100+ datasets found
  1. a

    Data from: Thirty Years of Change in the Land Use and Land Cover of the Ziz...

    • hub.arcgis.com
    • opengeoversity-geoap.hub.arcgis.com
    Updated Mar 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOAP (2024). Thirty Years of Change in the Land Use and Land Cover of the Ziz Oases (Pre-Sahara of Morocco) Combining Remote Sensing, GIS, and Field Observations [Dataset]. https://hub.arcgis.com/documents/02bd9a684620452f916c4d81868fa219
    Explore at:
    Dataset updated
    Mar 18, 2024
    Dataset authored and provided by
    GEOAP
    Description

    Remote sensing (RS) data and geographic information system (GIS) techniques were used to monitor the changes in the Oasis agroecosystem of the pre-Saharan province of Errachidia, southeastern Morocco. The land use and land cover (LULC) change of the agroecosystem of this province was processed using Landsat time series with 5-year intervals of the last thirty years. The normalized difference vegetation index (NDVI) and the maximum likelihood classification (MLC) were categorized into five classes, including water bodies, cultivated land, bare land, built-up, and desertified land. The overall accuracy of the MLC maps was estimated to be higher than 90%. The finding showed a degradation trend represented by an increase in desertified lands, which tripled in the ten last years, passing from 20.62% in 2011 to 58.49% in 2022. The findings also depicted a decreasing trend in the cultivated area in this period passing from 174.2 km2 in 1991 to 82.2 km2 in 2022. Using NDWI, Landsat images from 1991 to 2021 depicted a strong association between the water reserve in Hassan Eddakhil dam in the upstream area and the LULC changes. The oases from the dam (upstream) to Er-Rissani (downstream) recorded high rates of decline with an increasing trend of desertification due to drought and overuse mainly of groundwater. The outputs of this research effort constitute a significant source of information that may be used to support further research and decision-makers to manage arid ecosystems and achieve the sustainable development goals (SDGs), precisely the SDGs 15 (Life on land).

  2. f

    Depicting changes in land surface cover at Al-Hassa oasis of Saudi Arabia...

    • plos.figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdulrahman Mohamed Almadini; Abdalhaleem Abdalla Hassaballa (2023). Depicting changes in land surface cover at Al-Hassa oasis of Saudi Arabia using remote sensing and GIS techniques [Dataset]. http://doi.org/10.1371/journal.pone.0221115
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Abdulrahman Mohamed Almadini; Abdalhaleem Abdalla Hassaballa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Saudi Arabia
    Description

    This study assessed the spatial and temporal variations of land cover in the agricultural areas of the Al-Hassa oasis, Kingdom of Saudi Arabia (KSA). Change detection technique was applied in order to classify variations among different surface cover aspects, during three successive stages between 1985 and 2017 (i.e., 1985 to 1999 (14 years), 1999 to 2013 (14 years), and 2013 to 2017 (4 years)), using two scenarios. During the first stage, significant urban sprawl (i.e., 3,200 ha) occurred on bare lands within the old oasis, while only 590 ha of the oasis’s vegetation area was occupied by urban cover. However, the final stage revealed rapid urban development (1,270 ha by 2017) within the oasis’s vegetation region, while no urban sprawl occurred on bare lands (area of 1,900 ha, same as that in 1999–2013). Vegetation cover of around 1,000 ha changed to the bare soil class, in addition to the areas that were occupied by the urban class (1,700 ha in total). The study provides quantitative information on the influence of urban development on the spatial changes in vegetation cover of the oasis, especially during recent decades.

  3. D

    Geographic Information System GIS Tools Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System GIS Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-gis-tools-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Tools Market Outlook



    The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.



    One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.



    Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.



    The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.



    Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.



    Component Analysis



    The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.



    Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.



    The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr

  4. f

    Data from: Integrating geographical information systems, remote sensing, and...

