84 datasets found
  1. Household rent to income ratio in the UK 2025, by region

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Household rent to income ratio in the UK 2025, by region [Dataset]. https://www.statista.com/statistics/752217/household-rent-to-income-ratio-by-region-uk/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2025
    Area covered
    United Kingdom
    Description

    Renters in the UK spent on average 32.5 percent of their income on rent as of January 2025. Scotland and Yorkshire and Humber were the most affordable regions, with households spending less than 28 percent of their gross income on rent. Conversely, London, South West, and South East had a higher ratio. Greater London is the most expensive region for renters Greater London has a considerably higher rent than the rest of the UK regions. In 2024, the average rental cost in Greater London was more than twice higher than in the North West or West Midlands. Compared with Greater London, rent in the South East region was about 600 British pounds cheaper. London property prices continue to increase In recent years, house prices in the UK have been steadily increasing, and the period after the COVID-19 pandemic has been no exception. Prime residential property prices in Central London are forecast to continue rising until 2027. A similar trend in prime property prices is also expected in Outer London.

  2. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  3. T

    United States Price to Rent Ratio

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Price to Rent Ratio [Dataset]. https://tradingeconomics.com/united-states/price-to-rent-ratio
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1970 - Dec 31, 2024
    Area covered
    United States
    Description

    Price to Rent Ratio in the United States increased to 134.04 in the fourth quarter of 2024 from 133.46 in the third quarter of 2024. This dataset includes a chart with historical data for the United States Price to Rent Ratio.

  4. House price to rent ratio in the UK 2015-2024, per quarter

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House price to rent ratio in the UK 2015-2024, per quarter [Dataset]. https://www.statista.com/statistics/592108/house-price-to-rent-ratio-uk/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    Since 2015, the gap between the cost of buying a home and renting has grown, with homeownership becoming increasingly less affordable. In the ***** ******* of 2024, the house price to rent ratio in the UK stood at *****. That meant that house price growth has outpaced rental growth by nearly ** percent between 2015 and 2024. The UK's house price to rent ratio was slightly below the average Euro area ratio. House price to income ratio in the UK Another indicator for housing affordability is the house price to income ratio, which is calculated by dividing nominal house prices by the nominal disposable income per head. The ratio saw an overall increase between 2015, which was the base year, and 2022. After that, the index declined, but remained close to the average for the Euro area. Is it more affordable to rent or buy? There are many things to be considered when comparing buying to renting, such as the ability to qualify for a mortgage and whether prospective homebuyers have sufficient savings for a deposit. Generally, purchasing a home is more affordable than renting one. However, the average monthly savings first-time buyers can achieve have been on the decline. In East of England, where house prices have increased rapidly over the past few years, it was cheaper to rent than to buy in 2022.

  5. Real Estate Breakeven Analysis for U.S. Home Types

    • kaggle.com
    zip
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Real Estate Breakeven Analysis for U.S. Home Types [Dataset]. https://www.kaggle.com/datasets/thedevastator/real-estate-breakeven-analysis-for-u-s-home-type
    Explore at:
    zip(1515342 bytes)Available download formats
    Dataset updated
    Jan 10, 2023
    Authors
    The Devastator
    Description

    Real Estate Breakeven Analysis for U.S. Home Types

    Buy vs Rent Comparison Across Markets

    By Zillow Data [source]

    About this dataset

    This dataset provides a comprehensive analysis of the current real estate situation in the United States. It includes breakeven analysis charts that compare buying vs renting across major U.S. markets. This dataset contains various metrics such as home types, housing stock, price-to-income ratio, cash buyers, mortgage affordability and rental affordability to name a few. This data has been compiled using Zillow's own data along with TransUnion financing survey data and the Freddie Mac Primary Mortgage Market Survey to provide an accurate understanding of each metro area’s market health and purchasing power for buyers and renters alike. By downloading this information you can compare different regions based on size rank and other factors to get full insights regarding their potential fit for your needs or investments strategies as well as any potential risks associated with each region's housing market health

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset is for real estate professionals, owner-occupants, potential buyers and renters who are interested in understanding which U.S. markets offer the most favorable home buying or rental opportunities from a financial perspective over the long term.

