92 datasets found
  1. Data from: Regional Geographies

    • psrc-psregcncl.hub.arcgis.com
    Updated May 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Puget Sound Regional Council (2022). Regional Geographies [Dataset]. https://psrc-psregcncl.hub.arcgis.com/datasets/regional-geographies/explore
    Explore at:
    Dataset updated
    May 3, 2022
    Dataset authored and provided by
    Puget Sound Regional Councilhttp://www.psrc.org/
    Area covered
    Description

    Regional Geographies, as designated in Vision 2050. Please note that this layer currently only shows areas within the Urban Growth Area. In VISION 2050’s Regional Growth Strategy, the region’s landscape has been divided into nine types of geographies based on their size, function, and access to high-capacity transit: • Metropolitan Cities (5 cities) and Core Cities (16 cities, including unincorporated Silverdale) include cities that have designated regional growth centers. Most are also connected to the region’s high-capacity transit system. These two groups of cities are and will be the most intensely urban places in the region. • High Capacity Transit Communities (34 cities and unincorporated communities) are cities and unincorporated areas that are connected to the regional high-capacity transit system. These urban unincorporated areas are also planned for annexation or incorporation. • Cities and Towns (42 cities) are cities and towns with smaller downtown and local centers, which may be served by local transit. • Urban Unincorporated Areas capture a wide variety of urban lands, both lightly and heavily developed. These areas may be served by local transit and may include areas identified as potential annexation or incorporation areas. • Rural Areas and Natural Resources Lands describe the different types of unincorporated areas outside the urban growth area and include very low-density housing, working landscapes, and open space. • Major Military Installations serve as hubs for both military and civilian employment and population. • Indian Reservation Lands are permanent homelands of sovereign tribal nations designated through treaty, Executive, or Congressional Acts and are the home of the region’s native cultures and traditions. Tribes also retain interests and ownership of off-reservation land.https://www.psrc.org/sites/default/files/vision-2050-mpp-rgs.pdf

  2. a

    2023 Census population change by age group and RC (clipped)

    • maps-by-statsnz.hub.arcgis.com
    Updated May 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics New Zealand (2024). 2023 Census population change by age group and RC (clipped) [Dataset]. https://maps-by-statsnz.hub.arcgis.com/datasets/StatsNZ::2023-census-population-change-by-age-group-and-rc?layer=0
    Explore at:
    Dataset updated
    May 29, 2024
    Dataset authored and provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The life-cycle age groups are:

    • under 15 years
    • 15 to 29 years
    • 30 to 64 years
    • 65 years and over.

    Map shows the percentage change in the census usually resident population count for life-cycle age groups between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or Stats NZ geographic data service.

    Footnotes

    Geographical boundaries
    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population
    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. 

    Caution using time series
    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset
    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality
    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable
    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Age concept quality rating
    Age is rated as very high quality.
    Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good
    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga".

    Confidentiality
    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

  3. Population and Household Statistics Analysed by District Council District -...

    • data.gov.hk
    Updated Jul 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2024). Population and Household Statistics Analysed by District Council District - Table 130-06801 : Domestic households by District Council district and household size [Dataset]. https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-130-06801
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    data.gov.hk
    Description

    Population and Household Statistics Analysed by District Council District - Table 130-06801 : Domestic households by District Council district and household size

  4. V

    City Council District Look Up

    • data.virginia.gov
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Beach (2025). City Council District Look Up [Dataset]. https://data.virginia.gov/dataset/city-council-district-look-up
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    City of Virginia Beach - Online Mapping
    Authors
    Virginia Beach
    Description

    GIS Web Map Application of the 10 City Council Voter Districts


    Search for an address to find out where it is located within one of the 10 City Council Voter Districts. These are the voter districts imposed by the U.S. District Court 2022.
    * Please note that the City of Virginia Beach is complying with the District Court’s ruling while simultaneously appealing the ruling to the U.S. Court of Appeals for the Fourth Circuit. These voter districts are also subject to pre-clearance approval by the Virginia Attorney General.