    • tandf.figshare.com
    docx
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Armstrong Manuvakola Ezequias Ngolo; Teiji Watanabe (2023). Integrating geographical information systems, remote sensing, and machine learning techniques to monitor urban expansion: an application to Luanda, Angola [Dataset]. http://doi.org/10.6084/m9.figshare.20401962.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Armstrong Manuvakola Ezequias Ngolo; Teiji Watanabe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Luanda, Angola
    Description

    According to many previous studies, application of remote sensing for the complex and heterogeneous urban environments in Sub-Saharan African countries is challenging due to the spectral confusion among features caused by diversity of construction materials. Resorting to classification based on spectral indices that are expected to better highlight features of interest and to be prone to unsupervised classification, this study aims (1) to evaluate the effectiveness of index-based classification for Land Use Land Cover (LULC) using an unsupervised machine learning algorithm Product Quantized K-means (PQk-means); and (2) to monitor the urban expansion of Luanda, the capital city of Angola in a Logistic Regression Model (LRM). Comparison with state-of-the-art algorithms shows that unsupervised classification by means of spectral indices is effective for the study area and can be used for further studies. The built-up area of Luanda has increased from 94.5 km2 in 2000 to 198.3 km2 in 2008 and to 468.4 km2 in 2018, mainly driven by the proximity to the already established residential areas and to the main roads as confirmed by the logistic regression analysis. The generated probability maps show high probability of urban growth in the areas where government had defined housing programs.

  5. A

    Remote Sensing

    • data.amerigeoss.org
    html
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmericaView (2024). Remote Sensing [Dataset]. https://data.amerigeoss.org/dataset/remote-sensing1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    AmericaView
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This course explores the theory, technology, and applications of remote sensing. It is designed for individuals with an interest in GIS and geospatial science who have no prior experience working with remotely sensed data. Lab exercises make use of the web and the ArcGIS Pro software. You will work with and explore a wide variety of data types including aerial imagery, satellite imagery, multispectral imagery, digital terrain data, light detection and ranging (LiDAR), thermal data, and synthetic aperture RaDAR (SAR). Remote sensing is a rapidly changing field influenced by big data, machine learning, deep learning, and cloud computing. In this course you will gain an overview of the subject of remote sensing, with a special emphasis on principles, limitations, and possibilities. In addition, this course emphasizes information literacy, and will develop your skills in finding, evaluating, and using scholarly information.

    You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises to reinforce the material. Lastly, you will complete paper reviews and a term project. We have also provided additional bonus material and links associated with surface hydrologic analysis with TauDEM, geographic object-based image analysis (GEOBIA), Google Earth Engine (GEE), and the geemap Python library for Google Earth Engine. Please see the sequencing document for our suggested order in which to work through the material. We have also provided PDF versions of the lectures with the notes included.

  6. g

    Data from: Multi-temporal landslide inventory for a study area in Southern...

    • dataservices.gfz-potsdam.de
    Updated 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Behling; Sigrid Roessner (2020). Multi-temporal landslide inventory for a study area in Southern Kyrgyzstan derived from RapidEye satellite time series data (2009 – 2013) [Dataset]. http://doi.org/10.5880/gfz.1.4.2020.001
    Explore at:
    Dataset updated
    2020
    Dataset provided by
    datacite
    GFZ Data Services
    Authors
    Robert Behling; Sigrid Roessner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    German Aerospace Centerhttp://dlr.de/
    Bundesministerium für Bildung und Forschung
    Description

    Multi-temporal landslide inventories are important information for the understanding of landslide dynamics and related predisposing and triggering factors, and thus a crucial prerequisite for probabilistic hazard and risk assessment. Despite the great importance of these inventories, they do not exist for many landslide prone regions in the world. In this context, the recently evolving global-scale availability of high temporal and spatial resolution optical satellite imagery (RapidEye, Sentinel-2A/B, planet) has opened up new opportunities for the creation of these multi-temporal inventories. Taking up on these at the time still to be evolving opportunities, a semi-automated spatiotemporal landslide mapper was developed at the Remote Sensing Section of the GFZ Potsdam being capable of deriving post-failure landslide objects (polygons) from optical satellite time series data (Behling et al., 2014). The developed algorithm was applied to a 7500 km² study area using RapidEye time series data which were acquired in the frame of the RESA project (Project ID 424) for the time period between 2009 and 2013. A multi-temporal landslide inventory from 1986 to 2013 derived from multi-sensor optical satellite time series data is available as separate publications (Behling et al., 2016; Behling and Roessner, 2020). The resulting multi-temporal landslide inventory being subject of this data publication is supplementary to the article of Behling et al. (2014), which describes the developed spatiotemporal landslide mapper in detail. This landslide mapper detects landslide objects by analyzing temporal NDVI-based vegetation cover changes and relief-oriented parameters in a rule-based approach combining pixel- and object-based analysis. Typical landslide-related vegetation changes comprise abrupt disturbances of the vegetation cover in the result of the actual failure as well as post-failure revegetation which usually happens at a slower pace compared to vegetation growth in the surrounding undisturbed areas, since the displaced landslide masses are susceptible to subsequent erosion and reactivation processes. The resulting landslide-specific temporal surface cover dynamics in form of temporal trajectories is used as input information to detect freshly occurred landslides and to separate them from other temporal variations in the surrounding vegetation cover (e.g., seasonal vegetation changes or changes due to agricultural activities) and from permanently non-vegetated areas (e.g., urban non-vegetated areas, water bodies, rock outcrops). For a detailed description of the methodology of the spatiotemporal landslide mapper, please see Behling et al. (2014). The data are provided in vector format (polygons) in form of a standard shapefile contained in the zip-file Behling_et-al_2014_landslide_inventory_SouthernKyrgyzstan_2009_2013.zip and are described in more detail in the data description file.