    The “Real Estate Breakeven Analysis for U.S Home Types” dataset contains data pulled from Zillow's current and forecasted housing market metrics across many different real estate regions in the United States including cities, counties, states, metro areas and combined statistical areas (CSAs). The data includes several measures of affordability such as median price-to-rent ratio (MedPR), median breakeven horizon (MedBE) - which refers to how long it takes to make up purchase costs when compared with renting; cash purchaser share; mortgage rate; mortgage affordability indices; rental affordability rates etc.

    In order to analyze and compare buying vs renting decisions across various regions in the US this dataset provides breakeven analysis at various levels of geographies i.e., state names, region types (city/metro area/county) and show how long it will take homeowners to break even on their purchase costs when compared with renting in that region over a longer period of time using discounted cash flow methodology. This information helps people understand what type of transaction is a better fit for them by weighing short term vs long term goals accordingly by evaluating these different factors related to housing metrics carefully before making financial decisions about purchasing or renting properties in desired location(s).

    To use this dataset one can use either basic filters like RegionType or RegionName or more detailed filter criteria like CountyName, City name , Metro area name , State Name etc . For example if someone wanted to look at properties available for rent only then they can apply filters based on Province Type =‘Rental’ Also one can further refine searches based on filtering them with defined SampleRate , Median Price – To – Rent Ratio …..etc . This could be useful if seekers would want only specific type of property like Condominium/Coop /Multifamily 5+ Units /Duplex Triplex listing etc …and then apply other parameters like Cash Buyers percent , Mortgage Affordability Rate….etc ..in order narrow down search results while looking at Breakeven scores /horizons in their target locations . One should take advantages of all relevant parameters while searching through data before making any decision related with owning rental properties so that they can make sure best possible investment decision given

    Research Ideas

    • Visualizing changes in real estate trends across regions by comparing price to rent ratios, mortgage affordability indices and cash buyers over time.
    • Market segmentation analysis based on region-level market characteristics such as negative equity data, rental affordability, median house values and population size.
    • Predicting housing demand within a particular region based on its breakeven horizon or price to rent ratio

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: BreakEven_2017-03.csv | Column name | Description | |:----------------|:----------------------------------------------------...

  6. C

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  7. Median Rent as a Percentage of Income Map

    • data.wu.ac.at
    csv, json, xml
    Updated Dec 15, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau American Community Survey (2015). Median Rent as a Percentage of Income Map [Dataset]. https://data.wu.ac.at/schema/performance_smcgov_org/aWptcy15ZHln
    Explore at:
    xml, json, csvAvailable download formats
    Dataset updated
    Dec 15, 2015
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    This dataset contains information about the percent of income households spend on rent in cities in San Mateo County. This data is for renters only, not those who live in owner-occupied homes with or without a mortgage. This data was extracted from the United States Census Bureau's American Community Survey 2014 5 year estimates.

  8. Living Cost Citywise India

    • kaggle.com
    zip
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivanshu Pande (2025). Living Cost Citywise India [Dataset]. https://www.kaggle.com/datasets/shivanshupande/living-cost-citywise-india
    Explore at:
    zip(3922 bytes)Available download formats
    Dataset updated
    Nov 13, 2025
    Authors
    Shivanshu Pande
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    About This Dataset

    This dataset is the original 70-city version used in my first published research paper: “A Data-Driven Survey on Cost of Living and Salary Affordability in Indian Cities” (IJRASET, 2025) Link: https://www.ijraset.com/best-journal/a-datadriven-survey-on-cost-of-livingsalary-affordability-in-indian-cities

    It was created using web-scraping techniques from LivingCost.org and converted to INR using a consistent USD→INR exchange rate. This dataset forms the foundational base for affordability analysis, exploratory data analysis (EDA), and benchmarking cost-of-living patterns across India.

    The dataset includes 70+ Indian cities, with fields covering living cost, rent, salary, affordability ratio (“months covered”), and derived financial indicators. It is clean, structured, and suitable for beginner to intermediate analytics projects.

    Why This Dataset?

    This dataset is ideal for:

    EDA practice for college & school projects

    Correlation and regression analysis

    Basic ML tasks (predicting salary, affordability, rent, etc.)

    Urban economics mini-projects

    Dashboard creation (PowerBI, Tableau)

    Data cleaning and preprocessing assignments

    It is designed to be simple enough for students but structured enough for real-world analysis.

    Features Included

    Each row represents a city/state-level affordability profile with:

    Cost of living (USD & INR)

    Rent for a single person (USD & INR)

    Monthly after-tax salary (USD & INR)

    Income after rent

    “Months Covered” affordability ratio

    Source URLs for verification

    Exchange rate used

    This makes the dataset both transparent and reliable for academic usage.

