By April 2026, it is projected that there is a probability of ***** percent that the United States will fall into another economic recession. This reflects a significant decrease from the projection of the preceding month.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
For 2024, various sources estimate that the Swiss GDP will increase by *******************. This is due to the hoped recovery from the recession expected in 2024.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
In 2024, the gross domestic product (GDP) of the United Kingdom grew by *** percent and is expected to grow by just *** percent in 2025 and by *** percent in 2026. Growth is expected to slow down to *** percent in 2027, and then grow by ***, and *** percent in 2027 and 2028 respectively. The sudden emergence of COVID-19 in 2020 and subsequent closure of large parts of the economy were the cause of the huge *** percent contraction in 2020, with the economy recovering somewhat in 2021, when the economy grew by *** percent. UK growth downgraded in 2025 Although the economy is still expected to grow in 2025, the *** percent growth anticipated in this forecast has been halved from *** percent in October 2024. Increased geopolitical uncertainty as well as the impact of American tariffs on the global economy are some of the main reasons for this mark down. The UK's inflation rate for 2025 has also been revised, with an annual rate of *** percent predicated, up from *** percent in the last forecast. Unemployment is also anticipated to be higher than initially thought, with the annual unemployment rate likely to be *** percent instead of *** percent. Long-term growth problems In the last two quarters of 2023, the UK economy shrank by *** percent in Q3 and by *** percent in Q4, plunging the UK into recession for the first time since the COVID-19 pandemic. Even before that last recession, however, the UK economy has been struggling with weak growth. Although growth since the pandemic has been noticeably sluggish, there has been a clear long-term trend of declining growth rates. The economy has consistently been seen as one of the most important issues to people in Britain, ahead of health, immigration and the environment. Achieving strong levels of economic growth is one of the main aims of the Labour government elected in 2024, although after almost one year in power it has so far proven elusive.
The Long Depression was, by a large margin, the longest-lasting recession in U.S. history. It began in the U.S. with the Panic of 1873, and lasted for over five years. This depression was the largest in a series of recessions at the turn of the 20th century, which proved to be a period of overall stagnation as the U.S. financial markets failed to keep pace with industrialization and changes in monetary policy. Great Depression The Great Depression, however, is widely considered to have been the most severe recession in U.S. history. Following the Wall Street Crash in 1929, the country's economy collapsed, wages fell and a quarter of the workforce was unemployed. It would take almost four years for recovery to begin. Additionally, U.S. expansion and integration in international markets allowed the depression to become a global event, which became a major catalyst in the build up to the Second World War. Decreasing severity When comparing recessions before and after the Great Depression, they have generally become shorter and less frequent over time. Only three recessions in the latter period have lasted more than one year. Additionally, while there were 12 recessions between 1880 and 1920, there were only six recessions between 1980 and 2020. The most severe recession in recent years was the financial crisis of 2007 (known as the Great Recession), where irresponsible lending policies and lack of government regulation allowed for a property bubble to develop and become detached from the economy over time, this eventually became untenable and the bubble burst. Although the causes of both the Great Depression and Great Recession were similar in many aspects, economists have been able to use historical evidence to try and predict, prevent, or limit the impact of future recessions.
The UK economy shrank by 0.1 percent in May 2025 after shrinking by 0.3 percent in April. Since a huge decline in GDP in April 2020, the UK economy has gradually recovered and is now around 4.4 percent larger than it was before the COVID-19 pandemic. After the initial recovery from the pandemic, however, the UK economy has effectively flatlined, fluctuating between low growth and small contractions since January 2022. Labour banking on growth to turn around fortunes in 2025 In February 2025, just over half a year after winning the last general election, the approval rating for the new Labour government fell to a low of -48 percent. Furthermore, the Prime Minister, Keir Starmer was not only less popular than the new Conservative leader, Kemi Badenoch, but also the leader of the Reform Party, Nigel Farage, whose party have surged in opinion polls recently. This remarkable decline in popularity for the new government is, in some part, due to a deliberate policy of making tough decisions early. Arguably, the most damaging of these policies was the withdrawal of the winter fuel allowance for some pensioners, although other factors such as a controversy about gifts and donations also hurt the government. While Labour aims to restore the UK's economic and political credibility in the long term, they will certainly hope for some good economic news sooner rather than later. Economy bounces back in 2024 after ending 2023 in recession Due to two consecutive quarters of negative economic growth, in late 2023 the UK economy ended the year in recession. After not growing at all in the second quarter of 2023, UK GDP fell by 0.1 percent in the third quarter, and then by 0.3 percent in the last quarter. For the whole of 2023, the economy grew by 0.4 percent compared to 2022, and for 2024 is forecast to have grown by 1.1 percent. During the first two quarters of 2024, UK GDP grew by 0.7 percent, and 0.4 percent, with this relatively strong growth followed by zero percent growth in the third quarter of the year. Although the economy had started to grow again by the time of the 2024 general election, this was not enough to save the Conservative government at the time. Despite usually seen as the best party for handling the economy, the Conservative's economic competency was behind that of Labour on the eve of the 2024 election.
