Introducing a comprehensive and openly accessible dataset designed for researchers and data scientists in the field of artificial intelligence. This dataset encompasses a collection of over 4,000 AI tools, meticulously categorized into more than 50 distinct categories. This valuable resource has been generously shared by its owner, TasticAI, and is freely available for various purposes such as research, benchmarking, market surveys, and more. Dataset Overview: The dataset provides an extensive repository of AI tools, each accompanied by a wealth of information to facilitate your research endeavors. Here is a brief overview of the key components: AI Tool Name: Each AI tool is listed with its name, providing an easy reference point for users to identify specific tools within the dataset. Description: A concise one-line description is provided for each AI tool. This description offers a quick glimpse into the tool's purpose and functionality. AI Tool Category: The dataset is thoughtfully organized into more than 50 distinct categories, ensuring that you can easily locate AI tools that align with your research interests or project needs. Whether you are working on natural language processing, computer vision, machine learning, or other AI subfields, you will find a dedicated category. Images: Visual representation is crucial for understanding and identifying AI tools. To aid your exploration, the dataset includes images associated with each tool, allowing for quick recognition and visual association. Website Links: Accessing more detailed information about a specific AI tool is effortless, as direct links to the tool's respective website or documentation are provided. This feature enables researchers and data scientists to delve deeper into the tools that pique their interest. Utilization and Benefits: This openly shared dataset serves as a valuable resource for various purposes: Research: Researchers can use this dataset to identify AI tools relevant to their studies, facilitating faster literature reviews, comparative analyses, and the exploration of cutting-edge technologies. Benchmarking: The extensive collection of AI tools allows for comprehensive benchmarking, enabling you to evaluate and compare tools within specific categories or across categories. Market Surveys: Data scientists and market analysts can utilize this dataset to gain insights into the AI tool landscape, helping them identify emerging trends and opportunities within the AI market. Educational Purposes: Educators and students can leverage this dataset for teaching and learning about AI tools, their applications, and the categorization of AI technologies. Conclusion: In summary, this openly shared dataset from TasticAI, featuring over 4,000 AI tools categorized into more than 50 categories, represents a valuable asset for researchers, data scientists, and anyone interested in the field of artificial intelligence. Its easy accessibility, detailed information, and versatile applications make it an indispensable resource for advancing AI research, benchmarking, market analysis, and more. Explore the dataset at https://tasticai.com and unlock the potential of this rich collection of AI tools for your projects and studies.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The AI Training Dataset Market size was valued at USD 2124.0 million in 2023 and is projected to reach USD 8593.38 million by 2032, exhibiting a CAGR of 22.1 % during the forecasts period. An AI training dataset is a collection of data used to train machine learning models. It typically includes labeled examples, where each data point has an associated output label or target value. The quality and quantity of this data are crucial for the model's performance. A well-curated dataset ensures the model learns relevant features and patterns, enabling it to generalize effectively to new, unseen data. Training datasets can encompass various data types, including text, images, audio, and structured data. The driving forces behind this growth include:
Access B2B Contact Data for North American Small Business Owners with Success.ai—your go-to provider for verified, high-quality business datasets. This dataset is tailored for businesses, agencies, and professionals seeking direct access to decision-makers within the small business ecosystem across North America. With over 170 million professional profiles, it’s an unparalleled resource for powering your marketing, sales, and lead generation efforts.
Key Features of the Dataset:
Verified Contact Details
Includes accurate and up-to-date email addresses and phone numbers to ensure you reach your targets reliably.
AI-validated for 99% accuracy, eliminating errors and reducing wasted efforts.
Detailed Professional Insights
Comprehensive data points include job titles, skills, work experience, and education to enable precise segmentation and targeting.
Enriched with insights into decision-making roles, helping you connect directly with small business owners, CEOs, and other key stakeholders.
Business-Specific Information
Covers essential details such as industry, company size, location, and more, enabling you to tailor your campaigns effectively. Ideal for profiling and understanding the unique needs of small businesses.
Continuously Updated Data
Our dataset is maintained and updated regularly to ensure relevance and accuracy in fast-changing market conditions. New business contacts are added frequently, helping you stay ahead of the competition.
