7 datasets found
  1. US Cost of Living Dataset (1877 Counties)

    • kaggle.com
    zip
    Updated Feb 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    asaniczka (2024). US Cost of Living Dataset (1877 Counties) [Dataset]. https://www.kaggle.com/datasets/asaniczka/us-cost-of-living-dataset-3171-counties
    Explore at:
    zip(1282159 bytes)Available download formats
    Dataset updated
    Feb 17, 2024
    Authors
    asaniczka
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    The US Family Budget Dataset provides insights into the cost of living in different US counties based on the Family Budget Calculator by the Economic Policy Institute (EPI).

    This dataset offers community-specific estimates for ten family types, including one or two adults with zero to four children, in all 1877 counties and metro areas across the United States.

    Interesting Task Ideas:

    1. See how family budgets compare to the federal poverty line and the Supplemental Poverty Measure in different counties.
    2. Look into the money challenges faced by different types of families using the budgets provided.
    3. Find out which counties have the most affordable places to live, food, transportation, healthcare, childcare, and other things people need.
    4. Explore how the average income of families relates to the overall cost of living in different counties.
    5. Investigate how family size affects the estimated budget and find counties where bigger families have higher costs.
    6. Create visuals showing how the cost of living varies across different states and big cities.
    7. Check whether specific counties are affordable for families of different sizes and types.
    8. Use the dataset to compare living standards and economic security in different US counties.

    If you find this dataset valuable, don't forget to hit the upvote button! 😊💝

    Checkout my other datasets

    Employment-to-Population Ratio for USA

    Productivity and Hourly Compensation

    130K Kindle Books

    900K TMDb Movies

    USA Unemployment Rates by Demographics & Race

    Photo by Alev Takil on Unsplash

  2. a

    Average Household Income in the United States-Copy

    • umn.hub.arcgis.com
    Updated Dec 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Minnesota (2022). Average Household Income in the United States-Copy [Dataset]. https://umn.hub.arcgis.com/maps/87822c1c7dda498fbc04bb27ecc10942
    Explore at:
    Dataset updated
    Dec 10, 2022
    Dataset authored and provided by
    University of Minnesota
    Area covered
    Description

    This map shows the average household income in the U.S. in 2022 in a multiscale map by country, state, county, ZIP Code, tract, and block group. Information for the average household income is an estimate of income for calendar year 2022. Income amounts are expressed in current dollars, including an adjustment for inflation or cost-of-living increases.The pop-up is configured to include the following information for each geography level:Average household incomeMedian household incomeCount of households by income groupAverage household income by householder age groupThe data shown is from Esri's 2022 Updated Demographic estimates using Census 2020 geographies. The map adds increasing level of detail as you zoom in, from state, to county, to ZIP Code, to tract, to block group data.Esri's U.S. Updated Demographic (2022/2027) Data: Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2022/2027 Esri Updated DemographicsEssential demographic vocabularyThis item is for visualization purposes only and cannot be exported or used in analysis.Permitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.

  3. American House Prices

    • kaggle.com
    zip
    Updated Dec 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Larcher (2023). American House Prices [Dataset]. https://www.kaggle.com/datasets/jeremylarcher/american-house-prices-and-demographics-of-top-cities
    Explore at:
    zip(682260 bytes)Available download formats
    Dataset updated
    Dec 9, 2023
    Authors
    Jeremy Larcher
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    A dataset comprising various variables around housing and demographics for the top 50 American cities by population.

    Variables:

    Zip Code: Zip code within which the listing is present.

    Price: Listed price for the property.

    Beds: Number of beds mentioned in the listing.

    Baths: Number of baths mentioned in the listing.

    Living Space: The total size of the living space, in square feet, mentioned in the listing.

    Address: Street address of the listing.

    City: City name where the listing is located.

    State: State name where the listing is located.

    Zip Code Population: The estimated number of individuals within the zip code. Data from Simplemaps.com.

    Zip Code Density: The estimated number of individuals per square mile within the zip code. Data from Simplemaps.com.

    County: County where the listing is located.

    Median Household income: Estimated median household income. Data from the U.S. Census Bureau.

    Latitude: Latitude of the zip code. ** Data from Simplemaps.com.**

    Longitude: Longitude of the zip code. Data from Simplemaps.com.

