These data were compiled to perform analyses of hydrologic change, changes in sediment transport, and channel change within Moenkopi Wash, Arizona. Objective(s) of our study were to quantify the magnitude and timing of changes in hydrology, sediment transport, and channel form within Moenkopi Wash and to determine the downstream effects of those changes on sediment delivery downstream to the Little Colorado River, and the Colorado River. These data represent instantaneous discharge records, suspended-sediment sample records, topographic survey data, historical aerial imagery, and channel polygons and centerlines mapped on the historical imagery. Instantaneous discharge records in this study began in 1926 and extend to 2022 and were collected at 5 different stream gages within Moenkopi Wash. Suspended-sediment samples were collected between 1948 and 2022 at four stream gage locations. Topographic datasets were collected by field surveys between 1940 and 2016 at five stream gage locations. Aerial imagery datasets were collected in the 1930s, 1952, 1968, 1979, 1992, 1997, 2007, 2013, and 2019. The 1968 and 1979 aerial imagery was collected by the U. S. Geological Survey. The 1952 imagery was collected by the U.S. Army Map Service. The 1992 and 1997 imagery were collected by the National Aerial Imagery Program. The 2007, 2013 and 2019 aerial images were collected by the National Agricultural Program. These data can be used to analyze changes in hydrology, sediment transport, and channel change within Moenkopi Wash.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
This submission contains a number of maps and shapefiles related to the Utah FORGE site. Examples include geologic maps (several variations) and GIS data for the Utah FORGE site outline. All data are georeferenced to UTM, zone 12N, NAD 83, NAVD 88.
A polyline feature class representing contour lines at 10 foot intervals for the City of Alexandria, Virginia. Data captured by consultant during 2017 VBMP planimetric project. The imagey used was 3 inch pixels.
Important Note: This item is in mature support as of June 2021 and is no longer updated.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
2 foot contours (2008) provided as shapefile. This dataset may delay in downloading. Optionally download geodatabase. This dataset contains locations and attributes of 2-ft interval topography data, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. In addition to the 2-ft contour data ancillary datasets containing an ESRI geodatabase of masspoints and breaklines.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
PLEASE NOTE: These data do not include data over Tasmania. Please see links relevant to that area.
GEODATA TOPO 250K Series 3 is a vector representation of the major topographic features appearing on the 1:250,000 scale NATMAPs supplied in KML format and is designed for use in a range of commercial GIS software. Data is arranged within specific themes. All data is based on the GDA94 coordinate system.
GEODATA TOPO 250K Series 3 is available as a free download product in Personal Geodatabase, ArcView Shapefile or MapInfo TAB file formats. Each package includes data arranged in ten main themes - cartography, elevation, framework, habitation, hydrography, infrastructure, terrain, transport, utility and vegetation. Data is also available as GEODATA TOPO 250K Series 3 for Google Earth in kml format for use on Google Earth TM Mapping Service.
Product Specifications
Themes: Cartography, Elevation, Framework, Habitation, Hydrography, Infrastructure, Terrain, Transport, Utility and Vegetation
Coverage: National (Powerlines not available in South Australia)
Currency: Data has a currency of less than five years for any location
Coordinates: Geographical
Datum: Geocentric Datum of Australia (GDA94)
Formats: Personal Geodatabase, kml, Shapefile and MapInfo TAB
Release Date: 26 June 2006
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interesting, largely unexplored data analysis and information retrieval opportunities exist for GIS data. In their current form, traditional data usage patterns for data persisted in shapefiles or spatially-enabled relational databases are limited. Opportunities exist to achieve ESIP’s Winter 2019 theme of ‘increasing the use and value of Earth science data and information’ by transforming geospatial data from their original formats into their Resource Description Framework (RDF) manifestation. This work establishes an innovative workflow enabling the publication for Geospatial data persisted in geospatially enabled databases (PostGIS and MonetDB), ESRI shapefiles and XML, GML, KML, JSON, GeoJSON and CSV documents as graphs of linked open geospatial data. This affords the capability to identify implicit connections between related data that wasn't previously linked e.g. automating the detection of features present within large hydrography datasets as well as smaller regional examples and resolving features in a consistent fashion. This previously unavailable capability is achieved through the use of a semantic technology stack which leverages well matured standards within the Semantic Web space such as RDF as the data model, GeoSPARQL as the data access language and International Resource Identifier’s (IRI) for uniquely identifying and referencing entities such as rivers, streams and other water bodies. In anticipation of NASA’s forthcoming Surface Water Ocean Topography (SWOT – https://swot.jpl.nasa.gov) mission, which once launched in 2021 will make NASA’s first-ever global survey of Earth’s surface water, this work uses Hydrography data products (USGS’s National Hydrography Dataset and other topically relevant examples) as the topic matter. The compelling result is a new, innovative data analysis and information retrieval capability which will increases the use and value of Earth science data (GIS) and information. This presentation was given at the Earth Science Information Partners (ESIP) Winter Meeting in January 2019.
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://creativecommons.org/licenses/http://creativecommons.org/licenses/
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent.
Data is downloadable in various distribution formats.
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://creativecommons.org/licenses/http://creativecommons.org/licenses/
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent.
Data is downloadable in various distribution formats.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project involved a detailed topographic and land use survey in Center for Water Resources and Environmental Studies, countryside of São Carlos-SP, Brazil, employing advanced technologies like Metashape and Geographic Information Systems (GIS). The survey aimed to accurately map the terrain and assess land use patterns within the specified area. Utilizing Metashape for precise photogrammetry and GIS for spatial analysis, the project provided critical insights into the topographical features and land use. This data is essential for urban planning, environmental management, and future development initiatives in the region.
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated:
The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://creativecommons.org/licenses/http://creativecommons.org/licenses/
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent.
Data is downloadable in various distribution formats.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
These data were compiled to perform analyses of hydrologic change, changes in sediment transport, and channel change within Moenkopi Wash, Arizona. Objective(s) of our study were to quantify the magnitude and timing of changes in hydrology, sediment transport, and channel form within Moenkopi Wash and to determine the downstream effects of those changes on sediment delivery downstream to the Little Colorado River, and the Colorado River. These data represent instantaneous discharge records, suspended-sediment sample records, topographic survey data, historical aerial imagery, and channel polygons and centerlines mapped on the historical imagery. Instantaneous discharge records in this study began in 1926 and extend to 2022 and were collected at 5 different stream gages within Moenkopi Wash. Suspended-sediment samples were collected between 1948 and 2022 at four stream gage locations. Topographic datasets were collected by field surveys between 1940 and 2016 at five stream gage locations. Aerial imagery datasets were collected in the 1930s, 1952, 1968, 1979, 1992, 1997, 2007, 2013, and 2019. The 1968 and 1979 aerial imagery was collected by the U. S. Geological Survey. The 1952 imagery was collected by the U.S. Army Map Service. The 1992 and 1997 imagery were collected by the National Aerial Imagery Program. The 2007, 2013 and 2019 aerial images were collected by the National Agricultural Program. These data can be used to analyze changes in hydrology, sediment transport, and channel change within Moenkopi Wash.