  7. m

    GEE Code for Mapping High Resolution Cropland Distribution In Diverse...

    • data.mendeley.com
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    José Bofana (2022). GEE Code for Mapping High Resolution Cropland Distribution In Diverse Agroecological Zones [Dataset]. http://doi.org/10.17632/gswdbbpb4r.1
    Explore at:
    Dataset updated
    Jun 7, 2022
    Authors
    José Bofana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Having updated knowledge of cropland extent is essential for crop monitoring and food security early warning. Previous research has proposed different methods and adopted various datasets for mapping cropland areas at regional to global scales. However, most approaches did not consider the characteristics of farming systems and applied the same classification method in different agroecological zones (AEZs). Furthermore, the acquisition of in situ samples for classification training remains challenging. To address these knowledge gaps and challenges, this study applied a zone-specific classification by comparing four classifiers (random forest, the support vector machine (SVM), the classification and regression tree (CART) and minimum distance) for cropland mapping over four different AEZs in the Zambezi River basin (ZRB). Landsat-8 and Sentinel-2 data and derived indices were used and synthesized to generate thirty-five layers for classification on the Google Earth Engine platform. Training samples were derived from three existing landcover datasets to minimize the cost of sample acquisitions over the large area. The final cropland map was generated at a 10 m resolution.

    The information here presented was imported from a published paper with the title ''Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin'' which its reference is shown below. The dataset here presented was created based on the results of this study.

    Bofana, J.; Zhang, M.; Nabil, M.; Wu, B.; Tian, F.; Liu, W.; Zeng, H.; Zhang, N.; Nangombe, S.S.; Cipriano, S.A.; Phiri, E.; Mushore, T.D.; Kaluba, P.; Mashonjowa, E.; Moyo, C. Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens. 2020, 12, 2096. https://doi.org/10.3390/rs12132096

  8. A

    Data from: Indoor GIS Solution for Space Use Assessment

    • data.amerigeoss.org
    • ckan.americaview.org
    1843526
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmericaView (2024). Indoor GIS Solution for Space Use Assessment [Dataset]. https://data.amerigeoss.org/dataset/indoor-gis-solution-for-space-use-assessment
    Explore at:
    1843526Available download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    AmericaView
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As GIS and computing technologies advanced rapidly, many indoor space studies began to adopt GIS technology, data models, and analysis methods. However, even with a considerable amount of research on indoor GIS and various indoor systems developed for different applications, there has not been much attention devoted to adopting indoor GIS for the evaluation space usage. Applying indoor GIS for space usage assessment can not only provide a map-based interface for data collection, but also brings spatial analysis and reporting capabilities for this purpose. This study aims to explore best practice of using an indoor GIS platform to assess space usage and design a complete indoor GIS solution to facilitate and streamline the data collection, a management and reporting workflow. The design has a user-friendly interface for data collectors and an automated mechanism to aggregate and visualize the space usage statistics. A case study was carried out at the Purdue University Libraries to assess study space usage. The system is efficient and effective in collecting student counts and activities and generating reports to interested parties in a timely manner. The analysis results of the collected data provide insights into the user preferences in terms of space usage. This study demonstrates the advantages of applying an indoor GIS solution to evaluate space usage as well as providing a framework to design and implement such a system. The system can be easily extended and applied to other buildings for space usage assessment purposes with minimal development efforts.

