100+ datasets found
  1. Data from: A systematic review on the integration of remote sensing and GIS...

    • figshare.com
    txt
    Updated Aug 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irini Soubry; Thuy Doan; Thuan Chu; Xulin Guo (2021). A systematic review on the integration of remote sensing and GIS to forest and grassland ecosystem health attributes, indicators, and measures [Dataset]. http://doi.org/10.6084/m9.figshare.14850525.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 14, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Irini Soubry; Thuy Doan; Thuan Chu; Xulin Guo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data support the paper "A systematic review on the integration of remote sensing and GIS to forest and grassland ecosystem health attributes, indicators, and measures " by Irini Soubry, Thuy Doan, Thuan Chu and Xulin Guo 2021 in the journal of "Remote Sensing" by MDPI. It includes the "Search_Effort.csv" list with the keywords and number of studies selected for further examination, the "Potential_Studies.csv" with the post-filtering of suitability and notes related to each study, the "Metadata.csv" with the information collected for each metadata variable per study, and the "ExtractedData.csv" with the information collected for each extracted dta variable per study. More information about the data collection and procedures can be found in the respective manuscript.

  2. A

    Remote Sensing

    • data.amerigeoss.org
    html
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmericaView (2024). Remote Sensing [Dataset]. https://data.amerigeoss.org/zh_TW/dataset/remote-sensing1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    AmericaView
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This course explores the theory, technology, and applications of remote sensing. It is designed for individuals with an interest in GIS and geospatial science who have no prior experience working with remotely sensed data. Lab exercises make use of the web and the ArcGIS Pro software. You will work with and explore a wide variety of data types including aerial imagery, satellite imagery, multispectral imagery, digital terrain data, light detection and ranging (LiDAR), thermal data, and synthetic aperture RaDAR (SAR). Remote sensing is a rapidly changing field influenced by big data, machine learning, deep learning, and cloud computing. In this course you will gain an overview of the subject of remote sensing, with a special emphasis on principles, limitations, and possibilities. In addition, this course emphasizes information literacy, and will develop your skills in finding, evaluating, and using scholarly information.

    You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises to reinforce the material. Lastly, you will complete paper reviews and a term project. We have also provided additional bonus material and links associated with surface hydrologic analysis with TauDEM, geographic object-based image analysis (GEOBIA), Google Earth Engine (GEE), and the geemap Python library for Google Earth Engine. Please see the sequencing document for our suggested order in which to work through the material. We have also provided PDF versions of the lectures with the notes included.

  3. Collection of global datasets for the study of floods, droughts and their...

    • zenodo.org
    • explore.openaire.eu
    bin
    Updated Mar 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Lindersson; Sara Lindersson; Luigia Brandimarte; Luigia Brandimarte; Johanna Mård; Johanna Mård; Giuliano Di Baldassarre; Giuliano Di Baldassarre (2020). Collection of global datasets for the study of floods, droughts and their interactions with human societies [Dataset]. http://doi.org/10.5281/zenodo.3608634
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sara Lindersson; Sara Lindersson; Luigia Brandimarte; Luigia Brandimarte; Johanna Mård; Johanna Mård; Giuliano Di Baldassarre; Giuliano Di Baldassarre
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a collection of 124 global and free datasets allowing for spatial (and temporal) analyses of floods, droughts and their interactions with human societies. We have structured the datasets into seven categories: hydrographic baseline, hydrological dynamics, hydrological extremes, land cover & agriculture, human presence, water management, and vulnerability. Please refer to Lindersson et al. (accepted february 2020 in WIREs Water) for further information about review methodology.

