100+ datasets found
  1. Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS...

    • verifiedmarketresearch.com
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/geospatial-solutions-market/
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.

    Geospatial Solutions Market: Definition/ Overview

    Geospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.

    Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.

  2. U

    US Geospatial Imagery Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). US Geospatial Imagery Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/us-geospatial-imagery-analytics-market-89316
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The US geospatial imagery analytics market is experiencing robust growth, fueled by increasing adoption across diverse sectors. The global market's substantial size of $5.38 billion in 2025 and a Compound Annual Growth Rate (CAGR) of 24.14% project significant expansion through 2033. While precise figures for the US market segment are unavailable, a reasonable estimation, considering the US's significant technological advancement and market dominance in related fields, would place its 2025 market size at approximately $2.0 billion. This substantial value is driven by several key factors. The rising demand for precise location intelligence across various sectors such as insurance (risk assessment and fraud detection), agriculture (precision farming and yield optimization), defense and security (surveillance and intelligence gathering), and environmental monitoring (disaster management and climate change analysis) are primary growth catalysts. Technological advancements like improved sensor technologies, enhanced image processing algorithms, and the proliferation of cloud-based solutions further accelerate market expansion. The increasing availability of high-resolution satellite imagery and the development of sophisticated analytics platforms are also contributing to the market's growth trajectory. However, the market faces certain restraints. High initial investment costs for implementing geospatial imagery analytics solutions, especially for SMEs, can pose a barrier to entry. Moreover, concerns regarding data privacy and security, along with the complexity of data analysis and interpretation, can hinder wider adoption. Despite these challenges, the long-term outlook remains positive. The continuous development of user-friendly software, the decreasing cost of data storage and processing, and growing government initiatives promoting the use of geospatial technologies are expected to mitigate these limitations and propel the market toward sustained growth. The market segmentation by deployment (on-premise and cloud), organization size (SMEs and large enterprises), and vertical industries presents diverse opportunities for growth and specialization within the US market. The competitive landscape is characterized by a mix of established technology giants and specialized geospatial analytics providers, each vying for a share of this rapidly expanding market. Recent developments include: May 2023: CAPE Analytics, a player in AI-powered geospatial property intelligence, has extended its partnership with The Hanover Insurance Group, which provides independent agents with the best insurance coverage and prices. Integrating geospatial analytics and inspection and rating models into Hanover's underwriting procedure is the central component of the partnership expansion. The company's rating plans will benefit from this strategic move, improving workflows, new and renewal underwriting outcomes, and pricing segmentation., March 2023 : Carahsoft Technology Corp., The Trusted Government IT Solutions Provider, and Orbital Insight, a player in geospatial intelligence, announced a partnership. By the terms of the agreement, Carahsoft will act as Orbital Insight's Master Government Aggregator, making the leading AI-powered geospatial data analytics available to the public sector through Carahsoft's reseller partners and contracts for Information Technology Enterprise Solutions - Software 2 (ITES-SW2), NASA Solutions for Enterprise-Wide Procurement (SEWP) V, National Association of State Procurement Officials (NASPO) ValuePoint, National Cooperative Purchasing.. Key drivers for this market are: Increasing demand for Location based services, Technological innovations in geospatial imagery services. Potential restraints include: Increasing demand for Location based services, Technological innovations in geospatial imagery services. Notable trends are: Small Satellities will Boost Market Growth.

  3. Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/geospatial-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Germany, United Kingdom, Canada, United States, Global
    Description

    Snapshot img

    Geospatial Analytics Market Size 2025-2029

    The geospatial analytics market size is forecast to increase by USD 178.6 billion, at a CAGR of 21.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of geospatial analytics in sectors such as healthcare and insurance. This trend is fueled by the ability of geospatial analytics to provide valuable insights from location-based data, leading to improved operational efficiency and decision-making. Additionally, emerging methods in data collection and generation, including the use of drones and satellite imagery, are expanding the scope and potential of geospatial analytics. However, the market faces challenges, including data privacy and security concerns. With the vast amounts of sensitive location data being collected and analyzed, ensuring its protection is crucial for companies to maintain trust with their customers and avoid regulatory penalties. Navigating these challenges and capitalizing on the opportunities presented by the growing adoption of geospatial analytics requires a strategic approach from industry players. Companies must prioritize data security, invest in advanced analytics technologies, and collaborate with stakeholders to build trust and transparency. By addressing these challenges and leveraging the power of geospatial analytics, businesses can gain a competitive edge and unlock new opportunities in various industries.