    If you don't know the voter district an address falls within, use one of these search methods:

    Click the search box and type in an address or choose Use current location
    Click within the map

    Results include Demographics for each voter district sourced from the US Census 2020 Public Law (P.L.) 94-171 Redistricting Files :
    Layer includes associated Demographics for each voter district sourced from the US Census 2020 Public Law (P.L.) 94-171 Redistricting Files:
    American Indian or Alaska Native: A person having origins in any of the original peoples of North and South America (including Central America), and who maintains tribal affiliation or community attachment.
    Asian: A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.
    Black or African American: A person having origins in any of the black racial groups of Africa.
    Hispanic or Latino: A person of Cuban, Mexican, Puerto Rican, South or Central American, or other Spanish culture or origin, regardless of race.
    Native Hawaiian or Other Pacific Islander: A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.
    White: A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.
    The Diversity Index: Provided from Esri derived from 2020 US Census data that represents the likelihood that two persons, chosen
    at random from the same area, belong to different race or ethnic groups. Ethnic
    diversity, as well as racial diversity, is included in their definition of the Diversity
    Index. Esri's diversity calculations accommodate up to seven race groups: six
    single-race groups (White, Black, American Indian, Asian, Pacific Islander, Some
    Other Race) and one multiple-race group (two or more races). Each race group
    is divided into two ethnic origins, Hispanic and non-Hispanic. If an area is
    ethnically diverse, then diversity is compounded.


  5. A

    Estimates and Forecasts FileGeoDataBase

    • data.amerigeoss.org
    html
    Updated Jan 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2020). Estimates and Forecasts FileGeoDataBase [Dataset]. https://data.amerigeoss.org/dataset/estimates-and-forecasts-filegeodatabase-5007a
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 13, 2020
    Dataset provided by
    United States
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    File Geodatabase with population, household, housing, job estimates and forecasts to support planning. See the data in action - click here.



    Sources are:
    • Small Area Estimates Program - 2010 Census Block Groups

    Annual totals for population, housing units and households since 2010 for 2010 census block groups in the City of Seattle as reported by the Washington State Office of Financial Management Small Area Estimates Program (SAEP). Includes calculation of change.

    These estimates are meant to provide a consistent set of small area population and housing data for statewide applications. SAEP estimates are generated for census areas and other areas of statewide significance.

    While these estimates are not the official estimate for revenue distribution, they are controlled to the jurisdiction totals and reflect the most timely and spatially refined estimates available.

    The SAEP estimates use different methods than similar estimates from the U.S. Census Bureau and therefore will be different from the various Census Bureau programs such as the American Community Survey and the Population Estimates Program. Please use caution when combining information from different sources.

    • Small Area Demographic Estimates - 2010 Census Tracts

    Annual totals for population by race for 2010 and 2016 by 2010 census tracts in the City of Seattle as reported by the Washington State Office of Financial Management Small Area Demographics Estimates Program (SADE). Includes calculation of change.

    These estimates are meant to provide a consistent set of small area population and housing data for statewide applications. SADE estimates are generated for census areas and other areas of statewide significance.

    While these estimates are not the official estimate for revenue distribution, they are controlled to the jurisdiction totals and reflect the most timely and spatially refined estimates available.

    The SADE estimates use different methods than similar estimates from the U.S. Census Bureau and therefore will be different from the various Census Bureau programs such as the American Community Survey and the Population Estimates Program. Please use caution when combining information from different sources.

    • Quarterly Census of Employment and Wages - 2010 Census Tracts

    Annual Quarterly Census of Employment and Wages (QCEW) covered employment reported by the Washington State Employment Security Department and reported for City of Seattle 2010 census tracts by the Puget Sound Regional Council.

    Published by the Washington State Employment Security Department, Quarterly Ce

  6. w

    Population Projections (City Area) - RTP 2023

    • data.wfrc.org
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Population Projections (City Area) - RTP 2023 [Dataset]. https://data.wfrc.org/datasets/b3b4e6cf89ce469cbbb78fa7fabc311c
    Explore at:
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  7. S

    Urban Rural 2025 Clipped

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). Urban Rural 2025 Clipped [Dataset]. https://datafinder.stats.govt.nz/layer/120964-urban-rural-2025-clipped/
    Explore at:
    mapinfo tab, pdf, kml, geopackage / sqlite, csv, mapinfo mif, geodatabase, dwg, shapefileAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates.