This metadata record describes observed and predicted baseflow recession characteristics for 300 streamflow gauges in the western United States and 282 streamflow gauges in the eastern United States. Specifically, this record describes (1) the streamflow gauge locations (west or east) in the United States (Location), (2) the U.S. Geological Survey streamflow gauge identification numbers (USGS_Site_Identifier), (3) observed regions of similar aquifer hydraulic properties (7 regions coded by color: blue, green, red, purple, grey, pink, and orange) by k-means clustering method (Observed_Class(k-means)), (4) predicted regions of similar aquifer hydraulic properties by random forest classification models (Predicted_Class(k-means)), (5) calculated long-term baseflow recession constant at streamflow gauges (Observed_a-long[ft^(-3/2)s^(-1/2)]), (6) predicted long-term baseflow recession constant by novel empirical and physical approach (Predicted_a-long(Novel)[ft^(-3/2)s^(-1/2)]), (7) predicted long-term baseflow recession constant by random forest regression (Predicted_a-long(Random_Forest_Regression)[ft^(-3/2)s^(-1/2)]), (8) calculated short-term baseflow recession constant at streamflow gauges (Observed_a-short[sft^(-6)]), (9) predicted short-term baseflow recession constant by novel empirical and physical approach (Predicted_a-short(Novel)[sft^(-6)]), (10) predicted short-term baseflow recession constant by random forest regression (Predicted_a-short(Random_Forest_Regression)[sft^(-6)]). For more details for (3) to (10), please see Eng, K., Wolock, D. M., and Wieczorek, M., 2023, Predicting baseflow recession characteristics at ungauged locations using a physical and machine learning approach. The values entered for (5) to (10) are in scientific notation, and they are character strings that will require the user to convert numeric values using methods for their software or use case. The data are in a tab-delimited text format.
According to projections by a range of economic institutions, the economy of the Euro currency area is forecast to grow by between 0.5 percent and 1.2 percent in 2024. The Eurozone saw slow growth in 2023, when it grew by 0.7 percent - albeit this was significantly better than many economic forecasts which predicted a recession in the EU in that year. Across all the forecasts included, growth is expected to pick up in 2025, when the Eurozone's economy is expected to grow between 1.4 and 1.8 percent.
According to a survey carried out among banking professionals in the third quarter of 2022, more than half of the bank leaders believed that the U.S. economy was already in a recession or would be by the end of 2022. ** percent of the respondents expected a recession in the first half of 2023, while ** percent predicted a recession in the second half of 2023.
Across the United States, the United Kingdom, Germany, and the European Union, gross domestic products (GDP) decreased in 2020 as a result of the COVID-19 pandemic. However, by 2021, growth rates were positive in all four areas again. The United Kingdom, Germany, and the European Union all experiencing slow economic growth in 2023 amid high inflation, with Germany even seeing an economic recession. GDP and its components GDP refers to the total market value of all goods and services that are produced within a country per year. It is composed of government spending, consumption, business investments and net exports. It is an important indicator to measure the economic strength of a country. Economists rely on a variety of factors when predicting the future performance of the GDP. Inflation rate is one of the economic indicators providing insight into the future behavior of households, which make up a significant proportion of GDP. Projections are based on the past performance of such information. Future considerations Some factors can be more easily predicted than others. For example, projections of the annual inflation rate of the United States are easy to come by. However, the intensity and impact of something like Brexit is difficult to predict. Moreover, the occurrence and impact of events such as the COVID-19 pandemic and Russia's war in Ukraine is difficult to foresee. Hence, actual GDP growth may be higher or lower than the original estimates.
Forecasts for the UK economy is a monthly comparison of independent forecasts.
Please note that this is a summary of published material reflecting the views of the forecasting organisations themselves and does not in any way provide new information on the Treasury’s own views. It contains only a selection of forecasters, which is subject to review.