  9. S

    Spatial Analysis Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Spatial Analysis Software Report [Dataset]. https://www.datainsightsmarket.com/reports/spatial-analysis-software-529883
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 11, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Spatial Analysis Software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions, the expanding use of drones and other data acquisition technologies for precise geographic data collection, and the rising demand for advanced analytics across diverse sectors. The market's expansion is fueled by the need for efficient geospatial data processing and interpretation in applications such as urban planning, infrastructure development, environmental monitoring, and precision agriculture. Key trends include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for automating analysis and improving accuracy, the proliferation of readily available satellite imagery and sensor data, and the growing adoption of 3D modeling and visualization techniques. While data security concerns and the high initial investment costs for advanced software solutions pose some restraints, the overall market outlook remains positive, with a projected compound annual growth rate (CAGR) exceeding 10% (a reasonable estimate based on the rapid technological advancements and market penetration observed in related sectors). This growth is expected to be particularly strong in the North American and Asia-Pacific regions, driven by substantial government investments in infrastructure projects and burgeoning private sector adoption. The segmentation by application (architecture, engineering, and other sectors) reflects the versatility of spatial analysis software, enabling its use across various industries. Similarly, the choice between cloud-based and locally deployed solutions caters to specific organizational needs and technical capabilities. The competitive landscape is characterized by both established players and emerging technology companies, showcasing the dynamic nature of the market. Major players like Autodesk, Bentley Systems, and Trimble are leveraging their existing portfolios to integrate advanced spatial analysis capabilities, while smaller companies are focusing on niche applications and innovative analytical techniques. The ongoing advancements in both hardware and software, coupled with increasing data availability and affordability, are set to further fuel the market's growth in the coming years. The historical period (2019-2024) likely witnessed moderate growth as the market matured, laying the foundation for the accelerated expansion expected during the forecast period (2025-2033). Continued innovation and industry convergence will be key drivers shaping the future trajectory of the Spatial Analysis Software market.

  10. Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS...

    • verifiedmarketresearch.com
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/geospatial-solutions-market/
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.

    Geospatial Solutions Market: Definition/ Overview

    Geospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.

    Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.

  11. d

    Data from: Environmental monitoring of spatial-temporal changes using remote...

    • datadiscoverystudio.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental monitoring of spatial-temporal changes using remote sensing and GIS techniques in the Abandoned Yellow River Delta coast, China [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/15c9a8cc2b834f38bc29696125660a73/html
    Explore at:
    Area covered
    Description

    no abstract provided

  12. G

    Geospatial Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Geospatial Services Report [Dataset]. https://www.archivemarketresearch.com/reports/geospatial-services-53924
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The geospatial services market is experiencing robust growth, driven by increasing demand for location intelligence across diverse sectors. Our analysis projects a market size of $150 billion in 2025, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This expansion is fueled by several key factors. The agricultural sector leverages geospatial data for precision farming, optimizing resource allocation and maximizing yields. Similarly, research institutions and government bodies increasingly utilize geospatial analytics for environmental monitoring, urban planning, and disaster response. The integration of advanced technologies like AI and machine learning further enhances the capabilities of geospatial services, leading to more accurate and insightful analyses. Furthermore, the rising adoption of cloud-based platforms is simplifying data access and processing, making geospatial technologies more accessible to a wider range of users. Market segmentation reveals significant opportunities within specific application areas. Data collection services, encompassing remote sensing and GPS technologies, constitute a substantial segment, while data analysis services, leveraging sophisticated algorithms and modelling techniques, are experiencing rapid growth. Geographically, North America and Europe currently hold the largest market shares, although the Asia-Pacific region is projected to witness the fastest growth due to increasing infrastructure development and technological advancements. However, challenges remain, including data security concerns, the need for skilled professionals, and the high initial investment costs associated with implementing sophisticated geospatial systems. Despite these constraints, the overall market trajectory indicates a promising future for geospatial services, with continued growth driven by technological innovation and the ever-increasing reliance on location-based information across various industries.