    This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2025 as defined by Stats NZ, clipped to the coastline. This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries. This version contains 689 UR areas, including 195 urban areas and 402 rural settlements.

    Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.

    The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.

    Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.

    Urban areas

    Urban areas are statistically defined areas with no administrative or legal basis. They are characterised by high population density with many built environment features where people and buildings are located close together for residential, cultural, productive, trade and social purposes.

    Urban areas are delineated using the following criteria. They:

    form a contiguous cluster of one or more SA2s,

    contain an estimated resident population of more than 1,000 people and usually have a population density of more than 400 residents or 200 address points per square kilometre,

    have a high coverage of built physical structures and artificial landscapes such as:

    • residential dwellings and apartments,

    • commercial structures, such as factories, office complexes, and shopping centres,

    • transport and communication facilities, such as airports, ports and port facilities, railway stations, bus stations and similar transport hubs, and communications infrastructure,

    • medical, education, and community facilities,

    • tourist attractions and accommodation facilities,

    • waste disposal and sewerage facilities,

    • cemeteries,

    • sports and recreation facilities, such as stadiums, golf courses, racecourses, showgrounds, and fitness centres,

    • green spaces, such as community parks, gardens, and reserves,

    have strong economic ties where people gather together to work, and for social, cultural, and recreational interaction,

    have planned development within the next 5–8 years.

    Urban boundaries are independent of local government and other administrative boundaries. However, the Richmond urban area, which is mainly in the Tasman District, is the only urban area that crosses territorial authority boundaries

    Rural areas

    Rural areas are classified as rural settlements or other rural.

    Rural settlements

    Rural settlements are statistically defined areas with no administrative or legal basis. A rural settlement is a cluster of residential dwellings about a place that usually contains at least one community or public building.

    Rural settlements are delineated using the following criteria. They:

    form a contiguous cluster of one or more SA1s,

    contain an estimated resident population of 200–1,000, or at least 40 residential dwellings,

    represent a reasonably compact area or have a visible centre of population with a population density of at least 200 residents per square kilometre or 100 address points per square kilometre,

    contain at least one community or public building, such as a church, school, or shop.

    To reach the target SA2 population size of more than 1,000 residents, rural settlements are usually included with other rural SA1s to form an SA2. In some instances, the settlement and the SA2 have the same name, for example, Kirwee rural settlement is part of the Kirwee SA2.

    Some rural settlements whose populations are just under 1,000 are a single SA2. Creating separate SA2s for these rural settlements allows for easy reclassification to urban areas if their populations grow beyond 1,000.

    Other rural

    Other rural areas are the mainland areas and islands located outside urban areas or rural settlements. Other rural areas include land used for agriculture and forestry, conservation areas, and regional and national parks. Other rural areas are defined by territorial authority.

    Water

    Bodies of water are classified separately, using the land/water demarcation classification described in the Statistical standard for meshblock. These water areas are not named and are defined by territorial authority or regional council.

    The water classes include:

    inland water – non-contiguous, defined by territorial authority,

    inlets (which also includes tidal areas and harbours) – non-contiguous, defined by territorial authority,

    oceanic – non-contiguous, defined by regional council.

    To minimise suppression of population data, separate meshblocks have been created for marinas. These meshblocks are attached to adjacent land in the UR geography.

    Non-digitised

    The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.

    6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.

    UR numbering and naming

    Each urban area and rural settlement is a single geographic entity with a name and a numeric code.

    Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.

    Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.

    Urban rural indicator (IUR)

    The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:

    • major urban area – 100,000 or more residents,

    • large urban area – 30,000–99,999 residents,

    • medium urban area – 10,000–29,999 residents,

    • small urban area – 1,000–9,999 residents.

    This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2025 Census population count moves them up or down a category.