    The collection is a descriptive list, holding the following information for each dataset:

    • Category - as structured in Lindersson et al. (in preparation).
    • Sub-category- as structured in Lindersson et al. (in preparation).
    • Abbreviation - official or as specified in Lindersson et al. (in preparation).
    • Title - full title of dataset.
    • Product(s) - type of product(s) offered by the dataset.
    • Period - time period covered by the dataset, not defined for all datasets.
    • Temporal resolution - not defined for static datasets.
    • Angular spatial resolution - only defined for gridded datasets.
    • Metric spatial resolution - only defined for gridded datasets.
    • Map scale
    • Extent - geographic coverage of dataset given in latitude limits.
    • Description
    • Creating institute(s)
    • Data type - raster, vector or tabular.
    • File format
    • Primary EO type - specifies if the product primarily is based on remote sensing, ground-based data, or a hybrid between remote sensing and ground-based data.
    • Data sources - lists the data sources behind the dataset, to the extent this is feasible.
    • Data sources also in this table - data sources that are also included as datasets in this collection.
    • Intentionally compatible with - defines other datasets in this collection that the dataset is intentinoally compatible with.
    • Citation - dataset reference or credit.
    • Documentation - dataset documentation.
    • Web address - dataset access link.

    NOTE: Carefully consult the data usage licenses as given by the data providers, to assure that the exact permissions and restrictions are followed.

  4. Landsat Orthoimagery Mosaic from 1999, Niwot Ridge LTER Project Area,...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2015). Landsat Orthoimagery Mosaic from 1999, Niwot Ridge LTER Project Area, Colorado [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F724%2F1
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    U.S. Geological Survey
    Time period covered
    Nov 6, 1999
    Area covered
    Description

    An orthoimage is remotely-sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. The Landsat Mosaic orthoimagery database contains Landsat Thematic Mapper imagery for the conterminous United States. The more than 700 Landsat scenes have been resampled to a 1-arc-second (approximately 30-meter) sample interval in a geographic coordinate system using the North American Horizontal Datum of 1983. Three bands have been selected from the eight spectral bands available for each frame. These are bands 4 (near-infrared), 3 (red), and 2 (green), typically displayed as red, green, and blue, respectively. The image is a full-resolution (spectral and spatial), 24-bit color-infrared composite that simulates color infrared film as a "false color composite". NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

  5. Copernicus Digital Elevation Model (DEM) for Europe at 1000 meter resolution...

    • zenodo.org
    • data.opendatascience.eu
    • +3more
    bin, png, tiff, xml
    Updated Jul 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Neteler; Markus Neteler; Julia Haas; Julia Haas; Markus Metz; Markus Metz (2024). Copernicus Digital Elevation Model (DEM) for Europe at 1000 meter resolution (EU-LAEA) derived from Copernicus Global 30 meter DEM dataset [Dataset]. http://doi.org/10.5281/zenodo.6211883
    Explore at:
    xml, bin, png, tiffAvailable download formats
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Markus Neteler; Markus Neteler; Julia Haas; Julia Haas; Markus Metz; Markus Metz
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Overview:
    The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.

    The Copernicus DEM for Europe at 1000 meter resolution (EU-LAEA projection) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).

    Processing steps:
    The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:

    gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt

    In order to reproject the data to EU-LAEA projection while reducing the spatial resolution to 1000 m, bilinear resampling was performed in GRASS GIS (using r.proj and the pixel values were scaled with 1000 (storing the pixels as Integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.

    Projection + EPSG code:
    ETRS89-extended / LAEA Europe (EPSG: 3035)

    Spatial extent:
    north: 6874000
    south: -485000
    west: 869000
    east: 8712000

    Spatial resolution:
    1000 m

    Pixel values:
    meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)

    Software used:
    GDAL 3.2.2 and GRASS GIS 8.0.0 (r.proj; r.relief)

    Original dataset license:
    https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf

    Processed by:
    mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

  6. Data from: Digital Surface Model (DSM) from 2005 LiDAR for the Green Lakes...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Anderson (2015). Digital Surface Model (DSM) from 2005 LiDAR for the Green Lakes Valley, Colorado [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F735%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Robert Anderson
    Time period covered
    Sep 29, 2005
    Area covered
    Description

    This 1m Digital Surface Model (DSM) is derived from first-stop Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. The DSM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DSM has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DSM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. cm RMSE at 1 sigma. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. A shaded relief model was also generated. A similar layer, the Digital Terrain Model (DTM), is a ground-surface elevation dataset better suited for derived layers such as slope angle, aspect, and contours. A processing report and readme file are included with this data release. The DSM is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