  4. Average Household Income in the United States

    • dbechard-open-data-gisanddata.hub.arcgis.com
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). Average Household Income in the United States [Dataset]. https://dbechard-open-data-gisanddata.hub.arcgis.com/maps/6d7b0a1dcad847be820c3d1424f79dd8
    Explore at:
    Dataset updated
    Jun 26, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This item is in mature support as of June 2023 and will be retired in December 2025. A replacement item has not been identified at this time. Esri recommends updating your maps and apps to phase out use of this item.This map shows the average household income in the U.S. in 2022 in a multiscale map by country, state, county, ZIP Code, tract, and block group. Information for the average household income is an estimate of income for calendar year 2022. Income amounts are expressed in current dollars, including an adjustment for inflation or cost-of-living increases.The pop-up is configured to include the following information for each geography level:Average household incomeMedian household incomeCount of households by income groupAverage household income by householder age group Permitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.

  5. House Pricing Dataset

    • kaggle.com
    zip
    Updated Jan 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aly El-badry (2025). House Pricing Dataset [Dataset]. https://www.kaggle.com/datasets/alyelbadry/house-pricing-dataset
    Explore at:
    zip(815554 bytes)Available download formats
    Dataset updated
    Jan 27, 2025
    Authors
    Aly El-badry
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    House Prices Dataset

    Subtitle:

    Detailed Real Estate Data for Predicting House Prices and Analyzing Market Trends

    Description:

    This dataset contains information on 21,613 properties, making it a comprehensive resource for exploring real estate market trends and building predictive models for house prices. The data includes various features capturing property details, location, and market conditions, providing ample opportunities for data exploration, visualization, and machine learning applications.

    Key Features:

    • General Information:

      • id: Unique identifier for each property.
      • date: Date of sale.
    • Price Details:

      • price: Sale price of the house.
    • Property Features:

      • bedrooms: Number of bedrooms.
      • bathrooms: Number of bathrooms (including partials as fractions).
      • sqft_living: Living space area in square feet.
      • sqft_lot: Lot size in square feet.
      • floors: Number of floors.
      • waterfront: Whether the property has a waterfront view.
      • view: Quality of the view rating.
      • condition: Overall condition of the house.
      • grade: Grade of construction and design (scale of 1–13).
    • Additional Metrics:

      • sqft_above: Square footage of the property above ground.
      • sqft_basement: Basement area in square feet.
      • yr_built: Year the property was built.
      • yr_renovated: Year of last renovation.
    • Location Coordinates:

      • zipcode: ZIP code of the property.
      • lat and long: Latitude and longitude coordinates.
    • Neighbor Comparisons:

      • sqft_living15: Average living space of 15 nearest properties.
      • sqft_lot15: Average lot size of 15 nearest properties.

    Use Cases:

    • Predicting house prices using regression models.
    • Identifying the impact of various features (e.g., number of bedrooms, location) on property prices.
    • Analyzing market trends and spatial distribution of real estate prices.

    This dataset is a valuable resource for anyone interested in real estate analytics, machine learning, or geographic data visualization.

  6. house_data

    • kaggle.com
    Updated Jul 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arathi P Raj (2022). house_data [Dataset]. https://www.kaggle.com/datasets/arathipraj/house-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 27, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Arathi P Raj
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Content

    The dataset consists of Price of Houses in King County , Washington from sales between May 2014 and May 2015. Along with house price it consists of information on 18 house features, date of sale and ID of sale.

    Attribute information

    1. id - Unique id for each home sold
    2. date - Date of the home saled
    3. price - Price of each home sold
    4. bedrooms - Number of bedrooms
    5. bathrooms - Number of bathrooms
    6. sqft _ living - Square footage of the apartments interior living space
    7. sqft _ lot - Square footage of the land space
    8. floors - Number of floors
    9. waterfront - A dummy variable for whether the apartment was overlooking the waterfront or not
    10. view - An index from 0 to 4 of how good the view of the property was
    11. condition - an index from 1 to 5 on the condition of the apartment
    12. grade - An index from 1 to 13 , where 1-3falls short of building construction and design, 7 has an average level of construction and design , and 11-13 have a high quality level of construction and design
    13. sqft _ above - the square footage of the interior housing space that is above ground level
    14. sqft _ basement - the square footage of the inerior housing space that is below ground level
    15. yr _ built - The year of the house was initially built
    16. yr _ renovated - The year of the house's last renovation
    17. zipcode - What zipcode area the house is in
    18. lat - Lattitude
    19. long - Longitude
    20. sqft _ living15 - The square footage of inerior housing living space for the nearest nearest 15 neighbours
    21. sqft _ lot15 - the square footage of the land lots of the nearest 15 neighbours
  7. KC_House_Data