Why Choose Success.ai?
At Success.ai, we understand the critical importance of high-quality data for your business success. Here’s why our dataset stands out:
Tailored for Small Business Engagement Focused specifically on North American small business owners, this dataset is an invaluable resource for building relationships with SMEs (Small and Medium Enterprises). Whether you’re targeting startups, local businesses, or established small enterprises, our dataset has you covered.
Comprehensive Coverage Across North America Spanning the United States, Canada, and Mexico, our dataset ensures wide-reaching access to verified small business contacts in the region.
Categories Tailored to Your Needs Includes highly relevant categories such as Small Business Contact Data, CEO Contact Data, B2B Contact Data, and Email Address Data to match your marketing and sales strategies.
Customizable and Flexible Choose from a wide range of filtering options to create datasets that meet your exact specifications, including filtering by industry, company size, geographic location, and more.
Best Price Guaranteed We pride ourselves on offering the most competitive rates without compromising on quality. When you partner with Success.ai, you receive superior data at the best value.
Seamless Integration Delivered in formats that integrate effortlessly with your CRM, marketing automation, or sales platforms, so you can start acting on the data immediately.
Use Cases: This dataset empowers you to:
Drive Sales Growth: Build and refine your sales pipeline by connecting directly with decision-makers in small businesses. Optimize Marketing Campaigns: Launch highly targeted email and phone outreach campaigns with verified contact data. Expand Your Network: Leverage the dataset to build relationships with small business owners and other key figures within the B2B landscape. Improve Data Accuracy: Enhance your existing databases with verified, enriched contact information, reducing bounce rates and increasing ROI. Industries Served: Whether you're in B2B SaaS, digital marketing, consulting, or any field requiring accurate and targeted contact data, this dataset serves industries of all kinds. It is especially useful for professionals focused on:
Lead Generation Business Development Market Research Sales Outreach Customer Acquisition What’s Included in the Dataset: Each profile provides:
Full Name Verified Email Address Phone Number (where available) Job Title Company Name Industry Company Size Location Skills and Professional Experience Education Background With over 170 million profiles, you can tap into a wealth of opportunities to expand your reach and grow your business.
Why High-Quality Contact Data Matters: Accurate, verified contact data is the foundation of any successful B2B strategy. Reaching small business owners and decision-makers directly ensures your message lands where it matters most, reducing costs and improving the effectiveness of your campaigns. By choosing Success.ai, you ensure that every contact in your pipeline is a genuine opportunity.
Partner with Success.ai for Better Data, Better Results: Success.ai is committed to delivering premium-quality B2B data solutions at scale. With our small business owner dataset, you can unlock the potential of North America's dynamic small business market.
Get Started Today Request a sample or customize your dataset to fit your unique...
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.
The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
Demand for Image/Video remains higher in the Ai Training Data market.
The Healthcare category held the highest Ai Training Data market revenue share in 2023.
North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.
Market Dynamics of AI Training Data Market
Key Drivers of AI Training Data Market
Rising Demand for Industry-Specific Datasets to Provide Viable Market Output
A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.
In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.
(Source: about:blank)
Advancements in Data Labelling Technologies to Propel Market Growth
The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.
In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.
www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/
Restraint Factors Of AI Training Data Market
Data Privacy and Security Concerns to Restrict Market Growth
A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.
How did COVID–19 impact the Ai Training Data market?
The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The AI Training Dataset In Healthcare Market size was valued at USD 341.8 million in 2023 and is projected to reach USD 1464.13 million by 2032, exhibiting a CAGR of 23.1 % during the forecasts period. The growth is attributed to the rising adoption of AI in healthcare, increasing demand for accurate and reliable training datasets, government initiatives to promote AI in healthcare, and technological advancements in data collection and annotation. These factors are contributing to the expansion of the AI Training Dataset In Healthcare Market. Healthcare AI training data sets are vital for building effective algorithms, and enhancing patient care and diagnosis in the industry. These datasets include large volumes of Electronic Health Records, images such as X-ray and MRI scans, and genomics data which are thoroughly labeled. They help the AI systems to identify trends, forecast and even help in developing unique approaches to treating the disease. However, patient privacy and ethical use of a patient’s information is of the utmost importance, thus requiring high levels of anonymization and compliance with laws such as HIPAA. Ongoing expansion and variety of datasets are crucial to address existing bias and improve the efficiency of AI for different populations and diseases to provide safer solutions for global people’s health.