  7. H

    WHO GeoNetwork

    • data.niaid.nih.gov
    • dataverse.harvard.edu
    Updated May 5, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). WHO GeoNetwork [Dataset]. http://doi.org/10.7910/DVN/BRSYDO
    Explore at:
    Dataset updated
    May 5, 2011
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can view maps, spatial, and statistical information drawn from different databases around the world. In addition, users can download data sets pertaining to prevalence and location of health facilities. Background The World Health Organization GeoNetwork is a geographic information management system that contains geo-referenced data sets and maps to facilitate the planning and monitoring of health related activities and health conditions. Information is available regarding the prevalence and location of health facilities. User Functionality Users must download the Geographic Information Systems (GIS) and Remote-Sensing (RSS) software applications to interact with the data tools, including digital maps, satellite images, and other geographic information. To obtain maps and other geographic information, users can search by term or geographic location or conduct an advanced search by time frame, year, and geographic location. There is a useful manual located under the “Help” tab, which enables users to learn more about GIS and how to use the GeoNetwork. Data Notes Data sources include: Food and Agriculture Organization of the United Nations (FAO), World Food Programme (WFP), and the United Nations Environment Programme (UNEP). The website announces datasets that have most recently been added to the GeoNetwork, but does not indicate the date it was updated.

  8. Broad-tailed Hummingbird Predicted Habitat - CWHR B290 [ds2201]

    • catalog.data.gov
    • data.cnra.ca.gov
    • +4more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2024). Broad-tailed Hummingbird Predicted Habitat - CWHR B290 [ds2201] [Dataset]. https://catalog.data.gov/dataset/broad-tailed-hummingbird-predicted-habitat-cwhr-b290-ds2201-202fb
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  9. a

    Imagery Warehouse - 1930 Aerial Image Grid (Hosted)

    • share-open-data-njtpa.hub.arcgis.com
    • njogis-newjersey.opendata.arcgis.com
    Updated Feb 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Jersey Office of GIS (2021). Imagery Warehouse - 1930 Aerial Image Grid (Hosted) [Dataset]. https://share-open-data-njtpa.hub.arcgis.com/datasets/newjersey::imagery-warehouse-1930-aerial-image-grid-hosted
    Explore at:
    Dataset updated
    Feb 28, 2021
    Dataset authored and provided by
    New Jersey Office of GIS
    Area covered
    Description

    This tile grid layer was generated from the 1930 georeferenced aerial imagery tile grid footprint. The tile scheme is in New Jersey State Plane coordinates, NAD83, in units of US Survey feet. Attributes include tile name and link to download. Please note that the tiles do overlap.

  10. Data from: Digital Surface Model (DSM) shaded relief from 2005 LiDAR for the...

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Anderson (2019). Digital Surface Model (DSM) shaded relief from 2005 LiDAR for the Green Lakes Valley, Colorado [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F736%2F2
    Explore at:
    Dataset updated
    Apr 11, 2019
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Robert Anderson
    Time period covered
    Sep 29, 2005
    Area covered
    Description

    This 1m Digital Surface Model (DSM) shaded relief is derived from first-stop Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. The DSM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DSM shaded relief has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DSM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. cm RMSE at 1 sigma. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. This shaded relief model was also generated. A similar layer, the Digital Terrain Model (DTM), is a ground-surface elevation dataset better suited for derived layers such as slope angle, aspect, and contours. A processing report and readme file are included with this data release. The DSM dataset is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

  11. Terrestrial Gartersnake Predicted Habitat - CWHR R062 [ds2442]

    • catalog.data.gov
    • data.cnra.ca.gov
    • +2more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2024). Terrestrial Gartersnake Predicted Habitat - CWHR R062 [ds2442] [Dataset]. https://catalog.data.gov/dataset/terrestrial-gartersnake-predicted-habitat-cwhr-r062-ds2442-08d32
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  12. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  13. Data from: High-Resolution Orthorectified Imagery from 1985, Niwot Ridge...

