Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The Geographic Information System (GIS) market is witnessing robust growth with its global market size projected to reach USD 25.7 billion by 2032, up from USD 8.7 billion in 2023, at a compound annual growth rate (CAGR) of 12.4% during the forecast period. This growth is primarily driven by the increasing integration of GIS technology across various industries to improve spatial data visualization, enhance decision-making, and optimize operations. The benefits offered by GIS in terms of accuracy, efficiency, and cost-effectiveness are convincing more sectors to adopt these systems, thereby expanding the market size significantly.
A major growth factor contributing to the GIS market expansion is the escalating demand for location-based services. As businesses across different sectors recognize the importance of spatial data analytics in driving strategic decisions, the reliance on GIS applications is becoming increasingly pronounced. The rise in IoT devices, coupled with the enhanced capabilities of AI and machine learning, has further fueled the demand for GIS solutions. These technologies enable the processing and analysis of large volumes of spatial data, thereby providing valuable insights that businesses can leverage for competitive advantage. In addition, government initiatives promoting the adoption of digital infrastructure and smart city projects are playing a crucial role in the growth of the GIS market.
The advancement in satellite imaging and remote sensing technologies is another key driver of the GIS market growth. With enhanced satellite capabilities, the precision and quality of geospatial data have significantly improved, making GIS applications more reliable and effective. The availability of high-resolution satellite imagery has opened new avenues in various sectors including agriculture, urban planning, and disaster management. Moreover, the decreasing costs of satellite data acquisition and the proliferation of drone technology are making GIS more accessible to small and medium enterprises, further expanding the market potential.
The advent of 3D Geospatial Technologies is revolutionizing the way industries utilize GIS data. By providing a three-dimensional perspective, these technologies enhance spatial analysis and visualization, offering more detailed and accurate representations of geographical areas. This advancement is particularly beneficial in urban planning, where 3D models can simulate cityscapes and infrastructure, allowing planners to visualize potential developments and assess their impact on the environment. Moreover, 3D geospatial data is proving invaluable in sectors such as construction and real estate, where it aids in site analysis and project planning. As these technologies continue to evolve, they are expected to play a pivotal role in the future of GIS, expanding its applications and driving further market growth.
Furthermore, the increasing application of GIS in environmental monitoring and management is bolstering market growth. With growing concerns over climate change and environmental degradation, GIS is being extensively used for resource management, biodiversity conservation, and natural disaster risk management. This trend is expected to continue as more organizations and governments prioritize sustainability, thereby driving the demand for advanced GIS solutions. The integration of GIS with other technologies such as big data analytics, and cloud computing is also expected to enhance its capabilities, making it an indispensable tool for environmental management.
Regionally, North America is currently leading the GIS market, driven by the widespread adoption of advanced technologies and the presence of major GIS vendors. The regionÂ’s focus on infrastructure development and smart city projects is further propelling the market growth. Europe is also witnessing significant growth owing to the increasing adoption of GIS in various industries such as agriculture and transportation. The Asia Pacific region is anticipated to exhibit the highest CAGR during the forecast period, attributed to rapid urbanization, government initiatives for digital transformation, and increasing investments in infrastructure development. In contrast, the markets in Latin America and the Middle East & Africa are growing steadily as these regions continue to explore and adopt GIS technologies.
<a href="https://dataintelo.com/report/geospatial-data-fusion-market" target="_blank&quo
The Digital Geomorphologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geomorphology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University, Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geomorphology_metadata.txt or sahi_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.1 meters or 16.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Surficial Geologic-GIS Map of the Stroudsburg Quadrangle, New Jersey and Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (stro_surficial_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (stro_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (stro_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (dewa_surficial_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (dewa_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (stro_surficial_geology_metadata_faq.pdf). Please read the dewa_surficial_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (stro_surficial_geology_metadata.txt or stro_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Excel dataset comprises surveyed information on the use of GIS and remote sensing platforms in climate justice initiatives, providing valuable insights from professionals and stakeholders in the field. This dataset forms the basis for the research paper, offering a comprehensive overview of current platforms / applications in addressing climate justice concerns.