Unlock the full potential of LinkedIn data with our extensive dataset that combines profiles, company information, and job listings into one powerful resource for business decision-making, strategic hiring, competitive analysis, and market trend insights. This all-encompassing dataset is ideal for professionals, recruiters, analysts, and marketers aiming to enhance their strategies and operations across various business functions. Dataset Features
Profiles: Dive into detailed public profiles featuring names, titles, positions, experience, education, skills, and more. Utilize this data for talent sourcing, lead generation, and investment signaling, with a refresh rate ensuring up to 30 million records per month. Companies: Access comprehensive company data including ID, country, industry, size, number of followers, website details, subsidiaries, and posts. Tailored subsets by industry or region provide invaluable insights for CRM enrichment, competitive intelligence, and understanding the startup ecosystem, updated monthly with up to 40 million records. Job Listings: Explore current job opportunities detailed with job titles, company names, locations, and employment specifics such as seniority levels and employment functions. This dataset includes direct application links and real-time application numbers, serving as a crucial tool for job seekers and analysts looking to understand industry trends and the job market dynamics.
Customizable Subsets for Specific Needs Our LinkedIn dataset offers the flexibility to tailor the dataset according to your specific business requirements. Whether you need comprehensive insights across all data points or are focused on specific segments like job listings, company profiles, or individual professional details, we can customize the dataset to match your needs. This modular approach ensures that you get only the data that is most relevant to your objectives, maximizing efficiency and relevance in your strategic applications. Popular Use Cases
Strategic Hiring and Recruiting: Track talent movement, identify growth opportunities, and enhance your recruiting efforts with targeted data. Market Analysis and Competitive Intelligence: Gain a competitive edge by analyzing company growth, industry trends, and strategic opportunities. Lead Generation and CRM Enrichment: Enrich your database with up-to-date company and professional data for targeted marketing and sales strategies. Job Market Insights and Trends: Leverage detailed job listings for a nuanced understanding of employment trends and opportunities, facilitating effective job matching and market analysis. AI-Driven Predictive Analytics: Utilize AI algorithms to analyze large datasets for predicting industry shifts, optimizing business operations, and enhancing decision-making processes based on actionable data insights.
Whether you are mapping out competitive landscapes, sourcing new talent, or analyzing job market trends, our LinkedIn dataset provides the tools you need to succeed. Customize your access to fit specific needs, ensuring that you have the most relevant and timely data at your fingertips.
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
Dataset contains 4 csv files containing 1. Total AI publications over the years, 2. AI publication by field and 3. AI skill penetration
Public Data and Tools:
The AI Index 2022 Report is supplemented by raw data and an interactive tool. Where readers are invited to use the data and the tool in a way most relevant to their work and interests. • Raw data and charts: The public data and high-resolution images of all the charts in the report are available on Google Drive .
"The AI Index is an independent initiative at the Stanford Institute for Human-Centered Artificial Intelligence (HAI). We welcome feedback and new ideas for next year. Contact us at AI-Index-Report@stanford.edu. The AI Index was conceived within the One Hundred Year Study on AI (AI100)."
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global AI Art Generator Tool market size was valued at USD 1.2 billion in 2023 and is projected to reach USD 8.5 billion by 2032, growing at a robust CAGR of 24.1% during the forecast period. The rapid advancements in artificial intelligence and machine learning technologies, coupled with increasing demand for innovative artistic tools, are driving this impressive growth.
One of the primary growth factors for the AI Art Generator Tool market is the increasing investment in AI research and development. Companies and academic institutions are pouring substantial resources into AI to push the boundaries of what these technologies can achieve. This has resulted in the creation of sophisticated AI algorithms capable of generating high-quality art. These tools are not only becoming more accessible but also more versatile, enabling artists and designers to experiment with new forms and styles, which in turn stimulates market expansion.