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Manley; Eric Parrish; Leanne Lestak (2019). High-Resolution Orthorectified Imagery from 1985, Niwot Ridge LTER Project Area, Colorado [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F704%2F2
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    William Manley; Eric Parrish; Leanne Lestak
    Time period covered
    Sep 6, 1985
    Area covered
    Description

    Citation: Manley, W.F., Parrish, E.G., and Lestak, L.R., 2009, High-Resolution Orthorectified Imagery and Digital Elevation Models for Study of Environmental Change at Niwot Ridge and Green Lakes Valley, Colorado: Niwot Ridge LTER, INSTAAR, University of Colorado at Boulder, digital media. This image is a mosaic of orthorectified aerial photography from 1985 for the Niwot Ridge Long Term Ecological Research (LTER) project area at 0.8 m resolution. The image also covers the Green Lakes Valley portion of the Boulder Creek Critical Zone Observatory (CZO). The mosaic has the qualities of a photograph and the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. The mosaic is derived from approx. 1:58,000 scale, color infrared (CIR) photographs acquired by the United States Geological Survery (USGS) National High Altitude Photography Program (NHAP). The aerial photos were obtained as 1800 dpi digital scans from the USGS EROS Data Center (EDC) and then fully orthorectified in a Leica Photogrammetry Suite (LPS) bundle blockfile using an air-photo camera model, a Digital Elevation Model (DEM), and known focal length and fiducial coordinates from a calibration report. Individual photo frames were mosaiced with cutlines and clipped to the Niwot project extent area. The photography was registered to 2008 orthocorrected Denver Region Council of Governments (DRCOG) aerial photography. Horizontal accuracy is 1 m (RMSE, relative to the 2008 reference imagery, based on 9 independent check points). The mosaic covers an area of 98 km2 and is available in GeoTIFF format, in a UTM zone 13 projection and NAD83 horizontal datum, with FGDC-compliant metadata. The mosaic is available through an unrestricted public license, and can be obtained by request (see Distributor contact information below). Other datasets available in this series includes orthorectified aerial photograph mosaics (for 1953, 1972, 1990, 1999, 2000, 2002, 2004, 2006 and 2008), digital elevation models (DEM's), and accessory map layers. Together, the DEM's and imagery will be of interest to students, research scientists, and others for observation and analysis of natural features and ecosystems. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

  14. f

    Supplement 1. Forest/nonforest rasters for the four dates considered, a 25-m...

    • wiley.figshare.com
    html
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Z. Carlson; Julien Renaud; Pierre Eymard Biron; Philippe Choler (2023). Supplement 1. Forest/nonforest rasters for the four dates considered, a 25-m resolution digital elevation model, and a shapefile representing the nongrazed area. [Dataset]. http://doi.org/10.6084/m9.figshare.3519590.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Wiley
    Authors
    Bradley Z. Carlson; Julien Renaud; Pierre Eymard Biron; Philippe Choler
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    File List DEM25_RNHPV.tif (MD5: a3c79a31ed84d1e71640612fa50c3bfc) FOR09.img (MD5: f883124fff247221b57192aebd4ffb8f) FOR93.img (MD5: d62eeb665ce38ff9abe35a19911dea57) FOR78.img (MD5: 4af6115eac3f1f8f827d6fe098b118a0) FOR48.img (MD5: 77f6fbe599cf3e4bef59c16781fb76c4) Non_grazed.zip (md5: f9c6775d1e960155c4ea14e01793d0e8)

    Description

       DEM25_RNHPV.tif contains a 25-m resolution digital elevation model of the study area. The .img files consist of 5-m resolution binary rasters of forest cover for the four dates considered. Non_grazed.zip includes four files (.sbn, .sbx, .shp, and .shx) that constitute a shapefile of the non-grazed zone considered in this study. All maps are projected using the GRS80 Lambert Azimuthal Equal Area projection.
        It is important to note that this Supplement contains raw data. Our intention is to provide interested parties with the input information necessary to carry out their own analysis of land cover change in the Réserve Naturelle du Hauts Plateaux du Vercors (RNHPV), France. 
        All of the included files are intended to be opened and manipulated in a Geographic Information System (GIS). Below is an example of code for opening either a .img or .tif file in R. Files can also be opened automatically using GIS software such as ArcMap or QGIS.
                   #Required
    

    install.packages("raster") ; install.packages("rgdal") library(raster)

    setwd("//...")