    What will be the Size of the Geospatial Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for location-specific insights across various sectors. Urban planning relies on geospatial optimization and data enrichment to enhance city designs and improve infrastructure. Cloud-based geospatial solutions facilitate real-time data access, enabling location intelligence for public safety and resource management. Spatial data standards ensure interoperability among different systems, while geospatial software and data visualization tools provide valuable insights from satellite imagery and aerial photography. Geospatial services offer data integration, spatial data accuracy, and advanced analytics capabilities, including 3D visualization, route optimization, and data cleansing. Precision agriculture and environmental monitoring leverage geospatial data to optimize resource usage and monitor ecosystem health. Infrastructure management and real estate industries rely on geospatial data for asset tracking and market analysis. Spatial statistics and disaster management applications help mitigate risks and respond effectively to crises. Geospatial data management and quality remain critical as the volume and complexity of data grow. Geospatial modeling and interoperability enable seamless data sharing and collaboration. Sensor networks and geospatial data acquisition technologies expand the reach of geospatial analytics, while AI-powered geospatial analytics offer new opportunities for predictive analysis and automation. The ongoing development of geospatial technologies and applications underscores the market's continuous dynamism, providing valuable insights and solutions for businesses and organizations worldwide.

    How is this Geospatial Analytics Industry segmented?

    The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TechnologyGPSGISRemote sensingOthersEnd-userDefence and securityGovernmentEnvironmental monitoringMining and manufacturingOthersApplicationSurveyingMedicine and public safetyMilitary intelligenceDisaster risk reduction and managementOthersTypeSurface and field analyticsGeovisualizationNetwork and location analyticsOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Technology Insights

    The gps segment is estimated to witness significant growth during the forecast period.The market encompasses various applications and technologies, including geospatial optimization, data enrichment, location-based services (LBS), spatial data standards, public safety, geospatial software, resource management, location intelligence, geospatial data visualization, geospatial services, data integration, 3D visualization, satellite imagery, remote sensing, GIS platforms, spatial data infrastructure, aerial photography, route optimization, data cleansing, precision agriculture, spatial interpolation, geospatial databases, transportation planning, spatial data accuracy, spatial analysis, map projections, interactive maps, marketing analytics, d

  4. A

    Active Remote Sensing Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Active Remote Sensing Services Report [Dataset]. https://www.archivemarketresearch.com/reports/active-remote-sensing-services-566404
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Active Remote Sensing Services market is experiencing robust growth, driven by increasing demand across various sectors. From precision agriculture and environmental monitoring to urban planning and defense applications, the ability to acquire high-resolution, real-time data is transforming industries. Let's assume, for illustrative purposes, a 2025 market size of $15 billion, growing at a Compound Annual Growth Rate (CAGR) of 8% from 2025-2033. This growth trajectory is fueled by advancements in sensor technology, miniaturization of satellites, and the decreasing cost of data storage and processing. The market is further propelled by government initiatives promoting the use of geospatial data for sustainable development and national security. Key players like Maxar Technologies, Planet Labs, L3Harris Technologies, Airbus, and Trimble are at the forefront of innovation, constantly developing more efficient and cost-effective remote sensing solutions. However, challenges remain. Data security concerns, the need for robust data analytics capabilities, and regulatory hurdles related to data access and usage pose significant restraints. Furthermore, the dependence on reliable infrastructure for data transmission and processing can also impact market growth. Despite these challenges, the long-term outlook for the Active Remote Sensing Services market remains positive, with a projected market value exceeding $28 billion by 2033. Segmentation within the market is likely to become increasingly sophisticated, with specialized services catering to niche applications within the agriculture, defense, and environmental sectors. This market will continue to be defined by continuous technological advancements, including the development of higher-resolution sensors, improved data processing algorithms, and the integration of artificial intelligence and machine learning for data analysis.