Another significant growth driver is the burgeoning demand for personalized and unique content in various industries such as entertainment, advertising, and design. As businesses seek to differentiate their offerings, AI art generators provide a means to create bespoke visuals that capture attention and engage audiences. The ability of these tools to produce artwork on-demand and at scale is particularly appealing to advertising agencies and media companies, which are under constant pressure to deliver fresh and compelling content.
Moreover, advancements in cloud computing have accelerated the adoption of AI art generator tools. Cloud-based solutions offer scalability, flexibility, and cost-effectiveness, making them an attractive option for both small and medium enterprises (SMEs) and large enterprises. This deployment mode enables users to access powerful AI tools without the need for significant upfront investment in hardware and software, thereby lowering the barrier to entry and promoting wider adoption.
The foundation of any AI Art Generator Tool is its AI Training Dataset. These datasets are crucial as they provide the necessary information for the AI to learn and generate art. A well-curated dataset can significantly enhance the quality and creativity of the generated artwork. As the demand for more sophisticated and diverse art increases, the importance of diverse and comprehensive training datasets becomes even more pronounced. Companies are investing in expanding and refining their datasets to include a wide range of artistic styles and cultural influences, ensuring that the AI can produce unique and culturally relevant art. This focus on dataset quality is a key factor driving the evolution and capabilities of AI art generators.
Regionally, North America is expected to dominate the AI art generator tool market during the forecast period, accounting for the largest market share. This can be attributed to the high concentration of leading tech companies, a well-developed digital infrastructure, and a strong focus on innovation. Europe and Asia Pacific are also anticipated to witness significant growth, driven by increasing digitalization efforts, government support for AI initiatives, and a growing community of digital artists and designers.
The AI Art Generator Tool market is segmented by components into Software, Hardware, and Services. Each of these segments plays a crucial role in the overall market dynamics and growth. The Software segment is expected to hold the largest market share owing to the continuous advancements in AI algorithms and user-friendly interfaces. Various software applications offer features such as style transfer, deep learning-based image synthesis, and creative filters, which are highly appealing to artists and designers. Additionally, the increasing availability of open-source AI art generation software is contributing to the segment's growth.
The Hardware segment, although smaller in comparison, is also witnessing significant advancements. High-performance GPUs and specialized AI chips are critical for running complex AI models efficiently. As the demand for more sophisticated AI art generators grows, so does the need for robust hardware solutions capable of supporting these applications. Companies are investing in developing hardware that can enhance the performance of AI art tools, thereby driving growth in this segment.
Services
Data files for manuscript titled "Importance of color for artificial clay caterpillars as sentinel prey in maize, soybean, and prairie". Metadata is contained within excel file that describes all variables for each tab. Abstract from paper: The use of artificial clay caterpillars to measure predation pressure under real field conditions is one method that has garnered recent support for quantifying ecosystem services that beneficial insects provide. Here, we focus on color and ask whether it is an important variable that should be considered in studies using clay caterpillars as sentinel prey. We deployed a total of 1920 brown, cream, green, gray, terracotta, and white clay caterpillars onto maize, soybean, and prairie plants to test if lighter colored caterpillars will be attacked and retrieved more than caterpillars with darker colors. As hypothesized, color was a significant predictor with green and terracotta caterpillars performing best, whereas brown and gray caterpillars performed the worst. Interestingly, clay caterpillars were also attacked proportionally to the number of insects in the surrounding habitat. Combined, we suggest artificial clay caterpillars could be useful for rapid ecosystem function assessments, but only when their color is considered. Resources in this dataset:Resource Title: Data for "Importance of color for artificial clay caterpillars as sentinel prey in maize, soybean, and prairie". File Name: Sentinal Prey - Final Data File.xlsxResource Description: Excel file with 3 tabs: Metadata, predation and abundance, and predation and color.
Success.ai’s Education Industry Data provides access to comprehensive profiles of global professionals in the education sector. Sourced from over 700 million verified LinkedIn profiles, this dataset includes actionable insights and verified contact details for teachers, school administrators, university leaders, and other decision-makers. Whether your goal is to collaborate with educational institutions, market innovative solutions, or recruit top talent, Success.ai ensures your efforts are supported by accurate, enriched, and continuously updated data.