No significance should be attached to the inclusion or exclusion of any particular forecasting organisation. HM Treasury accepts no responsibility for the accuracy of material published in this comparison.
This month’s edition of the forecast comparison contains short-term forecasts for 2022 and 2023.
According to a poll conducted at the end of 2022, Americans were feeling quite pessimistic about the coming year. 90 percent of Americans felt negatively about the prospect of political conflict in 2023.
The Economy 2022 was a difficult year for many Americans, as it was for many around the world. After a year of high inflation, record fuel prices, and decreased financial security, the country greeted 2023 with high rates of skepticism and caution. Although the U.S. economy itself has experienced a strong rebound from the pandemic recession compared with other major economies, a sustained decline in consumer spending power thanks to wage growth not keeping pace with inflation has everyday Americans feeling the pinch.
U.S. political landscape The political scene in the U.S. also had a tumultuous few years in the lead up to 2023. The election of Donald Trump as the 45th President of the United States in 2016 left many voters reeling and the country more divided than ever. The beginning of 2021 was market by the January 6th attack on the Capitol, as well as the inauguration of Joe Biden. Additionally, the country continued to grapple with a politicized response to the COVID-19 pandemic and associated restrictions. 2022 began with the Russian invasion of Ukraine, ushering in the beginning of a global fuel and inflation crisis. In the midst of hardening economic conditions, the Supreme Court overturned its ruling on Roe v. Wade, returning the power to decide abortion restrictions to state legislatures.
The 2022 midterm elections saw Republicans win enough seats to take back control of the House of Representatives, but saw the GOP ultimately underperform compared to predictions at the time. The first day of the 2023 congressional term was marked by the inability of the Republican Party to unify itself behind one candidate for Speaker of the House, leading to a once in a century multi-round of Speaker elections. With new members of the House not able to be sworn in until a Speaker is elected, 2023 had a difficult start.
Haiti is expected to experience the worst economic recession in Latin America and the Caribbean in 2024. Haiti's gross domestic product (GDP) in 2024 is forecast to be 3 percent lower than the value registered in 2023, based on constant prices. Aside from Argentina, Haiti, and Puerto Rico, most economies in the region were likely to experience economic growth in 2024, most notably, Guyana.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
In the United States, consumer spending on media was estimated to amount to about *** billion U.S. dollars in 2022. According to the forecast scenarios, that annual value would surpass *** billion or stand just below *** billion dollars by 2027. What do the scenarios mean? In scenario A, the recession would only have a short-term impact on consumer media spending. At the height of the recession in 2023, consumers are expected to spend less on entertainment to offset rising energy and consumer product prices. The economy should begin to recover by 2024 and should be fully mended by 2027, with spending on media back to pre-pandemic levels.
Scenario B predicts a long-term impact of the recession on media consumption behavior. Ad-supported options will replace subscription-based offers, whereas on-and-off subscribing will increase, driven by special offers and consumers unsubscribing after those offers expire. Behavior changes will stick even after 2027 when the economy has fully recovered. Media usage today Media usage in the United States has already changed within just one year. Recent data from the beginning of 2023 shows that consumers opt for free entertainment choices. More people indicate watching free-on-demand TV, more of them also listen to the radio. Podcasts also gained in popularity, compared to the first quarter of 2022. Also fewer people say they don’t watch live TV, which is a potential sign of the growing popularity of free-ad-supported-TV (FAST) services as well.