Attend this session to find out how teachers are using GIS to engage students in hands-on learning.Engaging Secondary Students with Spatial Community Based ProjectsCory Munro, Saugeen District Secondary School, Bluewater District School BoardStudents become engaged when they collect and analyze data for projects that produce meaningful results. This session will briefly highlight the work of several student and class projects at the local and international level. Forming community partnerships in recent years has provided excellent opportunities for students to build their spatial analysis skills using ArcMap, ArcGIS Online, Survey123, Story Maps, and Collector for ArcGIS. Projects to be highlighted include mapping safe routes to school based on local infrastructure and student surveys, tracking school graduates and their post-secondary destinations, fire safety in Saugeen Shores, and more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset for paper published in Geomorphology, Volume 452 (1 May 2024)Zip file containing shape files for mapping of lakes in the Yana–Indigirka Lowland.AbstractThe purpose of this study is to investigate the environmental factors that influence the orientation of lakes and basins in continuous permafrost of the Yana–Indigirka Lowland, NE Siberia. In this area, 24,782 lakes each with an area of >10,000 m2 were digitized from Google Earth satellite imagery, and four categories of lakes and drained lake basins were identified in two sub-study areas from Sentinel 2 imagery. Regionally, the lakes show a single modal orientation east–west to ESE–WNW, which is broadly parallel to the prevailing wind from 80 to 90° recorded at the nearest meteorological stations during June–October, when the lakes are likely to have been partially or completely ice-free and therefore exposed to wave-induced currents. Regression analysis suggests that lake orientation tends to be strongest in flatter terrain (
On shallow rocky reefs in northeastern Aotearoa, New Zealand, urchin barrens are recognised as indicators of the ecosystem effects of overfishing reef predators. Yet, information on their extent and variability is lacking. We use aerial imagery to map the urchin barrens and kelp forests on reefs (<30 m depth) across seven locations, including within two long-established marine reserves and a marine protected area that allows recreational fishing. Urchin barrens were present in all locations and were restricted to reefs <10-16 m deep. This archive contains ArcGIS shapefiles and layer files for all of the maps used in this study. The study area extends from Cape Reinga in the far north of the North Island to Tawharanui in the Hauraki Gulf near Auckland. Regional scale base maps of the prominent marine habitats were included along with the seven fine-scale maps where the kelp forests and urchin barrens were mapped., The GIS shapefiles produced in this study were hand-drawn over layers of low-level aerial photography taken in specific conditions, which maximised the visible depth observable to create polygons to depict the habitat boundaries of the shallow reef. Of particular interest was the mapping of urchin barrens. Ground truthing surveys creating point data and underwater imagery were also brought into the GIS project to assist in drawing the reef habitat polygons. Arc layer files contain a common symbology across the seven study maps to aid the interpretation of the mapping. Further information on the methodology used in the mapping can be found in two published papers and four technical reports corresponding to the maps. The Readme file details where technical reports and published reports can be downloaded from the internet., , # GIS data of urchin barren mapping in Northeastern New Zealand
GIS mapping resources supporting the research article: Kerr, V.C. Grace R.V. (deceased), and Shears N.T., 2004. Estimating the extent of urchin barrens and kelp forest loss in northeastern Aotearoa, New Zealand. Kerr and Associates, Whangarei, New Zealand.
Four folders in this archive contain ArcGIS shapefiles with the extension (.shp). The shapefiles can be uploaded to ArcGIS or any ArcGIS-compatible software to view and access the files' spatial data and habitat attributes. It is essential to retain the associated files in each folder as these are system files required by ArcGIS to open and use the shapefiles. Each shapefile has six associated files with extensions: .avi, .CPG, .dbf, .prf, .sbn, and .sbx. In this archive are maps based on polygons drawn to depict habitat boundaries of biological and physical habitats in the shallow coastal areas of Northeastern New Zealan...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Literature review dataset
This table lists the surveyed papers concerning the application of spatial analysis, GIS (Geographic Information Systems) as well as general geographic approaches and geostatistics, to the assessment of CoViD-19 dynamics. The period of survey is from January 1st, 2020 to December 15th, 2020. The first column lists the reference. The second lists the date of publication (preferably, the date of online publication). The third column lists the Country or the Countries and/or the subnational entities investigated. The fourth column lists the epidemiological data utilized in each paper. The fifth column lists other types of data utilized for the analysis. The sixth column lists the more traditionally statistically-based methods, if utilized. The seventh column lists the geo-statistical, GIS or geographic methods, if utilized. The eight column sums up the findings of each paper. The papers are also classified within seven thematic categories. The full references are available at the end of the table in alphabetical order.