  5. Geospatial Analytics Artificial Intelligence Market Will Grow at a CAGR of...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Geospatial Analytics Artificial Intelligence Market Will Grow at a CAGR of 28.60% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/geospatial-analytics-artificial-intelligence-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global geospatial analytics artificial intelligence market size is USD 100.5 million in 2024 and will expand at a compound annual growth rate (CAGR) of 28.60% from 2024 to 2031.

    North America held the major market of more than 40% of the global revenue with a market size of USD 40.20 million in 2024 and will grow at a compound annual growth rate (CAGR) of 26.8% from 2024 to 2031.
    Europe accounted for a share of over 30% of the global market size of USD 30.15 million.
    Asia Pacific held the market of around 23% of the global revenue with a market size of USD 23.12 million in 2024 and will grow at a compound annual growth rate (CAGR) of 30.6% from 2024 to 2031.
    Latin America market of more than 5% of the global revenue with a market size of USD 5.03 million in 2024 and will grow at a compound annual growth rate (CAGR) of 28.0% from 2024 to 2031.
    Middle East and Africa held the major market of around 2% of the global revenue with a market size of USD 2.01 million in 2024 and will grow at a compound annual growth rate (CAGR) of 28.3% from 2024 to 2031.
    The remote sensing held the highest geospatial analytics artificial intelligence market revenue share in 2024.
    

    Market Dynamics of Geospatial analytics artificial intelligence Market

    Key Drivers for Geospatial analytics artificial intelligence Market

    Advancements in AI and Machine Learning to Increase the Demand Globally

    The global demand for geospatial analytics is significantly driven by advancements in AI and machine learning, technologies that are revolutionizing how spatial data is analyzed and interpreted. As AI models become more sophisticated, they enhance the capability to automate complex geospatial data processing tasks, leading to more accurate and insightful analyses. Machine learning, particularly, enables systems to improve their accuracy over time by learning from vast datasets of geospatial information, including satellite imagery and sensor data. This leads to more precise predictions and better decision-making across multiple sectors such as environmental management, urban planning, and disaster response. The integration of AI with geospatial technologies not only improves efficiency but also opens up new possibilities for innovation, making it a critical driver for increased global demand in the geospatial analytics market.

    Government Initiatives and Support for Smart Cities to Propel Market Growth

    Government initiatives supporting the development of smart cities are propelling the growth of the geospatial analytics market. As urban areas around the world transform into smart cities, there is a significant increase in demand for advanced technologies that can analyze and interpret geospatial data to enhance urban planning, infrastructure management, and public safety. Geospatial analytics, powered by AI, plays a crucial role in these projects by enabling real-time data processing and insights for traffic control, utility management, and emergency services coordination. These technologies ensure more efficient resource allocation and improved quality of urban life. Government funding and policy support not only validate the importance of geospatial analytics but also stimulate innovation, attract investments, and foster public-private partnerships, thus driving the market forward and enhancing the capabilities of smart city initiatives globally.

    Restraint Factor for the Geospatial analytics artificial intelligence Market

    Complexity of Data Integration to Limit the Sales

    The complexity of data integration poses a significant barrier to the adoption and effectiveness of geospatial analytics AI systems, potentially limiting sales in this market. Geospatial data, inherently diverse and sourced from various collection methods like satellites, UAVs, and ground sensors, comes in multiple formats and resolutions. Integrating such disparate data into a cohesive, usable format for AI analysis is a challenging process that requires advanced data processing tools and expertise. This complexity not only increases the time and costs associated with project implementation but also raises the risk of errors and inefficiencies in data analysis. Furthermore, the difficulty in achieving seamless integration can deter organizations, particularly those with limited IT capabilities, from investing in geospatial analytics solutions. Overcoming these integration challenges is crucial for enabl...