Why Choose Success.ai’s Education Industry Data? 1. Comprehensive Professional Profiles Access verified LinkedIn profiles of teachers, school principals, university administrators, curriculum developers, and education consultants. AI-validated profiles ensure 99% accuracy, reducing bounce rates and enabling effective communication. 2. Global Coverage Across Education Sectors Includes professionals from public schools, private institutions, higher education, and educational NGOs. Covers markets across North America, Europe, APAC, South America, and Africa for a truly global reach. 3. Continuously Updated Dataset Real-time updates reflect changes in roles, organizations, and industry trends, ensuring your outreach remains relevant and effective. 4. Tailored for Educational Insights Enriched profiles include work histories, academic expertise, subject specializations, and leadership roles for a deeper understanding of the education sector.
Data Highlights: 700M+ Verified LinkedIn Profiles: Access a global network of education professionals. 100M+ Work Emails: Direct communication with teachers, administrators, and decision-makers. Enriched Professional Histories: Gain insights into career trajectories, institutional affiliations, and areas of expertise. Industry-Specific Segmentation: Target professionals in K-12 education, higher education, vocational training, and educational technology.
Key Features of the Dataset: 1. Education Sector Profiles Identify and connect with teachers, professors, academic deans, school counselors, and education technologists. Engage with individuals shaping curricula, institutional policies, and student success initiatives. 2. Detailed Institutional Insights Leverage data on school sizes, student demographics, geographic locations, and areas of focus. Tailor outreach to align with institutional goals and challenges. 3. Advanced Filters for Precision Targeting Refine searches by region, subject specialty, institution type, or leadership role. Customize campaigns to address specific needs, such as professional development or technology adoption. 4. AI-Driven Enrichment Enhanced datasets include actionable details for personalized messaging and targeted engagement. Highlight educational milestones, professional certifications, and key achievements.
Strategic Use Cases: 1. Product Marketing and Outreach Promote educational technology, learning platforms, or training resources to teachers and administrators. Engage with decision-makers driving procurement and curriculum development. 2. Collaboration and Partnerships Identify institutions for collaborations on research, workshops, or pilot programs. Build relationships with educators and administrators passionate about innovative teaching methods. 3. Talent Acquisition and Recruitment Target HR professionals and academic leaders seeking faculty, administrative staff, or educational consultants. Support hiring efforts for institutions looking to attract top talent in the education sector. 4. Market Research and Strategy Analyze trends in education systems, curriculum development, and technology integration to inform business decisions. Use insights to adapt products and services to evolving educational needs.
Why Choose Success.ai? 1. Best Price Guarantee Access industry-leading Education Industry Data at unmatched pricing for cost-effective campaigns and strategies. 2. Seamless Integration Easily integrate verified data into CRMs, recruitment platforms, or marketing systems using downloadable formats or APIs. 3. AI-Validated Accuracy Depend on 99% accurate data to reduce wasted outreach and maximize engagement rates. 4. Customizable Solutions Tailor datasets to specific educational fields, geographic regions, or institutional types to meet your objectives.
Strategic APIs for Enhanced Campaigns: 1. Data Enrichment API Enrich existing records with verified education professional profiles to enhance engagement and targeting. 2. Lead Generation API Automate lead generation for a consistent pipeline of qualified professionals in the education sector. Success.ai’s Education Industry Data enables you to connect with educators, administrators, and decision-makers transforming global...
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS Upper Midwest Environmental Sciences Center developed a Monarch Relevant Land Cover data set covering the area of Canada. We used the 2010 land cover data set produced by the tri-national North American Land Change Monitoring System (NALCMS) and supported by the Commission for Environmental Cooperation (CEC) that depicts year 2010 land cover across North America at 30-meter spatial resolution, and incorporated additional spatially-explicit information to develop this land cover map. Additional sources of information included 2004 railroad data provided by The Atlas of Canada and the CEC, 2017 roads data provided by Statistics Canada, 2017 protected areas data provided by the CEC, and 2016 Canada provincial/territory boundary file data provided by Statistics Canada.