    • kaggle.com
    zip
    Updated Aug 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    astronaut_elvis (2021). KC_House_Data [Dataset]. https://www.kaggle.com/datasets/astronautelvis/kc-house-data/code
    Explore at:
    zip(831605 bytes)Available download formats
    Dataset updated
    Aug 14, 2021
    Authors
    astronaut_elvis
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The dataset for this project originates from the UCI Machine Learning Repository. There are similar datasets on Kaggle but this is more comprehensive. It serves to show a basic trend in the house pricing in terms of its location, the area of construction, its interior, etc.

    Content

    The dataset contains 21613x22 data fields. Column names are self-explanatory.

    Inspiration

    • What are the busiest times of the year to visit Kansas? By how much do prices spike?
    • Is there a general upward trend of prices and on what factors contribute the most?
    • Exploratory Data Analysis
    • Price analysis by area based on Lat and Long it

    Column Names

    id - Unique ID for each home sold

    date - Date of the home sale

    price - Price of each home sold

    bedrooms - Number of bedrooms

    bathrooms - Number of bathrooms, where .5 accounts for a room with a toilet but no shower

    sqft_living - Square footage of the apartment interior living space

    sqft_lot - Square footage of the land space

    floors - Number of floors

    waterfront - A dummy variable for whether the apartment was overlooking the waterfront or not

    view - An index from 0 to 4 of how good the view of the property was

    condition - An index from 1 to 5 on the condition of the apartment,

    grade - An index from 1 to 13, where 1-3 falls short of building construction and design, 7 has an average level of construction and design, and 11-13 have a high-quality level of construction and design.

    sqft_above - The square footage of the interior housing space that is above ground level

    sqft_basement - The square footage of the interior housing space that is below ground level

    yr_built - The year the house was initially built

    yr_renovated - The year of the house’s last renovation

    zipcode - What zipcode area the house is in

    lat - Lattitude

    long - Longitude

    sqft_living15 - The square footage of interior housing living space for the nearest 15 neighbors

    sqft_lot15 - The square footage of the land lots of the nearest 15 neighbors

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
asaniczka (2024). US Cost of Living Dataset (1877 Counties) [Dataset]. https://www.kaggle.com/datasets/asaniczka/us-cost-of-living-dataset-3171-counties
Organization logo

US Cost of Living Dataset (1877 Counties)

Modest yet adequate family budget estimates for 1877 US counties

Explore at:
zip(1282159 bytes)Available download formats
Dataset updated
Feb 17, 2024
Authors
asaniczka
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
United States
Description

The US Family Budget Dataset provides insights into the cost of living in different US counties based on the Family Budget Calculator by the Economic Policy Institute (EPI).

This dataset offers community-specific estimates for ten family types, including one or two adults with zero to four children, in all 1877 counties and metro areas across the United States.

Interesting Task Ideas:

  1. See how family budgets compare to the federal poverty line and the Supplemental Poverty Measure in different counties.
  2. Look into the money challenges faced by different types of families using the budgets provided.
  3. Find out which counties have the most affordable places to live, food, transportation, healthcare, childcare, and other things people need.
  4. Explore how the average income of families relates to the overall cost of living in different counties.
  5. Investigate how family size affects the estimated budget and find counties where bigger families have higher costs.
  6. Create visuals showing how the cost of living varies across different states and big cities.
  7. Check whether specific counties are affordable for families of different sizes and types.
  8. Use the dataset to compare living standards and economic security in different US counties.

If you find this dataset valuable, don't forget to hit the upvote button! 😊💝

Checkout my other datasets

Employment-to-Population Ratio for USA

Productivity and Hourly Compensation

130K Kindle Books

900K TMDb Movies

USA Unemployment Rates by Demographics & Race

Photo by Alev Takil on Unsplash

Search
Clear search
Close search
Google apps
Main menu