  6. A

    Remote Sensing

    • data.amerigeoss.org
    html
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmericaView (2024). Remote Sensing [Dataset]. https://data.amerigeoss.org/zh_TW/dataset/remote-sensing1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    AmericaView
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This course explores the theory, technology, and applications of remote sensing. It is designed for individuals with an interest in GIS and geospatial science who have no prior experience working with remotely sensed data. Lab exercises make use of the web and the ArcGIS Pro software. You will work with and explore a wide variety of data types including aerial imagery, satellite imagery, multispectral imagery, digital terrain data, light detection and ranging (LiDAR), thermal data, and synthetic aperture RaDAR (SAR). Remote sensing is a rapidly changing field influenced by big data, machine learning, deep learning, and cloud computing. In this course you will gain an overview of the subject of remote sensing, with a special emphasis on principles, limitations, and possibilities. In addition, this course emphasizes information literacy, and will develop your skills in finding, evaluating, and using scholarly information.

    You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises to reinforce the material. Lastly, you will complete paper reviews and a term project. We have also provided additional bonus material and links associated with surface hydrologic analysis with TauDEM, geographic object-based image analysis (GEOBIA), Google Earth Engine (GEE), and the geemap Python library for Google Earth Engine. Please see the sequencing document for our suggested order in which to work through the material. We have also provided PDF versions of the lectures with the notes included.

  7. Landsat Orthoimagery Mosaic from 1999, Niwot Ridge LTER Project Area,...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2015). Landsat Orthoimagery Mosaic from 1999, Niwot Ridge LTER Project Area, Colorado [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F724%2F1
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    U.S. Geological Survey
    Time period covered
    Nov 6, 1999
    Area covered
    Description

    An orthoimage is remotely-sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. The Landsat Mosaic orthoimagery database contains Landsat Thematic Mapper imagery for the conterminous United States. The more than 700 Landsat scenes have been resampled to a 1-arc-second (approximately 30-meter) sample interval in a geographic coordinate system using the North American Horizontal Datum of 1983. Three bands have been selected from the eight spectral bands available for each frame. These are bands 4 (near-infrared), 3 (red), and 2 (green), typically displayed as red, green, and blue, respectively. The image is a full-resolution (spectral and spatial), 24-bit color-infrared composite that simulates color infrared film as a "false color composite". NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

  8. G

    Geospatial Imagery Analytics System Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geospatial Imagery Analytics System Report [Dataset]. https://www.datainsightsmarket.com/reports/geospatial-imagery-analytics-system-1441526
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    May 14, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geospatial Imagery Analytics System market is experiencing robust growth, driven by increasing demand across diverse sectors. The convergence of advanced analytics techniques with readily available high-resolution imagery from satellites and drones is fueling this expansion. Applications in defense and security, particularly for surveillance and intelligence gathering, are significant contributors to market growth. Similarly, the insurance sector leverages geospatial analytics for risk assessment and claims processing, while agriculture benefits from precision farming applications using imagery analysis for crop monitoring and yield optimization. Healthcare and life sciences are emerging sectors, utilizing geospatial data for epidemiological studies and disease surveillance. The market is segmented by type into imagery and video analytics, with imagery analytics currently holding a larger market share due to its wider adoption and established applications. While the market is characterized by a competitive landscape with established players like Google, Maxar Technologies, and Esri, alongside innovative startups, the overall market exhibits a positive outlook driven by technological advancements and increasing data availability. We estimate the current market size (2025) to be around $15 billion, based on available information regarding similar technologies and market trends, with a projected Compound Annual Growth Rate (CAGR) of 15% for the forecast period of 2025-2033. This growth will be fueled by continuous improvement in data processing speeds, the development of AI/ML enhanced analytics and expanding global adoption across industries. Market restraints include the high cost of data acquisition and processing, the need for specialized expertise, and concerns about data privacy and security. However, these are being mitigated by advancements in cloud computing, the development of user-friendly software solutions, and the increasing availability of affordable, high-resolution imagery. Regional growth is expected to be robust across North America and Europe, given the presence of established technology companies and strong government investments in these regions. However, Asia-Pacific is projected to experience the highest growth rate due to rapid technological advancements and economic expansion in countries like India and China, creating substantial opportunities for market expansion in the coming years. The market is expected to continue its trajectory of growth, driven by increasing demand, technological innovations, and expansion into new application areas.