    forest09

  15. Z

    Green Roofs Footprints for New York City, Assembled from Available Data and...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanderson, Eric W. (2020). Green Roofs Footprints for New York City, Assembled from Available Data and Remote Sensing [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_1469673
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Maxwell, Emily Nobel
    Sanderson, Eric W.
    Treglia, Michael L.
    Yetman, Greg
    McPhearson, Timon
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    Summary:

    The files contained herein represent green roof footprints in NYC visible in 2016 high-resolution orthoimagery of NYC (described at https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_AerialImagery.md). Previously documented green roofs were aggregated in 2016 from multiple data sources including from NYC Department of Parks and Recreation and the NYC Department of Environmental Protection, greenroofs.com, and greenhomenyc.org. Footprints of the green roof surfaces were manually digitized based on the 2016 imagery, and a sample of other roof types were digitized to create a set of training data for classification of the imagery. A Mahalanobis distance classifier was employed in Google Earth Engine, and results were manually corrected, removing non-green roofs that were classified and adjusting shape/outlines of the classified green roofs to remove significant errors based on visual inspection with imagery across multiple time points. Ultimately, these initial data represent an estimate of where green roofs existed as of the imagery used, in 2016.

    These data are associated with an existing GitHub Repository, https://github.com/tnc-ny-science/NYC_GreenRoofMapping, and as needed and appropriate pending future work, versioned updates will be released here.

    Terms of Use:

    The Nature Conservancy and co-authors of this work shall not be held liable for improper or incorrect use of the data described and/or contained herein. Any sale, distribution, loan, or offering for use of these digital data, in whole or in part, is prohibited without the approval of The Nature Conservancy and co-authors. The use of these data to produce other GIS products and services with the intent to sell for a profit is prohibited without the written consent of The Nature Conservancy and co-authors. All parties receiving these data must be informed of these restrictions. Authors of this work shall be acknowledged as data contributors to any reports or other products derived from these data.

    Associated Files:

    As of this release, the specific files included here are:

    GreenRoofData2016_20180917.geojson is in the human-readable, GeoJSON format, in geographic coordinates (Lat/Long, WGS84; EPSG 4263).

    GreenRoofData2016_20180917.gpkg is in the GeoPackage format, which is an Open Standard readable by most GIS software including Esri products (tested on ArcMap 10.3.1 and multiple versions of QGIS). This dataset is in the New York State Plan Coordinate System (units in feet) for the Long Island Zone, North American Datum 1983, EPSG 2263.

    GreenRoofData2016_20180917_Shapefile.zip is a zipped folder containing a Shapefile and associated files. Please note that some field names were truncated due to limitations of Shapefiles, but columns are in the same order as for other files and in the same order as listed below. This dataset is in the New York State Plan Coordinate System (units in feet) for the Long Island Zone, North American Datum 1983, EPSG 2263.

    GreenRoofData2016_20180917.csv is a comma-separated values file (CSV) with coordinates for centroids for the green roofs stored in the table itself. This allows for easily opening the data in a tool like spreadsheet software (e.g., Microsoft Excel) or a text editor.

    Column Information for the datasets:

    Some, but not all fields were joined to the green roof footprint data based on building footprint and tax lot data; those datasets are embedded as hyperlinks below.

    fid - Unique identifier

    bin - NYC Building ID Number based on overlap between green roof areas and a building footprint dataset for NYC from August, 2017. (Newer building footprint datasets do not have linkages to the tax lot identifier (bbl), thus this older dataset was used). The most current building footprint dataset should be available at: https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh. Associated metadata for fields from that dataset are available at https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_BuildingFootprints.md.

    bbl - Boro Block and Lot number as a single string. This field is a tax lot identifier for NYC, which can be tied to the Digital Tax Map (http://gis.nyc.gov/taxmap/map.htm) and PLUTO/MapPLUTO (https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page). Metadata for fields pulled from PLUTO/MapPLUTO can be found in the PLUTO Data Dictionary found on the aforementioned page. All joins to this bbl were based on MapPLUTO version 18v1.