    Data Quality

    Web-scraped directly from LivingCost.org

    Cleaned and standardized

    Currency converted uniformly

    Non-city entries flagged

    Fully reproducible from the source

    This dataset served as the master input for my peer-reviewed paper and has been validated through statistical analysis.

    Intended Audience

    Students (school, undergraduate, postgraduate)

    Data science beginners

    Educators needing real datasets for teaching

    Analysts looking for quick EDA practice

    Researchers exploring affordability or urban economics

    Note

    A more comprehensive 200+ city enhanced dataset (used in my second paper) will be uploaded soon, including ICT metrics, GDP, and extended affordability indicators.

  9. OECD Housing Prices

    • kaggle.com
    zip
    Updated Nov 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Selen Susuz (2020). OECD Housing Prices [Dataset]. https://www.kaggle.com/selensusuz/oecd-housing-prices
    Explore at:
    zip(8848 bytes)Available download formats
    Dataset updated
    Nov 20, 2020
    Authors
    Selen Susuz
    Description

    Context

    This dataset is created via OECD datasource which is consisted of 2000 between 2020. https://data.oecd.org/price/housing-prices.htm

    Content

    The housing prices indicator shows indices of residential property prices over time. Included are rent prices, real and nominal house prices, and ratios of price to rent and price to income; the main elements of housing costs. In most cases, the nominal house price covers the sale of newly-built and existing dwellings, following the recommendations from RPPI (Residential Property Prices Indices) manual. The real house price is given by the ratio of nominal price to the consumers’ expenditure deflator in each country, both seasonally adjusted, from the OECD national accounts database. The price to income ratio is the nominal house price divided by the nominal disposable income per head and can be considered as a measure of affordability. The price to rent ratio is the nominal house price divided by the rent price and can be considered as a measure of the profitability of house ownership. This indicator is an index with base year 2015.

  10. a

    LA City Rent Burdened Households

    • citysurvey-lacs.opendata.arcgis.com
    • visionzero.geohub.lacity.org
    • +1more
    Updated Mar 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    eva.pereira_lahub (2023). LA City Rent Burdened Households [Dataset]. https://citysurvey-lacs.opendata.arcgis.com/maps/lahub::la-city-rent-burdened-households/about
    Explore at:
    Dataset updated
    Mar 30, 2023
    Dataset authored and provided by
    eva.pereira_lahub
    Area covered
    Description

    This layer shows housing costs as a percentage of household income, by census tracts in the City of Los Angeles. This contains the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Income is based on earnings in past 12 months of survey.

  11. T

    United Kingdom Price to Rent Ratio

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United Kingdom Price to Rent Ratio [Dataset]. https://tradingeconomics.com/united-kingdom/price-to-rent-ratio
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 30, 1968 - Jun 30, 2025
    Area covered
    United Kingdom
    Description

    Price to Rent Ratio in the United Kingdom decreased to 111.37 in the second quarter of 2025 from 113.72 in the first quarter of 2025. This dataset includes a chart with historical data for the United Kingdom Price to Rent Ratio.

  12. a

    Affordability Index - Rent - City

    • vital-signs-bniajfi.hub.arcgis.com
    • data.baltimorecity.gov
    • +1more
    Updated Feb 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Affordability Index - Rent - City [Dataset]. https://vital-signs-bniajfi.hub.arcgis.com/datasets/affordability-index-rent-city/explore
    Explore at:
    Dataset updated
    Feb 28, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The percentage of households that pay more than 30% of their total household income on rent and related expenses out of all households in an area. Source: American Community Survey Years Available: 2006-2010, 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022, 2019-2023

  13. Housing Affordability (by Atlanta City Council Districts) 2017

    • opendata.atlantaregional.com
    Updated Jun 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). Housing Affordability (by Atlanta City Council Districts) 2017 [Dataset]. https://opendata.atlantaregional.com/datasets/GARC::housing-affordability-by-atlanta-city-council-districts-2017
    Explore at:
    Dataset updated
    Jun 23, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show comparison of housing ownership costs and rental costs to income by Atlanta City Council Districts in the Atlanta region.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    Suffixes:

    None

    Change over two periods

    _e

    Estimate from most recent ACS

    _m

    Margin of Error from most recent ACS

    _00

    Decennial 2000

    Attributes:

    SumLevel

    Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)