  9. d

    High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska,...

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSIDC (2025). High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://catalog.data.gov/dataset/high-resolution-quickbird-imagery-and-related-gis-layers-for-barrow-alaska-usa-version-1
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    NSIDC
    Area covered
    Utqiagvik, Alaska, United States
    Description

    This data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats. Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format). Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data.

  10. S

    Satellite Based EO Report

    • promarketreports.com
    doc, pdf, ppt
    Updated Apr 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). Satellite Based EO Report [Dataset]. https://www.promarketreports.com/reports/satellite-based-eo-152694
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 19, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite-based Earth Observation (EO) market is experiencing robust growth, driven by increasing demand across diverse sectors. The market size in 2025 is estimated at $5,957.7 million. While the provided CAGR (Compound Annual Growth Rate) is missing, considering the technological advancements in satellite technology, the rise of big data analytics in EO applications, and the growing need for precise geospatial data across various industries, a conservative estimate of a 7% CAGR between 2025 and 2033 seems reasonable. This would project the market to surpass $11 billion by 2033. Key drivers include the escalating need for precise and timely data in defense and security, weather forecasting, precision agriculture, and urban planning. Advances in sensor technology, improved data processing capabilities, and the decreasing cost of satellite launches are further fueling market expansion. The segment breakdown reveals strong performance across data, value-added services, and information products, with Big Data Analytics emerging as a key growth area. The defense and weather forecasting sectors remain dominant application areas, while the energy and agriculture sectors are exhibiting significant growth potential. The regional landscape reflects strong presence in North America and Europe, but significant growth opportunities exist in Asia-Pacific, driven by rapid economic development and increasing infrastructure investments. Market restraints include the high initial investment costs associated with satellite development and launch, data security concerns, and the need for specialized expertise in data analysis and interpretation. However, these challenges are being progressively addressed through advancements in miniaturization and cost-effective launch technologies, along with the rising availability of cloud-based data processing platforms and readily available skilled workforce. The competitive landscape is characterized by established players like Airbus and DigitalGlobe, alongside emerging innovative companies like Planet Labs and Spire Global, fostering innovation and driving market competition. This dynamic environment ensures continuous improvement in satellite technology and data accessibility, fueling the sustained expansion of the satellite-based EO market in the coming years. This comprehensive report provides an in-depth analysis of the burgeoning Satellite Based Earth Observation (EO) market, projected to be worth $50 billion by 2030. We delve into market segmentation, key trends, competitive landscape, and future growth prospects, offering invaluable insights for stakeholders across the value chain. The report leverages extensive primary and secondary research, including interviews with industry experts and analysis of financial data from leading companies like Airbus, Planet Labs, and Maxar Technologies (formerly DigitalGlobe).

  11. Data from: IDTReeS 2020 Competition Data

    • zenodo.org
    zip
    Updated Jul 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Graves; Sarah Graves; Sergio Marconi; Sergio Marconi (2020). IDTReeS 2020 Competition Data [Dataset]. http://doi.org/10.5281/zenodo.3700197
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 8, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sarah Graves; Sarah Graves; Sergio Marconi; Sergio Marconi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data provided by the Integrating Data science with Trees and Remote Sensing (IDTReeS) research group for use in the IDTReeS Competition.

    Geospatial and tabular data to be used in two data science tasks focused on using remote sensing data to quantify the locations, sizes and species identities of millions of trees and on determining how these methods generalize to other forests.

    Vector data are the geographic extents of Individual Tree Crown boundaries that have been identified by researchers in the IDTReeS group. The data were generated primarily by Sarah Graves, Sergio Marconi, and Benjamin Weinstein, with support from Stephanie Bohlman, Ethan White, and members of the IDTReeS group.