    gr_area - Total area of the footprint of the green roof as per this data layer, in square feet, calculated using the projected coordinate system (EPSG 2263).

    bldg_area - Total area of the footprint of the associated building, in square feet, calculated using the projected coordinate system (EPSG 2263).

    prop_gr - Proportion of the building covered by green roof according to this layer (gr_area/bldg_area).

    cnstrct_yr - Year the building was constructed, pulled from the Building Footprint data.

    doitt_id - An identifier for the building assigned by the NYC Dept. of Information Technology and Telecommunications, pulled from the Building Footprint Data.

    heightroof - Height of the roof of the associated building, pulled from the Building Footprint Data.

    feat_code - Code describing the type of building, pulled from the Building Footprint Data.

    groundelev - Lowest elevation at the building level, pulled from the Building Footprint Data.

    qa - Flag indicating a positive QA/QC check (using multiple types of imagery); all data in this dataset should have 'Good'

    notes - Any notes about the green roof taken during visual inspection of imagery; for example, it was noted if the green roof appeared to be missing in newer imagery, or if there were parts of the roof for which it was unclear whether there was green roof area or potted plants.

    classified - Flag indicating whether the green roof was detected image classification. (1 for yes, 0 for no)

    digitized - Flag indicating whether the green roof was digitized prior to image classification and used as training data. (1 for yes, 0 for no)

    newlyadded - Flag indicating whether the green roof was detected solely by visual inspection after the image classification and added. (1 for yes, 0 for no)

    original_source - Indication of what the original data source was, whether a specific website, agency such as NYC Dept. of Parks and Recreation (DPR), or NYC Dept. of Environmental Protection (DEP). Multiple sources are separated by a slash.

    address - Address based on MapPLUTO, joined to the dataset based on bbl.

    borough - Borough abbreviation pulled from MapPLUTO.

    ownertype - Owner type field pulled from MapPLUTO.

    zonedist1 - Zoning District 1 type pulled from MapPLUTO.

    spdist1 - Special District 1 pulled from MapPLUTO.

    bbl_fixed - Flag to indicate whether bbl was manually fixed. Since tax lot data may have changed slightly since the release of the building footprint data used in this work, a small percentage of bbl codes had to be manually updated based on overlay between the green roof footprint and the MapPLUTO data, when no join was feasible based on the bbl code from the building footprint data. (1 for yes, 0 for no)

    For GreenRoofData2016_20180917.csv there are two additional columns, representing the coordinates of centroids in geographic coordinates (Lat/Long, WGS84; EPSG 4263):

    xcoord - Longitude in decimal degrees.

    ycoord - Latitude in decimal degrees.

    Acknowledgements:

    This work was primarily supported through funding from the J.M. Kaplan Fund, awarded to the New York City Program of The Nature Conservancy, with additional support from the New York Community Trust, through New York City Audubon and the Green Roof Researchers Alliance.

  16. d

    Winter Season Habitat Categories for Greater Sage-grouse in Nevada and...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Winter Season Habitat Categories for Greater Sage-grouse in Nevada and northeastern California [Dataset]. https://catalog.data.gov/dataset/winter-season-habitat-categories-for-greater-sage-grouse-in-nevada-and-northeastern-califo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California, Nevada
    Description