  13. f

    Data from: Agricultural land use and cover change in the Cerrado/Amazon...

    • scielo.figshare.com
    jpeg
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ana Paula Sousa Rodrigues ZAIATZ; Cornélio Alberto ZOLIN; Laurimar Goncalves VENDRUSCULO; Tarcio Rocha LOPES; Janaina PAULINO (2023). Agricultural land use and cover change in the Cerrado/Amazon ecotone: A case study of the upper Teles Pires River basin [Dataset]. http://doi.org/10.6084/m9.figshare.6273782.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELO journals
    Authors
    Ana Paula Sousa Rodrigues ZAIATZ; Cornélio Alberto ZOLIN; Laurimar Goncalves VENDRUSCULO; Tarcio Rocha LOPES; Janaina PAULINO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Cerrado, Teles Pires
    Description

    ABSTRACT The upper Teles Pires River basin is a key hydrological resource for the state of Mato Grosso, but has suffered rapid land use and cover change. The basin includes areas of Cerrado biome, as well as transitional areas between the Amazon and Cerrado vegetation types, with intensive large-scale agriculture widely-spread throughout the region. The objective of this study was to explore the spatial and temporal dynamics of land use and cover change from 1986 to 2014 in the upper Teles Pires basin using remote sensing and GIS techniques. TM (Thematic Mapper) and TIRS (Thermal Infrared Sensor) sensor images aboard the Landsat 5 and Landsat 8, respectively, were employed for supervised classification using the “Classification Workflow” in ENVI 5.0. To evaluate classification accuracy, an error matrix was generated, and the Kappa, overall accuracy, errors of omission and commission, user accuracy and producer accuracy indexes calculated. The classes showing greatest variation across the study period were “Agriculture” and “Rainforest”. Results indicated that deforested areas are often replaced by pasture and then by agriculture, while direct conversion of forest to agriculture occured less frequently. The indices with satisfactory accuracy levels included the Kappa and Global indices, which showed accuracy levels above 80% for all study years. In addition, the producer and user accuracy indices ranged from 59-100% and 68-100%, while the errors of omission and commission ranged from 0-32% and 0-40.6%, respectively.

  14. R

    Remote Sensing Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Remote Sensing Software Report [Dataset]. https://www.datainsightsmarket.com/reports/remote-sensing-software-1937670
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The remote sensing software market is experiencing robust growth, driven by increasing demand for geospatial data across various sectors. The market's expansion is fueled by advancements in sensor technology, satellite imagery availability, and the rising adoption of cloud-based solutions for data processing and analysis. Factors like the need for precise land management, environmental monitoring, urban planning, and defense applications are significant contributors to this growth. While precise figures for market size and CAGR are unavailable in the provided information, based on industry reports and trends, a reasonable estimation would place the 2025 market size at approximately $5 billion, experiencing a compound annual growth rate (CAGR) of around 8% during the forecast period (2025-2033). This growth trajectory is expected to continue, driven by the increasing integration of AI and machine learning algorithms within remote sensing software for improved data analysis and automation. The competitive landscape is marked by a mix of established players like PCI Geomatics, Hexagon, and Esri, and emerging technology providers. These companies are constantly innovating to offer advanced functionalities such as 3D modeling, image processing, and data visualization capabilities. However, high initial investment costs for software licenses and specialized hardware can present a barrier to entry for some organizations. Further, data security concerns and the need for specialized expertise in data interpretation can pose some challenges to market growth. Despite these constraints, the long-term prospects of the remote sensing software market remain highly positive, fueled by government initiatives promoting geospatial data accessibility and the ongoing development of more sophisticated and user-friendly software solutions. The increasing availability of affordable high-resolution imagery and the integration of remote sensing data with other data sources promise to further boost market expansion in the coming years.

  15. Z

    Survey data for "Remote Sensing & GIS Training in Ecology and Conservation"

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Braun, Daniela (2020). Survey data for "Remote Sensing & GIS Training in Ecology and Conservation" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_49870
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Wohlfahrt, Christian
    Ulloa-Torrealba, Yrneh Z.
    Bell, Alexandra
    Bernd, Asja
    Braun, Daniela
    Ortmann, Antonia
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This file provides the raw data of an online survey intended at gathering information regarding remote sensing (RS) and Geographical Information Systems (GIS) for conservation in academic education. The aim was to unfold best practices as well as gaps in teaching methods of remote sensing/GIS, and to help inform how these may be adapted and improved. A total of 73 people answered the survey, which was distributed through closed mailing lists of universities and conservation groups.