    The indicators, by name, with their codes in brackets, are:

    urban area – major urban (11), large urban (12), medium urban (13), small urban (14),

    rural area – rural settlement (21), rural other (22),

    water – inland water (31), inlet (32), oceanic (33).

    Clipped Version

    This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries.

    High definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007.

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  8. w

    Population Projections (City Area) - RTP 2019

    • data.wfrc.org
    Updated Apr 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2019). Population Projections (City Area) - RTP 2019 [Dataset]. https://data.wfrc.org/datasets/population-projections-city-area-rtp-2019
    Explore at:
    Dataset updated
    Apr 17, 2019
    Dataset authored and provided by
    Wasatch Front Regional Council
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019: This dataset now includes projections for all populated statewide traffic analysis zones (TAZs). Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org. Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas. These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process. As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes. Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services; Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres). ‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  9. d

    Erosion Prone Land - Proposed Regional Plan (Decisions Version)

    • catalogue.data.govt.nz
    • hub.arcgis.com
    • +1more
    csv, esri rest +4
    Updated May 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Northland Regional Council (2020). Erosion Prone Land - Proposed Regional Plan (Decisions Version) [Dataset]. https://catalogue.data.govt.nz/dataset/activity/erosion-prone-land-proposed-regional-plan-decisions-version
    Explore at:
    zip, esri rest, csv, kml, html, geojsonAvailable download formats
    Dataset updated
    May 17, 2020
    Dataset provided by
    Northland Regional Council
    Description

    Erosion Prone Land
    Proposed Regional Plan (Decisions Version)
    • Highly erodible land

    If you would like more information about these datasets then please refer to Section I "Maps" in the Proposed Regional Plan.


    Appropriate Scale of Use 1:25,000
    Map version: Proposed Regional Plan - Decisions Version: 04 May 2019


    Also published as a vector tile service: Highly Erodible Land - Proposed Regional Plan (Decisions)



  10. a

    Michigan Association of Regions

    • gis-egle.hub.arcgis.com
    • gis-michigan.opendata.arcgis.com
    • +2more
    Updated May 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michigan Dept. of Environment, Great Lakes, and Energy (2023). Michigan Association of Regions [Dataset]. https://gis-egle.hub.arcgis.com/maps/egle::michigan-association-of-regions
    Explore at:
    Dataset updated
    May 2, 2023
    Dataset authored and provided by
    Michigan Dept. of Environment, Great Lakes, and Energy
    Area covered
    Description

    This data is used in the Materials Management Facilities Web App (Item Details). From the Michigan Association of Regions (MAR) website: "The Michigan Association of Regions is a state association of the fourteen (14) regional councils in Michigan. MAR consists of a policy board of local elected and appointed officials that meets periodically to discuss regional policy issues and programs, and adopts legislative positions. MAR also has an Executive Directors Committee that meets monthly. Member services consists of advocacy of regional programs, training and education, research, membership surveys, networking, as well as liaison to national associations, including the National Association of Regional Councils (NARC) and the National Association of Development Organizations (NADO).State Designated Planning and Development Regions are voluntary organizations comprised of local governments dedicated to serving the regional planning needs of multi-county areas in all parts of Michigan. They are a form of local government voluntarily created by their members, which are largely representative of local governments in the region; although membership also includes road authorities, nonprofit organizations and representatives of the business community in many regions.The land area of Michigan is divided into 14 planning & development regions with counties as the organizing unit. They range widely in size. Five have only three counties, while one has fourteen counties. The two smallest are only 1,711-13 square miles each in size, while the largest is 8,735 square miles in size. Population served varies from 57,510 persons to 4,833,493 based on Census estimates in 2000. Population density ranges from under 14 persons/square mile in Region 13 (Western U.P.), to over 1,043 persons/square mile in Region 1 (Southeast Michigan). The oldest of today’s regions, Tri-County Regional Planning Commission (Region 6 in Lansing, formed in 1956), and the three county Detroit Metropolitan Area Regional Planning Commission (formed in 1947and subsequently replaced by the Southeast Michigan Council of Governments in 1968 (SEMCOG, which covers seven counties in SE Michigan), originated out of a desire by local officials to coordinate transportation infrastructure planning and to serve as a forum for other regional issues."These boundaries are static and were digitized from boundaries shared on the Michigan Association of Regions (MAR) website in March 2023. They were digitized for inclusion on the Materials Management Division's facilities web map. For questions or comments, reach out to EGLE-Maps@Michigan.gov.