Inflation is generally defined as the continued increase in the average prices of goods and services in a given region. Following the extremely high global inflation experienced in the 1980s and 1990s, global inflation has been relatively stable since the turn of the millennium, usually hovering between three and five percent per year. There was a sharp increase in 2008 due to the global financial crisis now known as the Great Recession, but inflation was fairly stable throughout the 2010s, before the current inflation crisis began in 2021. Recent years Despite the economic impact of the coronavirus pandemic, the global inflation rate fell to 3.26 percent in the pandemic's first year, before rising to 4.66 percent in 2021. This increase came as the impact of supply chain delays began to take more of an effect on consumer prices, before the Russia-Ukraine war exacerbated this further. A series of compounding issues such as rising energy and food prices, fiscal instability in the wake of the pandemic, and consumer insecurity have created a new global recession, and global inflation in 2024 is estimated to have reached 5.76 percent. This is the highest annual increase in inflation since 1996. Venezuela Venezuela is the country with the highest individual inflation rate in the world, forecast at around 200 percent in 2022. While this is figure is over 100 times larger than the global average in most years, it actually marks a decrease in Venezuela's inflation rate, which had peaked at over 65,000 percent in 2018. Between 2016 and 2021, Venezuela experienced hyperinflation due to the government's excessive spending and printing of money in an attempt to curve its already-high inflation rate, and the wave of migrants that left the country resulted in one of the largest refugee crises in recent years. In addition to its economic problems, political instability and foreign sanctions pose further long-term problems for Venezuela. While hyperinflation may be coming to an end, it remains to be seen how much of an impact this will have on the economy, how living standards will change, and how many refugees may return in the coming years.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Modular Data Centers Market Size 2024-2028
The global modular data centers market size is forecast to increase by USD 42.56 billion, at a CAGR of 19.8% between 2023 and 2028. The need to streamline traditional data centers is a major factor fueling market growth. Today, companies running single conventional data centers grapple with complex management and soaring capital costs due to sophisticated power and cooling systems. With the current economic recession, businesses are increasingly seeking cost-effective and scalable solutions. Modular data centers, with their standardized, portable designs, provide an ideal alternative that can be quickly deployed. Mobile network operators and colocation providers are among the leading users of these solutions. These modular setups are more environmentally friendly, thanks to their energy-efficient HVAC systems and IT equipment. As big data, AI, cloud computing, 5G, and IoT applications require higher operating temperatures, the flexibility and scalability of modular designs become even more crucial.
What will be the Size of the Market During the Forecast Period?
To learn more about this report, Download Report Sample
Market Segmentation
By End-user
IT and Telecom is the Leading Segment to Dominate the Market
The IT and telecom segment is estimated to witness significant growth during the forecast period. In the global market, Modular Data Centers hold a significant share, particularly in the IT and telecom sector. These centers are essential for providing the required computing power and storage for various applications and services in the industry. With the rise of cloud computing, the demand for data centers has escalated, as businesses seek to access resources without substantial capital expenditure. The IT and telecom segment was the largest and was valued at USD 4.02 billion in 2018. The influx of data from businesses and individuals necessitates data centers capable of handling vast amounts of information. Recession or not, Modular Data Centers offer scalability and rapid deployment, making them attractive to mobile network providers and data center colocation providers. Green data centers, with their standard design and cooling systems, are increasingly popular due to their energy efficiency. Big data, AI, cloud computing, 5G infrastructure, Internet of things, and cloud-based solutions are driving the market's growth.
For more details on other segments, Download Sample Report
North America Holds a Prominent Position in the Market
North America is estimated to contribute 30% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period. The Edge computing trend is driving the growth of the market in the US and Canada, particularly in the BFSI industry. Large enterprises are shifting towards energy-efficient data centers to minimize costs and CAPEX, opting for cloud solutions from hyperscale providers like AWS, Microsoft, and Oracle. As of 2021, the US hosts over 2,670 data centers, making it the global leader. Quicksilver Capital and the World Economic Forum highlight the importance of digital transformation in this context. These offer Scalable data centers for large enterprises, enabling them to meet their computing capacity requirements efficiently.
To understand geographic trends Download Report Sample
Market Dynamics and Customer Landscape
They have emerged as a popular solution for businesses seeking scalability and rapid deployment during times of economic uncertainty, such as a recession. These data centers utilize a modular design, allowing for easy expansion and contraction based on demand. Green data centers, which prioritize energy efficiency, are a key focus in the modular data center market. Mobile network providers and large enterprises are major consumers, as they require cloud-based networking and 5G infrastructure to support digital transformation initiatives. The solutions sub-segment and services segment of the modular data center market are expected to grow significantly, as businesses increasingly turn to cloud-based solutions for their data storage and processing needs. The World Economic Forum has the importance of energy-efficient data centers in reducing carbon emissions and mitigating the environmental impact of digitalization. Quicksilver Capital and other investors have shown interest in the modular data center market, recognizing its potential for innovation and growth. Overall, the modular data center market is poised for expansion, driven by the need for scalable, energy-efficient, and quickly deployable solutions.
Key Market Driver
Requirement to reduce complexity of traditional data centers is notably driving market growth. In today's business landscape, enterprises operating a single traditional data center face
By April 2026, it is projected that there is a probability of ***** percent that the United States will fall into another economic recession. This reflects a significant decrease from the projection of the preceding month.