This table was the basis for the realization of a comprehensive geographic literature review. It aims to be a useful tool to ease the "due-diligence" activity of all the researchers interested in the spatial analysis of the pandemic.
The reference to cite the related paper is the following:
Pranzo, A.M.R., Dai Prà, E. & Besana, A. Epidemiological geography at work: An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year. GeoJournal (2022). https://doi.org/10.1007/s10708-022-10601-y
To read the manuscript please follow this link: https://doi.org/10.1007/s10708-022-10601-y
Infectious disease experts have predicted a pandemic, saying it was not a question of if but when. Drawing on experiences with severe acute respiratory syndrome (SARS), avian influenza (H5N1), and novel influenza A (H1N1), the World Health Organization (WHO) and other health authorities, such as the Centers for Disease Control and Prevention (CDC), urged nations and local governments to prepare pandemic response plans. Many ministries of health and subnational departments of health around the world have activated those plans in response to coronavirus and are sharing data as required by the updated International Health Regulations.Esri's work with health organizations and government leaders has proven location intelligence from geographic information system (GIS) technology and data to be critical for the following:Assessing risk and evaluating threatsMonitoring and tracking outbreaksMaintaining situational awarenessEnsuring resource allocationNotifying agencies and communitiesThe current coronavirus disease pandemic presents an opportunity to build on the experience and readiness of Esri's existing global user community in health and human services. Through real-time maps, apps, and dashboards, GIS will also facilitate a seamless flow of relevant data as a component of the response from local to global levels. A compelling case exists for building on top of the public health GIS foundation that is already in place both in the United States and around the world.After reading this paper, leadership and senior staff should understand the following:The necessity to apply location intelligence to public health processes in coronavirus responseHow GIS can support immediate and long-term actionWhat resources Esri provides its customers
Service layer is updated daily.For more information or to download layer see https://gis.ny.gov/gisdata/inventories/details.cfm?DSID=1272Download the metadata to learn more information about how the data was created and details about the attributes. Use the links within the metadata document to expand the sections of interest. http://gis.ny.gov/gisdata/metadata/nysdec.dmn.oil.gas.well.forportal_prod.xmlThis dataset contains locations of oil, gas, storage, solution salt, stratigraphic, geothermal, and other service wells. The Division of Mineral Resources maintains information and data on more than 40,000 wells, categorized under New York State Article 23 Regulated wells.
The Digital Geologic-GIS Map of the Maumee Quadrangle, Arkansas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (maum_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (maum_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (maum_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (buff_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (buff_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (maum_geology_metadata_faq.pdf). Please read the buff_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (maum_geology_metadata.txt or maum_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Map InformationThis nowCOAST updating map service provides maps depicting visible, infrared, and water vapor imagery composited from NOAA/NESDIS GOES-EAST and GOES-WEST. The horizontal resolutions of the IR, visible, and water vapor composite images are approximately 1km, 4km, and 4km, respectively. The visible and IR imagery depict the location of clouds. The water vapor imagery indicates the amount of water vapor contained in the mid to upper levels of the troposphere. The darker grays indicate drier air while the brighter grays/whites indicates more saturated air. The GOES composite imagers are updated in the nowCOAST map service every 30 minutes. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updatescheduleBackground InformationThe GOES map layer displays visible (VIS) and infrared (IR4) cloud, and water vapor (WV) imagery from the NOAA/ National Environmental Satellite, Data, and Information Service (NESDIS) Geostationary Satellites (GOES-East and GOES-West). These satellites circle the Earth in a geosynchronous orbit (i.e. orbit the equatorial plane of the Earth at a speed matching the rotation of the Earth). This allows the satellites to hover continuously over one position on the surface. The geosynchronous plane is about 35,800 km (22,300 miles) above the Earth which is high enough to allow the satellites a full-disc view of the Earth. GOES-East is positioned at 75 deg W longitude and the equator. GOES-West is located at 135 deg W and the equator. The two satellites cover an area from 20 deg W to 165 deg E. The images are derived from data from GOES' Imagers. An imager is a multichannel instrument that senses radiant energy and reflected solar energy from the Earth's surface and atmosphere. The VIS, IR4, and WV images are obtained from GOES Imager Channels 1, 4, and 3, respectively. The GOES raster images are obtained from NESDIS servers in geo-referenced Tagged-Image File Format (geoTIFF).Time InformationThis map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfoReferencesNOAA, 2013: Geostationary Operational Environmental Satellites (GOES). (Available at http://www.ospo.noaa.gov/Operations/GOES/index.html)A Basic Introduction to Water Vapor Imagery. (Available at http://cimss.ssec.wisc.edu/goes/misc/wv/wv_intro.html)CIMSS, 1996: Water Vapor Imagery Tutorial (Available at http://cimss.ssec.wisc.edu/goes/misc/wv/)
Story map outlining the GIS and Mappings Resource Support Sector of the GIS and Mapping Division, Government of Newfoundland and Labrador.