    GEOID

    Census tract Federal Information Processing Series (FIPS) code

    NAME

    Name of geographic unit

    Planning_Region

    Planning region designation for ARC purposes

    Acres

    Total area within the tract (in acres)

    SqMi

    Total area within the tract (in square miles)

    County

    County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)

    CountyName

    County Name

    HUM_SMOCAPI_e

    # Housing units with a mortgage, costs as a percentage of income computed, 2017

    HUM_SMOCAPI_m

    # Housing units with a mortgage, costs as a percentage of income computed, 2017 (MOE)

    MSMOCAPI30PctPlus_e

    # Housing units with a mortgage, costs 30.0 percent of income or more, 2017

    MSMOCAPI30PctPlus_m

    # Housing units with a mortgage, costs 30.0 percent of income or more, 2017 (MOE)

    pMSMOCAPI30PctPlus_e

    % Housing units with a mortgage, costs 30.0 percent of income or more, 2017

    pMSMOCAPI30PctPlus_m

    % Housing units with a mortgage, costs 30.0 percent of income or more, 2017 (MOE)

    HUNM_SMOCAPI_e

    # Housing units without a mortgage, costs as a percentage of income computed, 2017

    HUNM_SMOCAPI_m

    # Housing units without a mortgage, costs as a percentage of income computed, 2017 (MOE)

    NMSMOCAPI30PctPlus_e

    # Housing units without a mortgage, costs 30.0 percent of income or more, 2017

    NMSMOCAPI30PctPlus_m

    # Housing units without a mortgage, costs 30.0 percent of income or more, 2017 (MOE)

    pNMSMOCAPI30PctPlus_e

    % Housing units without a mortgage, costs 30.0 percent of income or more, 2017

    pNMSMOCAPI30PctPlus_m

    % Housing units without a mortgage, costs 30.0 percent of income or more, 2017 (MOE)

    OccGRAPI_e

    # Occupied units for which rent as a percentage of income can be computed, 2017

    OccGRAPI_m

    # Occupied units for which rent as a percentage of income can be computed, 2017 (MOE)

    GRAPI30PctPlus_e

    # Gross rent 30.0 percent of income or greater, 2017

    GRAPI30PctPlus_m

    # Gross rent 30.0 percent of income or greater, 2017 (MOE)

    pGRAPI30PctPlus_e

    % Gross rent 30.0 percent of income or greater, 2017

    pGRAPI30PctPlus_m

    % Gross rent 30.0 percent of income or greater, 2017 (MOE)

    HousingCost30PctPlus_e

    # All occupied units for which costs exceed 30 percent of income, 2017

    HousingCost30PctPlus_m

    # All occupied units for which costs exceed 30 percent of income, 2017 (MOE)

    PayingForHousing_e

    # Total households paying for housing (rent or owner costs), 2017

    PayingForHousing_m

    # Total households paying for housing (rent or owner costs), 2017 (MOE)

    pHousingCost30PctPlus_e

    % Occupied units for which costs exceed 30 percent of income, 2017

    pHousingCost30PctPlus_m

    % Occupied units for which costs exceed 30 percent of income, 2017 (MOE)

    last_edited_date

    Last date the feature was edited by ARC

    Source: U.S. Census Bureau, Atlanta Regional Commission

    Date: 2013-2017

    For additional information, please visit the Census ACS website.

  14. t

    GROSS RENT AS PERCENTAGE OF INCOME - DP04_MAN_T - Dataset - CKAN

    • portal.tad3.org
    Updated Jul 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). GROSS RENT AS PERCENTAGE OF INCOME - DP04_MAN_T - Dataset - CKAN [Dataset]. https://portal.tad3.org/dataset/gross-rent-as-percentage-of-income-dp04_man_t
    Explore at:
    Dataset updated
    Jul 23, 2023
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    SELECTED HOUSING CHARACTERISTICS GROSS RENT AS PERCENTAGE OF INCOME - DP04 Universe - Occupied units paying rent Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 Gross rent as a percentage of household income is a computed ratio of monthly gross rent to monthly household income (total household income divided by 12). The ratio is computed separately for each unit and is rounded to the nearest tenth. Units for which no rent is paid and units occupied by households that reported no income or a net loss comprise the category “Not computed."