    This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California during the winter season, and is a surrogate for habitat conditions during periods of cold and snow. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Winter included telemetry locations (n = 4862) from November to March. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion using R software (v 3.13) and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. HABITAT CATEGORIZATION: Using the same ecoregion boundaries described above, the habitat classification dataset (an independent data set comprising 10% of the total telemetry location sample) was split into locations falling within respective north and south regions. HSI values from the composite and relativized statewide HSI surface were then extracted to each classification dataset location within the north and south region. The distribution of these values were used to identify class break values corresponding to 0.5 (high), 1.0 (moderate), and 1.5 (low) standard deviations (SD) from the mean HSI. These class breaks were used to classify the HSI surface into four discrete categories of habitat suitability: High, Moderate, Low, and Non-Habitat. In terms of percentiles, High habitat comprised greater than 30.9 % of the HSI values, Moderate comprised 15 – 30.9%, Low comprised 6.7 – 15%, and Non-Habitat comprised less than 6.7%.The classified north and south regions were then clipped by the boundary layer and mosaicked to create a statewide categorical surface for habitat selection . Each habitat suitability category was converted to a vector output where gaps within polygons less than 1.2 million square meters were eliminated, polygons within 500 meters of each other were connected to create corridors and polygons less than 1.2 million square meters in one category were incorporated to the adjacent category. The final step was to mask major roads that were buffered by 50m (Census, 2014), lakes (Peterson, 2008) and urban areas, and place those masked areas into the non-habitat category. The existing urban layer (Census 2010) was not sufficient for our needs because it excluded towns with a population lower than 1,500. Hence, we masked smaller towns (populations of 100 to 1500) and development with Census Block polygons (Census 2015) that had at least 50% urban development within their boundaries when viewed with reference imagery (ArcGIS World Imagery Service Layer). REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014

  17. n

    National Forest Inventory Continental Database; BRR, Australia

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). National Forest Inventory Continental Database; BRR, Australia [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214584389-SCIOPS.html
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1990 - Present
    Area covered
    Description

    National Forest Inventory Continental Database is a database of forest resource attributes covering all land tenures for Australia and Territories. Forest is defined as woody vegetation in excess of 5 metres in height, with a projective foliage cover of >30%. The NFI is also collecting information outside this definition. The data is collected by aerial photo interpretation, field measurements, field Specimens, field notes, maps, and remote sensing data from satellite. The database is made up of separate State wide databases that have been normalised and collated into a single database. Scales and levels of completeness vary between state and within states. These gaps are being addressed by NFI funded regional and local scale projects.

    The data base includes gf (Growth form of the vegetation), g1/s1 (the most abundant or physically predominant species in the tallest stratum), g2/s2 (another species that is always present and conspicuous in the tallest stratum), g3/s3 (species selected from any stratum, usually a lower stratum as an indicator species or to destinguish between associations), minh (minimum height in metres), maxh (maximum height in metres), medh (median height derived through consultation with the suppliers of the data), h_class (height class as per Walker and Hopkins (1990)), minpfc (minimum projective foliage cover), maxpfc (maximum projective foliage cover), medpfc (median projective foliage cover), mincc (minimum crown cover), maxcc (maximum crown cover), minc (minimum crown separation ratio), maxc (maximum crown separation ratio), c_class (cover classes as per Walker and Hopkins (1990)), plant_code (equivalent to frq_code for plantations), and description (description of the type of plantation). The data is available in ArcInfo EXPORT format (the interchange format for this Geographic Information System). The data set is about 500 megabytes.

  18. Desert Tortoise Predicted Habitat - CWHR R005 [ds2387]

    • catalog.data.gov
    • data.cnra.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2024). Desert Tortoise Predicted Habitat - CWHR R005 [ds2387] [Dataset]. https://catalog.data.gov/dataset/desert-tortoise-predicted-habitat-cwhr-r005-ds2387-154bb
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  19. a