    Remote Sensing and Field data were generated by the National Ecological Observatory Network (NEON, Copyright © 2017 Battelle). Data were selected, downloaded, and packaged by Sergio Marconi. The most recent available data of the following products are provided:

    National Ecological Observatory Network. 2020. Data Product DP1.30010.001, High-resolution orthorectified camera imagery. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.

    National Ecological Observatory Network. 2020. Data Product DP1.30003.001, Discrete return LiDAR point cloud. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.

    National Ecological Observatory Network. 2020. Data Product DP1.10098.001, Woody plant vegetation structure. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.

    National Ecological Observatory Network. 2020. Data Product DP3.30015.001, Ecosystem structure. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.

    NEON has the following data policy:

    ‘The National Ecological Observatory Network is a program sponsored by the National Science Foundation and operated under cooperative agreement by Battelle Memorial Institute. This material is based in part upon work supported by the National Science Foundation through the NEON Program.’

    THE NEON DATA PRODUCTS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE NEON DATA PRODUCTS BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE NEON DATA PRODUCTS.

  12. I

    Intelligent Remote Sensing Interpretation Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Intelligent Remote Sensing Interpretation Software Report [Dataset]. https://www.marketreportanalytics.com/reports/intelligent-remote-sensing-interpretation-software-54910
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for Intelligent Remote Sensing Interpretation Software is experiencing robust growth, driven by increasing demand across diverse sectors. The expanding application of remote sensing in precision agriculture, resource exploration (petroleum and minerals), and environmental monitoring is a primary catalyst. Advancements in AI and machine learning are significantly enhancing the accuracy and speed of data analysis, leading to more efficient and insightful interpretations. Cloud-based solutions are gaining traction due to their scalability, accessibility, and cost-effectiveness, while on-premise solutions remain relevant for applications requiring high levels of data security and control. The market is geographically diverse, with North America and Europe currently holding significant market share due to established technological infrastructure and high adoption rates. However, rapid technological advancements and increasing government initiatives are fostering growth in the Asia-Pacific region, particularly in countries like China and India. Competitive pressures are stimulating innovation, with established players like Hexagon and Microsoft alongside emerging technology companies continually improving software capabilities and expanding service offerings. Challenges include the need for skilled professionals to operate and interpret the complex data generated, as well as the high initial investment costs associated with some systems. The forecast period (2025-2033) anticipates a continued expansion of the Intelligent Remote Sensing Interpretation Software market, fueled by further technological innovation and wider adoption across various industries. The growth trajectory will be influenced by factors such as the development of more user-friendly interfaces, improved data integration capabilities, and the increasing availability of high-resolution satellite imagery. The integration of remote sensing data with other data sources, such as IoT sensors, will further enhance its value across applications. Government regulations regarding environmental monitoring and resource management will likely contribute to market growth, particularly in regions with strict environmental policies. Market segmentation based on application and deployment type will further evolve as specific software solutions are tailored to the needs of individual sectors. Competition will likely remain intense, with companies focusing on differentiation through superior algorithms, data analytics capabilities, and customer support.

  13. d

    Landsat 7 Enhanced Thematic Mapper Plus (1999 - May 2003) Level 0

    • search.dataone.org
    Updated Jun 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (2017). Landsat 7 Enhanced Thematic Mapper Plus (1999 - May 2003) Level 0 [Dataset]. https://search.dataone.org/view/2a3bb63f-eb08-417c-9b03-4782097fd017
    Explore at:
    Dataset updated
    Jun 29, 2017
    Dataset provided by
    USGS Science Data Catalog
    Authors
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center
    Area covered
    Description

    The USGS Earth Resources Observation and Science (EROS) Center archive holds data collected by the Landsat suite of satellites, beginning with Landsat 1 in 1972. All Landsat data held in the USGS EROS archive are available for download at no charge.