  15. T

    Canada Price to Rent Ratio

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Canada Price to Rent Ratio [Dataset]. https://tradingeconomics.com/canada/price-to-rent-ratio
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1970 - Sep 30, 2025
    Area covered
    Canada
    Description

    Price to Rent Ratio in Canada decreased to 125.50 in the third quarter of 2025 from 128.87 in the second quarter of 2025. This dataset includes a chart with historical data for Canada Price to Rent Ratio.

  16. T

    Italy Price to Rent Ratio

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Italy Price to Rent Ratio [Dataset]. https://tradingeconomics.com/italy/price-to-rent-ratio
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1970 - Jun 30, 2025
    Area covered
    Italy
    Description

    Price to Rent Ratio in Italy decreased to 102.89 in the second quarter of 2025 from 102.91 in the first quarter of 2025. This dataset includes a chart with historical data for Italy Price to Rent Ratio.

  17. T

    South Korea Price to Rent Ratio

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Nov 15, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2013). South Korea Price to Rent Ratio [Dataset]. https://tradingeconomics.com/south-korea/price-to-rent-ratio
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Nov 15, 2013
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1986 - Mar 31, 2025
    Area covered
    South Korea
    Description

    Price to Rent Ratio in South Korea increased to 102.42 in the first quarter of 2025 from 102.15 in the fourth quarter of 2024. This dataset includes a chart with historical data for South Korea Price to Rent Ratio.

  18. g

    World Bank - Global Housing Watch, House Price-to-Income Ratio Around the...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank - Global Housing Watch, House Price-to-Income Ratio Around the World | gimi9.com [Dataset]. https://gimi9.com/dataset/worldbank_imf_ghw/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Global Housing Watch tracks developments in housing markets across the world on a quarterly basis. It provides current data on house prices as well as metrics used to assess valuation in housing markets, such as house price‑to‑rent and house-price‑to‑income ratios. This collection includes only a subset of indicators from the source dataset.

  19. Rental Affordability Based on Median Income

    • kaggle.com
    zip
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Rental Affordability Based on Median Income [Dataset]. https://www.kaggle.com/thedevastator/rental-affordability-analysis-based-on-median-in
    Explore at:
    zip(38320 bytes)Available download formats
    Dataset updated
    Jan 10, 2023
    Authors
    The Devastator
    Description

    Rental Affordability Analysis Based on Median Income

    Trends in Tier-Based Affordability Across the U.S

    By Zillow Data [source]

    About this dataset

    This dataset contains rental affordability data for different regions in the US, giving valuable insights into regional rental markets. Renters can use this information to identify where their budget will go the farthest. The cities are organized by rent tier in order to analyze affordability trends within and between different housing stock types. Within each region, the data includes median household income, Zillow Rent Index (ZRI), and percent of income spent on rent.

    The Zillow Home Value Forecast (ZHVF) is used to calculate future combined mortgage pay/rent payments in each region using current median home prices, actual outstanding debt amounts and 30-year fixed mortgage interest rates reported through partnership with TransUnion credit bureau. Zillow also provides a breakdown of cash vs financing purchases for buyers looking for an investment or cash option solution.

    This dataset provides an effective tool for consumers who want to better understand how their budget fits into diverse rental markets across the US; from condominiums and co-ops, multifamily residences with five or more units, duplexes and triplexes - every renter can determine how their housing budget should be adjusted as they consider multiple living possibilities throughout the country based on real-time price data!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    Introduction

    Getting Started

    • First, you'll need to download the TieredAffordability_Rental.csv dataset from this Kaggle page onto your computer or device.

    • After downloading the data set onto your device, open it with any CSV viewing software of your choice (ex: Excel). It will include columns for RegionName**RegionName** , homes type/housing stock (All Homes or Condo/Co-op) SizeRank , Rent tier tier , Date date , median household income income , Zillow Rent Index zri and PercentIncomeSpentOnRent percentage (what portion of monthly median house-hold goes toward monthly mortgage payment) .

    • To begin analyzing rental prices across different regions using this dataset, look first at column four: SizeRank; which ranks each region based on size - smallest regions listed first and largest at last - so that you can compare a similar range of Regions when looking at affordability by home sizes larger than one unit multiplex dwellings.*Duples/Triplex*. Once there is an understanding of how all homes compare overall now it is time to consider home types Multifamily 5+ units according to rent tiers tier .