Open the Data Resource: https://gis.chesapeakebay.net/cross-git/overview/ This story map summarizes the data assembled and the scoring criteria recommended by the subject matter experts involved in the Chesapeake Bay Program's Cross-GIT Mapping Project. It also presents the composite results of the analyses. Access the Cross-GIT HUC-12 Conservation Composite: https://gis.chesapeakebay.net/ags/rest/services/InterGIT/HUC12_Cons_Composite/MapServer Access the Cross-GIT HUC-12 Restoration Composite: https://gis.chesapeakebay.net/ags/rest/services/InterGIT/HUC12_Rest_Composite/MapServer
The Digital Surficial Geologic-GIS Map of the Newton West Quadrangle, New Jersey is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (newe_surficial_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (newe_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (newe_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (dewa_surficial_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (dewa_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (newe_surficial_geology_metadata_faq.pdf). Please read the dewa_surficial_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: New Jersey Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (newe_surficial_geology_metadata.txt or newe_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tagged image tiles as well as the Faster-RCNN framework for automatic extraction of road intersection points from USGS historical maps of the United States of America. The data and code have been prepared for the paper entitled "Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks" submitted to "International Journal of Geographic Information Science". The image tiles have been tagged manually. The Faster RCNN framework (see https://arxiv.org/abs/1611.10012) was captured from:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
About this itemBack in 2017, I made a Cascade story map to compile GIS career resources for my current and future interns. Fast forward seven years, and I finally rebuilt it as an ArcGIS StoryMap. From job title descriptions to certifications and to salaries, it covers the main areas I find emerging professionals asking about when they're looking at a career in GIS. There are multiple shout outs to the Consortium in it too, of course.😎Author/ContributorJohn NergeOrganizationPersonal workOrg Websitehttps://bit.ly/JohnNerge
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
National forest roads allow access to public lands providing connections to natural and cultural heritage. Planning processes that address potential road closures or conversions can be highly contentious. Public participatory GIS (PPGIS) has been used as a tool to gather information for environmental planning and decision-making. Our PPGIS approach in a national forest in Washington (USA) incorporated workshops and online engagement with 1,810 participants to gather public input for sustainable roads planning. We identified the most important forest destinations and developed an analytical framework for assessing forest roads based on the density and diversity of use. In this paper, we summarize our PPGIS process and identify challenges faced in the application of socio-spatial data. A comparative analysis of road planning in other forests further highlights challenges in incorporating public use data. While the PPGIS process was valued for relationship-building, it is less evident how directly the socio-spatial data informed outcomes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract : The search for the most appropriate GIS data model to integrate, manipulate and analyse spatio-temporal data raises several research questions about the conceptualisation of geographic spaces. Although there is now a general consensus that many environmental phenomena require field and object conceptualisations to provide a comprehensive GIS representation, there is still a need for better integration of these dual representations of space within a formal spatio-temporal database. The research presented in this paper introduces a hybrid and formal dual data model for the representation of spatio-temporal data. The whole approach has been fully implemented in PostgreSQL and its spatial extension PostGIS, where the SQL language is extended by a series of data type constructions and manipulation functions to support hybrid queries. The potential of the approach is illustrated by an application to underwater geomorphological dynamics oriented towards the monitoring of the evolution of seabed changes. A series of performance and scalability experiments are also reported to demonstrate the computational performance of the model.Data Description : The data set used in our research is a set of bathymetric surveys recorded over three years from 2009 to 2011 as Digital Terrain Models (DTM) with 2m grid spacing. The first survey was carried out in February 2009 by the French hydrographic office, the second one was recorded on August-September 2010 and the third in July 2011, both by the “Institut Universitaire Européen de la Mer”.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.