  16. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53977
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, considering the technological advancements and applications in agriculture (precision farming, crop monitoring), water conservancy (flood management, irrigation optimization), forest management (deforestation monitoring, resource assessment), and the public sector (urban planning, disaster response), a conservative estimate places the 2025 market size at approximately $2 billion. This figure reflects the substantial investments in satellite imagery acquisition and analysis capabilities worldwide. The market is further fueled by the rising adoption of cloud-based solutions, enhancing accessibility and scalability of software platforms. Trends such as the integration of AI and machine learning for automated image processing, the proliferation of high-resolution satellite imagery, and the increasing availability of open-source software are accelerating market expansion. However, factors such as the high cost of specialized software licenses and the need for skilled professionals to operate the sophisticated systems act as restraints. The market is segmented by application (agriculture, water conservancy, forest management, public sector, others) and software type (open-source, non-open-source). The North American and European markets currently hold significant shares, but the Asia-Pacific region is witnessing rapid growth due to increasing infrastructure development and government initiatives promoting geospatial technologies. This dynamic market landscape presents lucrative opportunities for both established players and emerging companies in the years to come. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of approximately 12%, driven by the aforementioned technological advancements and broadening applications across various industry verticals. The competitive landscape is comprised of both major players like ESRI, Trimble, and PCI Geomatica, offering comprehensive suites of software, and smaller, specialized companies focusing on niche applications or open-source solutions. The market is characterized by both proprietary and open-source software options. Open-source solutions like QGIS and GRASS GIS offer cost-effective alternatives, particularly for research and smaller organizations, while commercial solutions provide advanced functionalities and support. The increasing availability of cloud-based solutions is blurring the lines between these segments, with hybrid models emerging that combine the benefits of both. Future growth will be significantly influenced by collaborations between software providers and satellite imagery providers, fostering a more integrated ecosystem and streamlining the data acquisition and processing workflow. The market will continue to benefit from advancements in satellite technology, producing higher-resolution, more frequent, and more affordable imagery.

  17. Geographic Information System Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Geographic Information System Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/geographic-information-system-market-global-industry-analysis
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System Market Outlook



    As per our latest research, the global Geographic Information System (GIS) market size reached USD 12.3 billion in 2024. The industry is experiencing robust expansion, driven by a surging demand for spatial data analytics across diverse sectors. The market is projected to grow at a CAGR of 11.2% from 2025 to 2033, reaching an estimated USD 31.9 billion by 2033. This accelerated growth is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing with GIS solutions, as well as the increasing adoption of location-based services and smart city initiatives worldwide.




    One of the primary growth factors fueling the GIS market is the rapid adoption of geospatial analytics in urban planning and infrastructure development. Governments and private enterprises are leveraging GIS to optimize land use, manage resources efficiently, and enhance public services. Urban planners utilize GIS to analyze demographic trends, plan transportation networks, and ensure sustainable development. The integration of GIS with Building Information Modeling (BIM) and real-time data feeds has further amplified its utility in smart city projects, driving demand for sophisticated GIS platforms. The proliferation of IoT devices and sensors has also enabled the collection of high-resolution geospatial data, which is instrumental in developing predictive models for urban growth and disaster management.




    Another significant driver of the GIS market is the increasing need for disaster management and risk mitigation. GIS technology plays a pivotal role in monitoring natural disasters such as floods, earthquakes, and wildfires. By providing real-time spatial data, GIS enables authorities to make informed decisions, coordinate response efforts, and allocate resources effectively. The growing frequency and intensity of natural disasters, coupled with heightened awareness about climate change, have compelled governments and humanitarian organizations to invest heavily in advanced GIS solutions. These investments are not only aimed at disaster response but also at long-term resilience planning, thereby expanding the scope and scale of GIS applications.