Supporting data for 2 region and 51 region models assessed in the manuscript "Exploring the relevance of spatial scale to life cycle inventory results using environmentally-extended input-output models of the United States". Includes results of the correlation and relative errors analysis, results in kg/$ intensities for the 17 commodities from the 2 region models and the 51 region model, the 51-region model Make and Use tables, 10 NEI emissions and water withdrawal data aggregated by the 15 BEA sectors, interstate commodity flow data aggregated by BEA sectors between states, BEA national level Make and Use tables for 2012 at sector level, and state GDP data. This dataset is associated with the following publication: Yang, Y., W. Ingwersen, and D. Meyer. Exploring the relevance of spatial scale to life cycle inventory results using environmentally-extended input-output models of the United States. ENVIRONMENTAL MODELLING & SOFTWARE. Elsevier Science, New York, NY, 99: 52-57, (2018).
LinkOut is a service that allows you to link directly from PubMed and other NCBI databases to a wide range of information and services beyond the NCBI systems. LinkOut aims to facilitate access to relevant online resources in order to extend, clarify, and supplement information found in NCBI databases.
Third parties can link directly from PubMed and other Entrez database records to relevant Web-accessible resources beyond the Entrez system. Includes full-text publications, biological databases, consumer health information and research tools.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The dataset comprises over 10,000 chat conversations, each focusing on specific Delivery & Logistics related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
[object Object][object Object]The chat dataset covers a wide range of conversations on Delivery & Logistics topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Delivery & Logistics use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
[object Object][object Object][object Object][object Object][object Object][object Object][object Object][object Object][object Object][object Object][object Object][object Object][object Object][object Object][object Object]The conversations in this dataset capture the diverse language styles and expressions prevalent in French Delivery & Logistics interactions. This diversity ensures the dataset accurately represents the language used by French speakers in Delivery & Logistics contexts.
The dataset encompasses a wide array of language elements, including:
[object Object][object Object][object Object][object Object]This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to French Delivery & Logistics interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Delivery & Logistics customer-agent interactions.
[object Object][object Object][object Object][object Object][object Object][object Object]Each of these conversations contains various aspects of conversation flow like:
[object Object][object Object][object Object][object Object][object Object][object Object][object Object]This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant identifiers and chat messages, designed to be easily accessible and compatible with popular NLP frameworks.
This dataset is useful for various applications in NLP and conversational AI, including:
[object Object][object Object][object Object][object Object][object Object]The dataset is regularly updated with new chat data. Customization options are available to meet specific needs, including:
[object Object][object Object][object Object][object Object]This French Conversational Chat Dataset for Delivery & Logistics is created by FutureBeeAI and is available for commercial use.
Success.ai’s LinkedIn Data Solutions offer unparalleled access to a vast dataset of 700 million public LinkedIn profiles and 70 million LinkedIn company records, making it one of the most comprehensive and reliable LinkedIn datasets available on the market today. Our employee data and LinkedIn data are ideal for businesses looking to streamline recruitment efforts, build highly targeted lead lists, or develop personalized B2B marketing campaigns.
Whether you’re looking for recruiting data, conducting investment research, or seeking to enrich your CRM systems with accurate and up-to-date LinkedIn profile data, Success.ai provides everything you need with pinpoint precision. By tapping into LinkedIn company data, you’ll have access to over 40 critical data points per profile, including education, professional history, and skills.
Key Benefits of Success.ai’s LinkedIn Data: Our LinkedIn data solution offers more than just a dataset. With GDPR-compliant data, AI-enhanced accuracy, and a price match guarantee, Success.ai ensures you receive the highest-quality data at the best price in the market. Our datasets are delivered in Parquet format for easy integration into your systems, and with millions of profiles updated daily, you can trust that you’re always working with fresh, relevant data.
API Integration: Our datasets are easily accessible via API, allowing for seamless integration into your existing systems. This ensures that you can automate data retrieval and update processes, maintaining the flow of fresh, accurate information directly into your applications.