  11. Population of Scotland 2023, by council area

    • statista.com
    • ai-chatbox.pro
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of Scotland 2023, by council area [Dataset]. https://www.statista.com/statistics/865968/scottish-regional-population-estimates/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Scotland
    Description

    In 2023, there were approximately 631,970 people living in Glasgow, with a further 523,250 people living in the Scottish capital, Edinburgh, the first and second most-populated Scottish council areas respectively. The region of Fife is also heavily populated, with approximately 373,210 people living there. The least populated areas are the islands of Scotland such as Orkney, estimated to have only 22,000 people there.

  12. S

    Statistical Area 3 2025 Clipped

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2022). Statistical Area 3 2025 Clipped [Dataset]. https://datafinder.stats.govt.nz/layer/120966-statistical-area-3-2025-clipped/
    Explore at:
    kml, pdf, shapefile, geopackage / sqlite, csv, mapinfo tab, mapinfo mif, dwg, geodatabaseAvailable download formats
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates.

    This dataset is the definitive version of the annually released statistical area 3 (SA3) boundaries as at 1 January 2025 as defined by Stats NZ, clipped to the coastline. This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries. This version contains 873 SA3s, excluding 4 non-digitised SA3s.

    The SA3 geography aims to meet three purposes:

    1. approximate suburbs in major, large, and medium urban areas,

    2. in predominantly rural areas, provide geographical areas that are larger in area and population size than SA2s but smaller than territorial authorities,

    3. minimise data suppression.

    SA3s in major, large, and medium urban areas were created by combining SA2s to approximate suburbs as delineated in the Fire and Emergency NZ (FENZ) Localities dataset. Some of the resulting SA3s have very large populations.

    Outside of major, large, and medium urban areas, SA3s generally have populations of 5,000–10,000. These SA3s may represent either a single small urban area, a combination of small urban areas and their surrounding rural SA2s, or a combination of rural SA2s.

    Zero or nominal population SA3s

    To minimise the amount of unsuppressed data that can be provided in multivariate statistical tables, SA2s with fewer than 1,000 residents are combined with other SA2s wherever possible to reach the 1,000 SA3 population target. However, there are still a number of SA3s with zero or nominal populations.

    Small population SA2s designed to maintain alignment between territorial authority and regional council geographies are merged with other SA2s to reach the 5,000–10,000 SA3 population target. These merges mean that some SA3s do not align with regional council boundaries but are aligned to territorial authority.

    Small population island SA2s are included in their adjacent land-based SA3.

    Island SA2s outside territorial authority or region are the same in the SA3 geography.

    Inland water SA2s are aggregated and named by territorial authority, as in the urban rural classification.

    Inlet SA2s are aggregated and named by territorial authority or regional council where the water area is outside the territorial authority.

    Oceanic SA2s translate directly to SA3s as they are already aggregated to regional council.

    The 16 non-digitised SA2s are aggregated to the following 4 non-digitised SA3s (SA3 code; SA3 name):

    70001; Oceanic outside region, 70002; Oceanic oil rigs, 70003; Islands outside region, 70004; Ross Dependency outside region.

    SA3 numbering and naming

    Each SA3 is a single geographic entity with a name and a numeric code. The name refers to a suburb, recognised place name, or portion of a territorial authority. In some instances where place names are the same or very similar, the SA3s are differentiated by their territorial authority, for example, Hillcrest (Hamilton City) and Hillcrest (Rotorua District).