  14. Satellite Data Services Market Size, Share, Trends & Insights Report, 2035

    • rootsanalysis.com
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    May 12, 2025
    Dataset provided by
    Authors
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Time period covered
    2021 - 2031
    Area covered
    Global
    Description

    Satellite data services market to reach $100.45B by 2035. Explore applications, tech, and industry growth

  15. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-54037
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise market size figures for 2025 aren't provided, considering a plausible CAGR of 10% (a conservative estimate given the technological advancements and expanding applications) and an assumed 2024 market size of $2 billion, we can project a 2025 market valuation of approximately $2.2 billion. This expansion is fueled by several key factors. Firstly, the agricultural sector is leveraging satellite imagery for precision farming, crop monitoring, and yield prediction, significantly enhancing efficiency and productivity. Secondly, advancements in water resource management are heavily reliant on remote sensing data for efficient irrigation and flood control. Furthermore, forest management and conservation efforts utilize this technology for deforestation monitoring and biodiversity assessment. The public sector, including government agencies and research institutions, is also a major consumer, relying on these tools for environmental monitoring, disaster response, and urban planning. The market is segmented by software type (open-source and non-open-source) and application, with non-open-source solutions currently commanding a larger share due to their advanced features and robust support. Growth is further propelled by continuous technological innovation leading to more sophisticated analytics capabilities and easier data accessibility. However, certain restraints hinder market expansion. High initial investment costs for software licenses and hardware can pose a significant barrier, particularly for smaller organizations. Furthermore, the need for specialized expertise to interpret and analyze the complex satellite data can limit widespread adoption. Data security and privacy concerns related to sensitive geographic information are also emerging challenges. Despite these limitations, the long-term outlook for the satellite remote sensing software market remains positive, fueled by ongoing technological advancements, increased government investments in space-based technologies, and the growing recognition of its importance in various sectors. The market is expected to continue its growth trajectory, creating opportunities for established players and new entrants alike. The diverse range of applications and continued integration with other technologies like AI and machine learning will significantly shape the future landscape of this market.

  16. S

    Remote sensing image land use classification

    • scidb.cn
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xu Rouyi; Xu Yuying; Ye Jinyang (2025). Remote sensing image land use classification [Dataset]. http://doi.org/10.57760/sciencedb.24434
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2025
    Dataset provided by
    Science Data Bank
    Authors
    Xu Rouyi; Xu Yuying; Ye Jinyang
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The data covers rich and hierarchical content, mainly including three important components: raw remote sensing image data, preprocessed data, and land use classification results. Raw data, as the foundation of the entire data system, is first-hand information that has not undergone any processing and mainly comes from geographic spatial data clouds (Geospatial Data Clouds). These raw data exist in their original form and may contain a large amount of impurities, noise, and format inconsistencies. Preprocessed data is obtained through a series of rigorous data cleaning, transformation, and integration operations on the basis of raw data. The data cleaning process includes radiometric calibration, atmospheric correction, and image cropping to ensure the accuracy and completeness of the data. Data conversion converts data into required parameter data through formulas to meet the requirements of subsequent analysis and processing. Data integration is the process of merging processed data into an organic whole. After preprocessing, the quality of the data has been significantly improved, providing a more reliable foundation for subsequent analysis and mining. The classification result is based on preprocessed data, analyzed and processed using specific classification algorithms and models to obtain conclusions. The classification results are of great significance for understanding the intrinsic structure and patterns of data, and can provide strong support and reference for subsequent decision-making, business optimization, etc.