Global Reach and Industry Coverage: Our LinkedIn data covers professionals across all industries and sectors, providing you with detailed insights into businesses around the world. Our geographic coverage spans 259M profiles in the United States, 22M in the United Kingdom, 27M in India, and thousands of profiles in regions such as Europe, Latin America, and Asia Pacific. With LinkedIn company data, you can access profiles of top companies from the United States (6M+), United Kingdom (2M+), and beyond, helping you scale your outreach globally.
Why Choose Success.ai’s LinkedIn Data: Success.ai stands out for its tailored approach and white-glove service, making it easy for businesses to receive exactly the data they need without managing complex data platforms. Our dedicated Success Managers will curate and deliver your dataset based on your specific requirements, so you can focus on what matters most—reaching the right audience. Whether you’re sourcing employee data, LinkedIn profile data, or recruiting data, our service ensures a seamless experience with 99% data accuracy.
Key Use Cases:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Surface Drinking Water Importance - Forests on the Edge (Feature Layer)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c52bec78-b291-4bbe-a3cb-2b84cd6c9d46 on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Note: This is a large dataset. To download, go to ArcGIS Open Data Set and click the download button, and under additional resources select the shapefile or geodatabase option. America's private forests provide a vast array of public goods and services, including abundant, clean surface water. Forest loss and development can affect water quality and quantity when forests are removed and impervious surfaces, such as paved roads, spread across the landscape. We rank watersheds across the conterminous United States according to the contributions of private forest land to surface drinking water and by threats to surface water from increased housing density. Private forest land contributions to drinking water are greatest in the East but are also important in Western watersheds. Development pressures on these contributions are concentrated in the Eastern United States but are also found in the North-Central region, parts of the West and Southwest, and the Pacific Northwest; nationwide, more than 55 million acres of rural private forest land are projected to experience a substantial increase in housing density from 2000 to 2030. Planners, communities, and private landowners can use a range of strategies to maintain freshwater ecosystems, including designing housing and roads to minimize impacts on water quality, managing home sites to protect water resources, and using payment schemes and management partnerships to invest in forest stewardship on public and private lands.This data is based on the digital hydrologic unit boundary layer to the Subwatershed (12-digit) 6th level for the continental United States. To focus this analysis on watersheds with private forests, only watersheds with at least 10% forested land and more than 50 acres of private forest were analyzed. All other watersheds were labeled ?Insufficient private forest for this analysis'and coded -99999 in the data table. This dataset updates forest and development statistics reported in the the 2011 Forests to Faucet analysis using 2006 National Land Cover Database for the Conterminous United States, Grid Values=41,42,43,95. and Theobald, Dr. David M. 10 March 2008. bhc2000 and bhc2030 (Housing density for the coterminous US in 2000 and 2030, respectively.) Field Descriptions:HUC_12: Twelve Digit Hydrologic Unit Code: This field provides a unique 12-digit code for each subwatershed.HU_12_DS: Sixth Level Downstream Hydrologic Unit Code: This field was populated with the 12-digit code of the 6th level hydrologic unit that is receiving the majority of the flow from the subwatershed.IMP1: Index of surface drinking water importance (Appendix Map). This field is from the 2011 Forests to Faucet analysis and has not been updated for this analysis.HDCHG_AC: Acres of housing density change on private forest in the subwatershed. HDCHG_PER: Percent of the watershed to experience housing density change on private forest. IMP_HD_PFOR: Index Private Forest importance to Surface Drinking Water with Development Pressure - identifies private forested areas important for surface drinking water that are likely to be affected by future increases in housing density, Ptle_IMP_HD: Private Forest importance to Surface Drinking Water with Development Pressure (Figure 7), percentile. Ptle_HDCHG: Percentage of each subwatershed to Experience an increase in House Density in Private Forest (Figure 6), percentile. FOR_AC: Acres forest (2006) in the subwatershed. PFOR_AC: Acres private forest (2006) in the subwatershed. PFOR_PER: Percent of the subwatershed that is private forest. HU12_AC: Acreage of the subwatershedFOR_PER: Percent of the subwatershed that is forest. PFOR_IMP: Index of Private Forest Importance to Surface Drinking Water. .Ptle_PFIMP: Private forest importance to surface drinking water(Figure 4), percentile. TOP100: Top 100 subwatersheds. 50 from the East, 50 from the west (using the Mississippi River as the divide.) Metadata
--- Original source retains full ownership of the source dataset ---
There is an increasing need to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) to perform missions of vital importance to national security and defense, emergency management, science, and to enable commercial applications. However, routine access by UAS to the NAS remains unrealized.