    SA3 codes have five digits. North Island SA3 codes start with a 5, South Island SA3 codes start with a 6 and non-digitised SA3 codes start with a 7. They are numbered approximately north to south within their respective territorial authorities. When first created in 2025, the last digit of each code was 0. When SA3 boundaries change in future, only the last digit of the code will change to ensure the north-south pattern is maintained.

    Clipped Version

    This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries.

    High-definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007.

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  13. w

    Traffic Analysis Zones (TAZ) (Wasatch Front)

    • data.wfrc.org
    Updated Dec 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2019). Traffic Analysis Zones (TAZ) (Wasatch Front) [Dataset]. https://data.wfrc.org/datasets/wfrc::traffic-analysis-zones-taz-wasatch-front/about
    Explore at:
    Dataset updated
    Dec 26, 2019
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    These are the Traffic Analysis Zones (TAZ) used in the Wasatch Front Travel Model. This dataset contains only basic geographic information about the zones.The Wasatch Front travel model region covers the urbanized portion of Weber, Davis, Salt Lake and Utah Counties and the portion of the Box Elder County from Brigham City South (Salt Lake City-West Valley City, Ogden-Layton, and Provo-Orem Urbanized Areas). The region is divided into 2,881 Traffic Analysis Zones (TAZ). TAZ boundaries are defined based on Census geographies (block, block group and tract). Care has been taken so that TAZ nest within Census tracts wherever possible in order for more direct matching with Census data. TAZ boundaries are also defined by major transportation facilities (such as roadways or rail lines), major environmental features (such as rivers), and with underlying land uses. The relative size of the TAZ was also a factor in deciding new TAZ boundaries if the zone size was large and the zone was thought to have a significant amount of socioeconomic activity. The size of TAZ varies from under 10 acres in the downtown to more than 100,000 acres in the mountain or lake zones. The average zone size is approximately 350 acres, which is a little over ½ square mile. Generally, TAZ in urban areas are smaller than in suburban and rural areas.

  14. f

    Population (by Atlanta City Council District) 2019

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Population (by Atlanta City Council District) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::population-by-atlanta-city-council-district-2019
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  15. S

    Statistical Area 3 2025

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2022). Statistical Area 3 2025 [Dataset]. https://datafinder.stats.govt.nz/layer/120967-statistical-area-3-2025/
    Explore at:
    pdf, geodatabase, mapinfo mif, mapinfo tab, csv, shapefile, geopackage / sqlite, dwg, kmlAvailable download formats
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates.

    This dataset is the definitive version of the annually released statistical area 3 (SA3) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 929 SA3s, including 4 non-digitised SA3s.

    The SA3 geography aims to meet three purposes:

    1. approximate suburbs in major, large, and medium urban areas,

    2. in predominantly rural areas, provide geographical areas that are larger in area and population size than SA2s but smaller than territorial authorities,

    3. minimise data suppression.

    SA3s in major, large, and medium urban areas were created by combining SA2s to approximate suburbs as delineated in the Fire and Emergency NZ (FENZ) Localities dataset. Some of the resulting SA3s have very large populations.

    Outside of major, large, and medium urban areas, SA3s generally have populations of 5,000–10,000. These SA3s may represent either a single small urban area, a combination of small urban areas and their surrounding rural SA2s, or a combination of rural SA2s.

    Zero or nominal population SA3s

    To minimise the amount of unsuppressed data that can be provided in multivariate statistical tables, SA2s with fewer than 1,000 residents are combined with other SA2s wherever possible to reach the 1,000 SA3 population target. However, there are still a number of SA3s with zero or nominal populations.

    Small population SA2s designed to maintain alignment between territorial authority and regional council geographies are merged with other SA2s to reach the 5,000–10,000 SA3 population target. These merges mean that some SA3s do not align with regional council boundaries but are aligned to territorial authority.

    Small population island SA2s are included in their adjacent land-based SA3.

    Island SA2s outside territorial authority or region are the same in the SA3 geography.

    Inland water SA2s are aggregated and named by territorial authority, as in the urban rural classification.

    Inlet SA2s are aggregated and named by territorial authority or regional council where the water area is outside the territorial authority.

    Oceanic SA2s translate directly to SA3s as they are already aggregated to regional council.