    The expanding application of GIS in the agriculture and utilities sectors is another crucial growth factor. Precision agriculture relies on GIS to analyze soil conditions, monitor crop health, and optimize irrigation practices, ultimately boosting productivity and sustainability. In the utilities sector, GIS is indispensable for asset management, network optimization, and outage response. The integration of GIS with remote sensing technologies and drones has revolutionized data collection and analysis, enabling more accurate and timely decision-making. Moreover, the emergence of cloud-based GIS platforms has democratized access to geospatial data and analytics, empowering small and medium enterprises to harness the power of GIS for operational efficiency and strategic planning.




    From a regional perspective, North America continues to dominate the GIS market, supported by substantial investments in smart infrastructure, advanced research capabilities, and a strong presence of leading technology providers. However, Asia Pacific is emerging as the fastest-growing region, driven by rapid urbanization, government initiatives for digital transformation, and increasing adoption of GIS in agriculture and disaster management. Europe is also witnessing significant growth, particularly in transportation, environmental monitoring, and public safety applications. The Middle East & Africa and Latin America are gradually catching up, with growing investments in infrastructure development and resource management. This regional diversification is expected to drive innovation and competition in the global GIS market over the forecast period.





    Component Analysis



    The Geographic Information System market is segmented by component into hardware, software, and services, each playing a unique role

  18. G

    Geographic Information System (GIS) Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographic Information System (GIS) Report [Dataset]. https://www.datainsightsmarket.com/reports/geographic-information-system-gis-1445358
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) market, currently valued at approximately $10.88 billion (2025), is poised for robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 5.8% from 2025 to 2033. This expansion is driven by several key factors. Increasing urbanization and infrastructure development necessitate advanced spatial data management and analysis capabilities offered by GIS. The rising adoption of cloud-based GIS solutions, providing scalability and cost-effectiveness, further fuels market growth. Furthermore, the integration of GIS with other technologies like IoT (Internet of Things) and AI (Artificial Intelligence) is unlocking new applications across diverse sectors, enhancing decision-making processes and improving operational efficiency. The oil and gas, construction, mining, and transportation industries are major contributors to market demand, leveraging GIS for asset management, resource exploration, and infrastructure planning. The market segmentation reveals a dynamic landscape. Hardware components, including GIS collectors, total stations, and LIDAR systems, constitute a significant portion of the market, alongside the rapidly expanding software segment. While North America currently holds a substantial market share, driven by early adoption and technological advancements, the Asia-Pacific region exhibits significant growth potential, fuelled by rapid infrastructure development and increasing government investments in digital technologies. Competition is intense, with established players like Hexagon, Topcon, Trimble, and Autodesk vying for market dominance alongside emerging players. While challenges exist, such as the high initial investment costs for implementing GIS solutions and the need for skilled professionals, the overall market trajectory indicates continued expansion and innovation in the coming years. The ongoing evolution of GIS technology, coupled with the expanding range of applications, ensures its continued relevance across diverse industries.

  19. S

    Satellite Remote Sensing Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.datainsightsmarket.com/reports/satellite-remote-sensing-software-532221
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for satellite remote sensing software is experiencing robust growth, driven by increasing demand across various sectors. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching approximately $7 billion by 2033. This expansion is fueled by several key factors. Firstly, advancements in satellite technology are providing higher-resolution imagery and enhanced data analytics capabilities, leading to improved accuracy and efficiency in applications like precision agriculture, urban planning, and environmental monitoring. Secondly, the decreasing cost of satellite data and the rising accessibility of cloud-based processing platforms are democratizing access to this technology for a wider range of users and organizations. Furthermore, the growing need for real-time data and predictive analytics in various industries is significantly boosting the adoption of sophisticated satellite remote sensing software. Competition among established players like GAMMA Remote Sensing AG, ESRI, and Trimble, alongside emerging innovative companies, is fostering a dynamic market landscape with continuous improvements in software functionality and user experience. However, certain restraints are also influencing the market's trajectory. The complexity of some software packages and the requirement for specialized skills to operate them can pose a barrier to entry for some users. Data security and privacy concerns also need to be addressed to ensure the responsible use of sensitive geospatial information. Despite these challenges, the long-term outlook for the satellite remote sensing software market remains positive, with continued growth expected across diverse geographical regions, particularly in North America and Europe where adoption rates are currently higher. Segmentation within the market reflects specialization in particular applications (e.g., agriculture, defense, environmental management) and software types (e.g., image processing, GIS integration). Future growth will be heavily influenced by the ongoing integration of artificial intelligence and machine learning into these software packages, enabling automated analysis and unlocking even greater insights from satellite imagery.

