kettle | 12.5 |
| Item_7_EHE | Rice Cooker | 14.0 |
| Item_8_EHE | Iron | 15.5 |
| Item_9_EHE | Ceiling Fan | 17.0 |
| Item_10_EHE | Table Fan | 18.5 |
| Item_11_EHE | Hair Dryer | 20.0 |
| Item_12_EHE | Heater | 21.5 |
| Item_13_EHE | Humidifier | 23.0 |
| Item_14_EHE | Dehumidifier | 24.5 |
| Item_15_EHE | Coffee Maker | 26.0 |
| Item_16_EHE | Portable AC | 27.5 |
| Item_17_EHE | Electric Stove | 29.0 |
| Item_18_EHE | Pressure Cooker | 30.5 |
| Item_19_EHE | Induction Cooktop | 32.0 |
| Item_20_EHE | Water Dispenser | 33.5 |
| Item_21_EHE | Hand Blender | 35.0 |
| Item_22_EHE | Mixer Grinder | 36.5 |
| Item_23_EHE | Sandwich Maker | 38.0 |
| Item_24_EHE | Air Fryer | 39.5 |
| Item_25_EHE | Juicer | 41.0 |
| Item Code | Item Name | Price |
|---|---|---|
| Item_1_FUR | Office Chair | 5.0 |
| Item_2_FUR | Sofa | 6.5 |
| Item_3_FUR | Coffee Table | 8.0 |
| Item_4_FUR | Dining Table | 9.5 |
| Item_5_FUR | Bookshelf | 11.0 |
| Item_6_FUR | Bed F... |
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset compiles the top 2500 datasets from Kaggle, encompassing a diverse range of topics and contributors. It provides insights into dataset creation, usability, popularity, and more, offering valuable information for researchers, analysts, and data enthusiasts.
Research Analysis: Researchers can utilize this dataset to analyze trends in dataset creation, popularity, and usability scores across various categories.
Contributor Insights: Kaggle contributors can explore the dataset to gain insights into factors influencing the success and engagement of their datasets, aiding in optimizing future submissions.
Machine Learning Training: Data scientists and machine learning enthusiasts can use this dataset to train models for predicting dataset popularity or usability based on features such as creator, category, and file types.
Market Analysis: Analysts can leverage the dataset to conduct market analysis, identifying emerging trends and popular topics within the data science community on Kaggle.
Educational Purposes: Educators and students can use this dataset to teach and learn about data analysis, visualization, and interpretation within the context of real-world datasets and community-driven platforms like Kaggle.
Column Definitions:
Dataset Name: Name of the dataset. Created By: Creator(s) of the dataset. Last Updated in number of days: Time elapsed since last update. Usability Score: Score indicating the ease of use. Number of File: Quantity of files included. Type of file: Format of files (e.g., CSV, JSON). Size: Size of the dataset. Total Votes: Number of votes received. Category: Categorization of the dataset's subject matter.