The UAS community needs routine access to the global airspace for all classes of UAS. Based on this need, NASA's UAS Integration in the NAS Project identified the following goal: To provide research findings to reduce technical barriers associated with integrating UAS into the NAS utilizing integrated system level tests in a relevant environment. These barriers include: a lack of sense-and-avoid concepts and technologies that can operate within the NAS, robust communication technologies, robust human systems integration, and a relevant environment for use in testing the developed technologies.
The project's goal will be accomplished by developing system-level integration of key concepts, technologies and/or procedures, as well as demonstrating those integrated capabilities in an operationally relevant environment.
The project conducts research to address technical barriers in the following areas:
These activities support research within the aeronautics strategic thrust area 6.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts
Computational medicine research requires clinical data for training and testing purposes, so the development of datasets composed of real hospital data is of utmost importance in this field. Most such data collections are in the English language, were collected in anglophone countries, and do not reflect other clinical realities, which increases the importance of such national datasets for projects that hope to positively impact public health. This paper presents a new Brazilian Clinical Dataset containing over 70,000 admissions from 10 hospitals in two Brazilian states, composed of a sum total of over 2.5 million free-text clinical notes alongside data pertaining to patient descriptors, prescription information, and exam results. This data was collected, organized, deidentified, and is being distributed via credentialed access for the use of the research community. In the course of presenting the new dataset, we explore the new dataset’s structure, population, and potential benefits for use in clinical AI tasks.
Introducing a comprehensive and openly accessible dataset designed for researchers and data scientists in the field of artificial intelligence. This dataset encompasses a collection of over 4,000 AI tools, meticulously categorized into more than 50 distinct categories. This valuable resource has been generously shared by its owner, TasticAI, and is freely available for various purposes such as research, benchmarking, market surveys, and more. Dataset Overview: The dataset provides an extensive repository of AI tools, each accompanied by a wealth of information to facilitate your research endeavors. Here is a brief overview of the key components: AI Tool Name: Each AI tool is listed with its name, providing an easy reference point for users to identify specific tools within the dataset. Description: A concise one-line description is provided for each AI tool. This description offers a quick glimpse into the tool's purpose and functionality. AI Tool Category: The dataset is thoughtfully organized into more than 50 distinct categories, ensuring that you can easily locate AI tools that align with your research interests or project needs. Whether you are working on natural language processing, computer vision, machine learning, or other AI subfields, you will find a dedicated category. Images: Visual representation is crucial for understanding and identifying AI tools. To aid your exploration, the dataset includes images associated with each tool, allowing for quick recognition and visual association. Website Links: Accessing more detailed information about a specific AI tool is effortless, as direct links to the tool's respective website or documentation are provided. This feature enables researchers and data scientists to delve deeper into the tools that pique their interest. Utilization and Benefits: This openly shared dataset serves as a valuable resource for various purposes: Research: Researchers can use this dataset to identify AI tools relevant to their studies, facilitating faster literature reviews, comparative analyses, and the exploration of cutting-edge technologies. Benchmarking: The extensive collection of AI tools allows for comprehensive benchmarking, enabling you to evaluate and compare tools within specific categories or across categories. Market Surveys: Data scientists and market analysts can utilize this dataset to gain insights into the AI tool landscape, helping them identify emerging trends and opportunities within the AI market. Educational Purposes: Educators and students can leverage this dataset for teaching and learning about AI tools, their applications, and the categorization of AI technologies. Conclusion: In summary, this openly shared dataset from TasticAI, featuring over 4,000 AI tools categorized into more than 50 categories, represents a valuable asset for researchers, data scientists, and anyone interested in the field of artificial intelligence. Its easy accessibility, detailed information, and versatile applications make it an indispensable resource for advancing AI research, benchmarking, market analysis, and more. Explore the dataset at https://tasticai.com and unlock the potential of this rich collection of AI tools for your projects and studies.