    CNP Grassland Mapping Project 2020-22 - Polygons

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • opendata.nature.scot
    • +1more
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NatureScot (2023). CNP Grassland Mapping Project 2020-22 - Polygons [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/snh::cnp-grassland-mapping-project-2020-22-polygons/about
    Explore at:
    Dataset updated
    Mar 1, 2023
    Dataset authored and provided by
    NatureScot
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This polygon dataset provides results of grassland surveys undertaken in the Cairngorms National Park between 2020 and 2022 as part of a joint project delivered by NatureScot and the Cairngorms National Park Authority. The aim was to establish the location and extent of species-rich grassland (SRG) within enclosed (and formerly enclosed) farm land, up to a maximum altitudinal limit of 500 m, using a combination of remote sensing and targeted field survey. This dataset covers the Livet, Avon and Dee catchments. Patches of unimproved/semi-improved grassland, down to 0.04 ha in size, were identified and delineated by analysing high-resolution aerial photography (involving image segmentation and subsequent classification of the output). This provided a search map of polygons to visit in the field, targeting survey effort towards the areas where species-rich grassland was most likely to occur. The field survey was undertaken by contractors during July to September in 2020 and 2021, and July to October in 2022. For each polygon, grassland communities and their relative percentage cover were described using the National Vegetation Classification (NVC), and species-richness was assessed. Locations of any missed species-rich grassland, occurring outside the search map polygons, were captured in the field and added to the dataset. When species-rich grassland was encountered, additional detailed attributes describing the quality and condition of these stands were collected in the CNPGrasslandMapping_2020to2022_SRGAttributes dataset which can be joined/related to this one using the POLY_ID / PARENT_POLY fields. Other notable habitats and plant species were captured in the CNPGrasslandMapping_2020to2022_TargetNotes dataset. There are 4930 polygons in total, of which 1482 (30%) were found to contain at least some species-rich grassland. The principal species-rich grassland NVC types were: dry – acid (U1d, U4c, U5c), neutral (MG2, MG3, MG5), calcareous (CG2, CG7, CG10, CG11); wet – purple moor-grass & rush pasture (M23a, M25c), tall-herb fen meadow (M27, M28). Polygons containing species-rich grassland can be identified using the SRG_PRES (yes/no) field. The dataset contains the following fields: NVC_1 to NVC_6 – NVC communities recorded in the polygon; COVER_1 to COVER_6 – relative percentage cover of each NVC community in the polygon; COMMENT – specific notes about vegetation in the polygon; SRG_PRES – presence of species-rich grassland in polygon (yes/no); NVC_LIST – list of all NVC communities in polygon and proportion cover of mosaic components; SRG_NVC – species-rich grassland NVC communities and proportion cover in the polygon; SRG_COVER – total percentage cover of species-rich grassland in polygon; POLY_HA – area of polygon (hectares); SRG_HA – area of species-rich grassland in polygon (hectares); SURV_YR – year of field survey; SURV_DATE – date of field survey; SURVEYOR – field surveyor; CATCHMENT – river catchment area; POLY_ID – unique polygon identifier.

    Complete project metadata document on spatialdata.gov.scot

  20. c

    Winter Season Habitat Suitability Index for Greater Sage-Grouse in Nevada...

    • s.cnmilf.com
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Winter Season Habitat Suitability Index for Greater Sage-Grouse in Nevada and northeastern California [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/winter-season-habitat-suitability-index-for-greater-sage-grouse-in-nevada-and-northeastern
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California, Nevada
    Description

    This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada during the winter season, and is a surrogate for habitat conditions during periods of cold and snow. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry _location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Winter included telemetry locations (n = 4862) from November to March. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion using R software (v 3.13) using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the winter season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Irini Soubry; Thuy Doan; Thuan Chu; Xulin Guo (2021). A systematic review on the integration of remote sensing and GIS to forest and grassland ecosystem health attributes, indicators, and measures [Dataset]. http://doi.org/10.6084/m9.figshare.14850525.v1
Organization logo

Data from: A systematic review on the integration of remote sensing and GIS to forest and grassland ecosystem health attributes, indicators, and measures

Related Article
Explore at:
txtAvailable download formats
Dataset updated
Aug 14, 2021
Dataset provided by
Figsharehttp://figshare.com/
Authors
Irini Soubry; Thuy Doan; Thuan Chu; Xulin Guo
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This data support the paper "A systematic review on the integration of remote sensing and GIS to forest and grassland ecosystem health attributes, indicators, and measures " by Irini Soubry, Thuy Doan, Thuan Chu and Xulin Guo 2021 in the journal of "Remote Sensing" by MDPI. It includes the "Search_Effort.csv" list with the keywords and number of studies selected for further examination, the "Potential_Studies.csv" with the post-filtering of suitability and notes related to each study, the "Metadata.csv" with the information collected for each metadata variable per study, and the "ExtractedData.csv" with the information collected for each extracted dta variable per study. More information about the data collection and procedures can be found in the respective manuscript.

Search
Clear search
Close search
Google apps
Main menu