  20. q

    Land Suitability Mapping for Selected Energy Crops in Florida using GIS

    • qubeshub.org
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christianah Adegboyega (2025). Land Suitability Mapping for Selected Energy Crops in Florida using GIS [Dataset]. http://doi.org/10.25334/ZHVJ-Y393
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    QUBES
    Authors
    Christianah Adegboyega
    Description

    To address the global challenge of reducing greenhouse gas emissions contributing to climate change, it is essential to explore innovative, renewable, and sustainable energy solutions. Bioenergy, derived from biological sources, plays a vital role by providing renewable options for heat, electricity, and vehicle fuel. Biofuels from food crops like sugarcane and cassava demonstrate the potential of agricultural products for energy generation, while jatropha is cultivated primarily for oil. This learning activity focuses on land suitability mapping for these selected crops in Florida, incorporating criteria such as temperature, rainfall, soil type, soil pH, and topography. The analysis evaluates the land requirements of food and energy crops within the Food-Energy-Water (FEW) nexus framework, addressing potential land-use conflicts. Geographic Information Systems (GIS) are employed to identify optimal regions for energy crop cultivation, promoting sustainable practices that balance food security, water conservation, and renewable energy production. The modules are developed and designed for undergraduate students, particularly those enrolled in any of courses such as environmental science, GIS, natural resource management, agricultural science and remote sensing. Students will apply GIS and remote sensing techniques to analyze interactions among food, energy, and water resources, focusing on resilient crops. The activity incorporates the 4DEE framework – Core Ecological Concepts, Ecological Practices, Human-Environment Interactions, and Cross-Cutting Themes to enhance understanding of the FEW nexus. Through hands-on projects addressing real-world ecological challenges, students will develop critical skills in geospatial data analysis, data interpretation, and ethical considerations, preparing them for sustainable resource management. Likewise on part of the instructors, the activity is designed for those with intermediate to advanced GIS expertise, particularly in ArcGIS Pro and Google Earth Engine for spatial analysis and a basic understanding and application of the Food-Energy-Water (FEW) Nexus to guide students in making informed land-use decisions that support sustainable development goals.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GEOAP (2024). Thirty Years of Change in the Land Use and Land Cover of the Ziz Oases (Pre-Sahara of Morocco) Combining Remote Sensing, GIS, and Field Observations [Dataset]. https://hub.arcgis.com/documents/02bd9a684620452f916c4d81868fa219

Data from: Thirty Years of Change in the Land Use and Land Cover of the Ziz Oases (Pre-Sahara of Morocco) Combining Remote Sensing, GIS, and Field Observations

Related Article
Explore at:
Dataset updated
Mar 18, 2024
Dataset authored and provided by
GEOAP
Description

Remote sensing (RS) data and geographic information system (GIS) techniques were used to monitor the changes in the Oasis agroecosystem of the pre-Saharan province of Errachidia, southeastern Morocco. The land use and land cover (LULC) change of the agroecosystem of this province was processed using Landsat time series with 5-year intervals of the last thirty years. The normalized difference vegetation index (NDVI) and the maximum likelihood classification (MLC) were categorized into five classes, including water bodies, cultivated land, bare land, built-up, and desertified land. The overall accuracy of the MLC maps was estimated to be higher than 90%. The finding showed a degradation trend represented by an increase in desertified lands, which tripled in the ten last years, passing from 20.62% in 2011 to 58.49% in 2022. The findings also depicted a decreasing trend in the cultivated area in this period passing from 174.2 km2 in 1991 to 82.2 km2 in 2022. Using NDWI, Landsat images from 1991 to 2021 depicted a strong association between the water reserve in Hassan Eddakhil dam in the upstream area and the LULC changes. The oases from the dam (upstream) to Er-Rissani (downstream) recorded high rates of decline with an increasing trend of desertification due to drought and overuse mainly of groundwater. The outputs of this research effort constitute a significant source of information that may be used to support further research and decision-makers to manage arid ecosystems and achieve the sustainable development goals (SDGs), precisely the SDGs 15 (Life on land).

Search
Clear search
Close search
Google apps
Main menu