    The 16 non-digitised SA2s are aggregated to the following 4 non-digitised SA3s (SA3 code; SA3 name):

    70001; Oceanic outside region, 70002; Oceanic oil rigs, 70003; Islands outside region, 70004; Ross Dependency outside region.

    SA3 numbering and naming

    Each SA3 is a single geographic entity with a name and a numeric code. The name refers to a suburb, recognised place name, or portion of a territorial authority. In some instances where place names are the same or very similar, the SA3s are differentiated by their territorial authority, for example, Hillcrest (Hamilton City) and Hillcrest (Rotorua District).

    SA3 codes have five digits. North Island SA3 codes start with a 5, South Island SA3 codes start with a 6 and non-digitised SA3 codes start with a 7. They are numbered approximately north to south within their respective territorial authorities. When first created in 2025, the last digit of each code was 0. When SA3 boundaries change in future, only the last digit of the code will change to ensure the north-south pattern is maintained.

    High-definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  16. w

    Traffic Analysis Zones (TAZ) (Statewide)

    • data.wfrc.org
    • data-wfrc.opendata.arcgis.com
    Updated Dec 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2019). Traffic Analysis Zones (TAZ) (Statewide) [Dataset]. https://data.wfrc.org/datasets/traffic-analysis-zones-taz-statewide
    Explore at:
    Dataset updated
    Dec 30, 2019
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    These are the Traffic Analysis Zones (TAZ) used in the Statewide Travel Model. This dataset contains only basic geographic information about the zones.TAZ boundaries are defined based on Census geographies (block, block group and tract). Care has been taken so that TAZ nest within Census tracts wherever possible in order for more direct matching with Census data. TAZ boundaries are also defined by major transportation facilities (such as roadways or rail lines), major environmental features (such as rivers), and with underlying land uses. The relative size of the TAZ was also a factor in deciding new TAZ boundaries if the zone size was large and the zone was thought to have a significant amount of socioeconomic activity. The size of TAZ varies from under 10 acres in the downtown to more than 100,000 acres in the mountain or lake zones. The average zone size is approximately 350 acres, which is a little over ½ square mile. Generally, TAZ in urban areas are smaller than in suburban and rural areas.There are currently 5 travel model spaces in Utah: Cache MPO (2), Dixie MPO (3), Summit (4), UDOT rural areas (0), and the combined WFRC/MAG MPO (1) model space. The model space indicators shown in parentheses above are coded in the Subarea_ID field. As travel demand model software requires that each TAZ be uniquely identified starting with the number 1, each model space has assigned its own unique TAZ identifier numbering sequence which is coded into the SubAreaTAZID field. However, this rule also applies to the statewide travel model, which is an aggregation of all the TAZs from the five model spaces into a single layer. In this statewide layer, the TAZID field is the unique identifier for the Utah Statewide Travel Model (USTM). CO_TAZID is the field used to link each TAZ to its socioeconomic data. It is a combination of the County FIPS number and a TAZ identifier within the county or from within an MPO model space.

  17. f

    Income (by Atlanta City Council District) 2019

    • gisdata.fultoncountyga.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Feb 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Income (by Atlanta City Council District) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::income-by-atlanta-city-council-district-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  18. w

    All Jobs Projections (City Area) - RTP 2023

    • data.wfrc.org
    Updated May 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). All Jobs Projections (City Area) - RTP 2023 [Dataset]. https://data.wfrc.org/datasets/80ec4c5b704748cf9ae43ed41a01909b
    Explore at:
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  19. S

    Urban Rural 2023 Clipped (generalised)

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Nov 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2022). Urban Rural 2023 Clipped (generalised) [Dataset]. https://datafinder.stats.govt.nz/layer/111196-urban-rural-2023-clipped-generalised/
    Explore at:
    kml, geopackage / sqlite, csv, geodatabase, pdf, dwg, shapefile, mapinfo mif, mapinfo tabAvailable download formats
    Dataset updated
    Nov 30, 2022
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Urban rural 2023 update

    UR 2023 is the first major update of the geography since it was first created in 2018. The update is to ensure UR geographies are relevant and meet criteria before each five-yearly population and dwelling census. UR 2023 contains 13 new rural settlements and 7 new small urban areas. Updates were made to reflect real world change including new subdivisions and motorways, and to improve delineation of urban areas and rural settlements. The Wānaka urban area, whose population has grown to be more than 10,000 based on population estimates, has been reclassified to a medium urban area in the 2023 urban rural indicator.