  17. R

    Remote Sensing Services Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Remote Sensing Services Report [Dataset]. https://www.datainsightsmarket.com/reports/remote-sensing-services-1445979
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    May 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global remote sensing services market, valued at $18,720 million in 2025, is projected to experience robust growth, driven by increasing demand across diverse sectors. The Compound Annual Growth Rate (CAGR) of 12.7% from 2025 to 2033 indicates a significant expansion, primarily fueled by advancements in sensor technology, data analytics capabilities, and the rising adoption of drone-based remote sensing. Key application areas, including civil infrastructure monitoring, defense and intelligence gathering, and precision agriculture, are major contributors to market growth. The increasing availability of high-resolution satellite imagery and the development of sophisticated analytical tools are further accelerating market expansion. Government initiatives promoting the use of geospatial data for urban planning, environmental monitoring, and disaster management are also contributing factors. While data security concerns and the high initial investment costs associated with advanced remote sensing technologies might pose some restraints, the overall market outlook remains positive, driven by technological innovation and burgeoning demand across various sectors. The market segmentation reveals a strong performance across all applications. Aerial photography and remote sensing, along with data acquisition and analytics, are the primary revenue generators within the types segment. Geographically, North America currently holds a significant market share, driven by the presence of key players and robust technological advancements. However, rapidly developing economies in Asia-Pacific and the Middle East & Africa are expected to show substantial growth in the coming years, driven by increasing infrastructure development and government investments in geospatial technology. The competitive landscape is marked by a mix of large multinational corporations and specialized niche players, fostering innovation and driving market competition. Future market growth will likely be influenced by factors such as the development of next-generation satellite constellations, advancements in artificial intelligence for image processing, and the increasing adoption of cloud-based remote sensing platforms.

  18. m

    Data from: Geospatial Dataset on Deforestation and Urban Sprawl in Dhaka,...

    • data.mendeley.com
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Fahad Khan (2025). Geospatial Dataset on Deforestation and Urban Sprawl in Dhaka, Bangladesh: A Resource for Environmental Analysis [Dataset]. http://doi.org/10.17632/hst78yczmy.5
    Explore at:
    Dataset updated
    May 28, 2025
    Authors
    Md Fahad Khan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dhaka, Bangladesh
    Description

    Google Earth Pro facilitated the acquisition of satellite imagery to monitor deforestation in Dhaka, Bangladesh. Multiple years of images were systematically captured from specific locations, allowing comprehensive analysis of tree cover reduction. The imagery displays diverse aspect ratios based on satellite perspectives and possesses high resolution, suitable for remote sensing. Each site provided 5 to 35 images annually, accumulating data over a ten-year period. The dataset classifies images into three primary categories: tree cover, deforested regions, and masked images. Organized by year, it comprises both raw and annotated images, each paired with a JSON file containing annotations and segmentation masks. This organization enhances accessibility and temporal analysis. Furthermore, the dataset is conducive to machine learning initiatives, particularly in training models for object detection and segmentation to evaluate environmental alterations.

  19. d

    L8 OLI/TIRS Pre-WRS-2 Level 0

    • search.dataone.org
    Updated Jun 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (2017). L8 OLI/TIRS Pre-WRS-2 Level 0 [Dataset]. https://search.dataone.org/view/09141b6d-a81c-4c28-bf2b-4d2941eab854
    Explore at:
    Dataset updated
    Jun 29, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center
    Area covered
    Description

    The USGS Earth Resources Observation and Science (EROS) Center archive holds data collected by the Landsat suite of satellites, beginning with Landsat 1 in 1972. All Landsat data held in the USGS EROS archive are available for download at no charge.

  20. d

    Landsat 4-5 Thematic Mapper Collection 1 Level-1 - National Geospatial Data...

    • search.dataone.org
    • dataone.org
    Updated Mar 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (2017). Landsat 4-5 Thematic Mapper Collection 1 Level-1 - National Geospatial Data Asset (NGDA) [Dataset]. https://search.dataone.org/view/230688e2-494c-4715-85fa-34372a5e3217
    Explore at:
    Dataset updated
    Mar 30, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center
    Area covered
    Description

    The USGS Earth Resources Observation and Science (EROS) Center archive holds data collected by Landsat 4 and 5. All Landsat data held in the USGS EROS archive are available for download at no charge.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
VERIFIED MARKET RESEARCH (2024). Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/geospatial-solutions-market/
Organization logo

Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032

Explore at:
Dataset updated
Oct 21, 2024
Dataset provided by
Verified Market Researchhttps://www.verifiedmarketresearch.com/
Authors
VERIFIED MARKET RESEARCH
License

https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

Time period covered
2026 - 2032
Area covered
Global
Description

Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.

Geospatial Solutions Market: Definition/ Overview

Geospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.

Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.

Search
Clear search
Close search
Google apps
Main menu