    In the 2023 classification there are:

    • 7 major urban areas
    • 13 large urban areas
    • 23 medium urban areas
    • 152 small urban areas
    • 402 rural settlements.

    This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2023 as defined by Stats NZ (the custodian), clipped to the coastline. This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries. This version contains 689 UR areas, including 195 urban areas and 402 rural settlements.

    Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.

    The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.

    Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.

    Non-digitised

    The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.

    6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.

    UR numbering and naming

    Each urban area and rural settlement is a single geographic entity with a name and a numeric code.

    Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.

    Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.

    Urban rural indicator (IUR)

    The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:

    • major urban area – 100,000 or more residents,
    • large urban area – 30,000–99,999 residents,
    • medium urban area – 10,000–29,999 residents,
    • small urban area – 1,000–9,999 residents.

    This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2023 Census population count moves them up or down a category.

    The indicators, by name, with their codes in brackets, are:

    urban area – major urban (11), large urban (12), medium urban (13), small urban (14),

    rural area – rural settlement (21), rural other (22),

    water – inland water (31), inlet (32), oceanic (33).

    The urban rural indicator complements the urban rural geography and is an attribute in this dataset. Further information on the urban rural indicator is available on the Stats NZ classification and coding tool ARIA.

    For more information please refer to the Statistical standard for geographic areas 2023.

    Clipped version

    This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007.

    To download geographic classifications in table formats such as CSV please use Ariā

  20. w

    Population Projections (TAZ) - RTP 2023

    • data.wfrc.org
    Updated May 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Population Projections (TAZ) - RTP 2023 [Dataset]. https://data.wfrc.org/datasets/population-projections-taz-rtp-2023
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Puget Sound Regional Council (2022). Regional Geographies [Dataset]. https://psrc-psregcncl.hub.arcgis.com/datasets/regional-geographies/explore
Organization logo

Data from: Regional Geographies

Related Article
Explore at:
Dataset updated
May 3, 2022
Dataset authored and provided by
Puget Sound Regional Councilhttp://www.psrc.org/
Area covered
Description

Regional Geographies, as designated in Vision 2050. Please note that this layer currently only shows areas within the Urban Growth Area. In VISION 2050’s Regional Growth Strategy, the region’s landscape has been divided into nine types of geographies based on their size, function, and access to high-capacity transit: • Metropolitan Cities (5 cities) and Core Cities (16 cities, including unincorporated Silverdale) include cities that have designated regional growth centers. Most are also connected to the region’s high-capacity transit system. These two groups of cities are and will be the most intensely urban places in the region. • High Capacity Transit Communities (34 cities and unincorporated communities) are cities and unincorporated areas that are connected to the regional high-capacity transit system. These urban unincorporated areas are also planned for annexation or incorporation. • Cities and Towns (42 cities) are cities and towns with smaller downtown and local centers, which may be served by local transit. • Urban Unincorporated Areas capture a wide variety of urban lands, both lightly and heavily developed. These areas may be served by local transit and may include areas identified as potential annexation or incorporation areas. • Rural Areas and Natural Resources Lands describe the different types of unincorporated areas outside the urban growth area and include very low-density housing, working landscapes, and open space. • Major Military Installations serve as hubs for both military and civilian employment and population. • Indian Reservation Lands are permanent homelands of sovereign tribal nations designated through treaty, Executive, or Congressional Acts and are the home of the region’s native cultures and traditions. Tribes also retain interests and ownership of off-reservation land.https://www.psrc.org/sites/default/files/vision-2050-mpp-rgs.pdf

Search
Clear search
Close search
Google apps
Main menu