    • Next, choose one or more region(s) for comparison based on their rank in SizeRank column –so that all information gathered about them reflects what portionof households fall into certain categories ; eg; All Homes / Small Home /Large Home / MultiPlex Dwelling and what tier does each size rank falls into eg.: Affordable/Slightly Expensive/ Moderately Expensive etc.. This will enable further abstraction from other elements like date vs inflation rate per month or periodical intervals set herein by Rate segmentation i e dates givenin ‘Date’Columns – making the task easier and more direct while analyzing renatalAffordibility Analysis Based On Median Income zri 00 zwi & PCISOR 00 PCIRO

    Research Ideas

    • Use the PercentIncomeSpentOnRent column to compare rental affordability between regions within a particular tier and determine optimal rent tiers for relocating families.
    • Analyze how market conditions are affecting rental affordability over time by using the income, zri, and PercentageIncomeSpentOnRent columns.
    • Identify trends in housing prices for different tiers over the years by comparing SizeRank data with Zillow Home Value Forecast (ZHVF) numbers across different regions in order to identify locations that may be headed up or down in terms of home values (and therefore rent levels)

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: TieredAffordability_Rental.csv | Column name | Description | |:-----------------------------|:-------------------------------------------------------------| | RegionName | The name of the region. (String) ...

  20. Living Cost Citywise India (MasterDataset)

    • kaggle.com
    zip
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivanshu Pande (2025). Living Cost Citywise India (MasterDataset) [Dataset]. https://www.kaggle.com/datasets/shivanshupande/living-cost-citywise-india-masterdataset
    Explore at:
    zip(12037 bytes)Available download formats
    Dataset updated
    Nov 22, 2025
    Authors
    Shivanshu Pande
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Dataset Description: Indian Urban Affordability and Economic Productivity (221 Cities) About the Dataset

    This dataset represents the comprehensive 221-city version developed and utilized in the research paper “Predicting Urban Affordability and Economic Productivity in India: A Data-Driven KNN and Random Forest Framework with Insights from Selected Major Cities.”

    It builds upon the author’s earlier 70-city affordability dataset and significantly expands its scope.

    The dataset provides a unified framework to study how urban affordability, digital readiness, and GDP specialization jointly influence economic livability and productivity across different city tiers.

    Data Provenance and Construction

    Primary Source: Extended web-scraped affordability data originally compiled from LivingCost.org and other verified open-data platforms.

    Cleaning & Standardization: City names normalized (e.g., “Bengaluru” → “Bangalore”), and all numeric fields standardized to INR using a consistent USD→INR conversion rate for comparability.

    Features Included

    Each record (row) corresponds to one city and contains the following metrics:

    Cost of Living (INR)

    Monthly Rent (INR)

    Monthly After-Tax Salary (INR)

    Income After Rent (INR)

    Affordability Ratio (“Months Covered”)

    Intended Applications

    This dataset can be used for:

    🧮 Cross-city affordability and livability analysis

    🤖 Machine Learning model development (affordability or salary prediction)

    🌆 Urban economics and policy simulation studies

    📈 Correlation and regression-based research in ICT and GDP domains

    📊 Dashboard and visualization projects (Power BI, Tableau, SAP SAC, etc.)

    It is designed for use by researchers, policymakers, educators, and data analysts seeking a reliable, structured, and multi-domain dataset on Indian urban dynamics.

    Data Quality and Transparency

    ✅ Uniform currency and value scaling

    ✅ Reproducible preprocessing (Python-based pipelines with Scikit-Learn)

    ✅ Missing values imputed using KNN-based methodology

    ✅ Verified against baseline datasets used in prior research

    ✅ Released under Creative Commons Attribution 4.0 International (CC BY 4.0) license

    Significance

    This dataset forms the empirical backbone of the author’s second research paper, providing the quantitative base for the KNN baseline model and the Random Forest multi-output regressor used to predict salary and affordability across Indian cities.

    It enables city-level insight generation for policymakers and supports reproducible, data-driven research in urban economics, digital inclusion, and sustainable development.

    Future Extensions

    An upcoming enhancement will include:

    Complete AQI integration for all 221 cities to examine the affordability–environment linkage.

    Time-series extension for multi-year trend analysis.

    Inclusion of healthcare, safety, and green infrastructure indicators for a broader livability framework.

    A additional file used in my paper on T30 cities of India with justification is also attached.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Household rent to income ratio in the UK 2025, by region [Dataset]. https://www.statista.com/statistics/752217/household-rent-to-income-ratio-by-region-uk/
Organization logo

Household rent to income ratio in the UK 2025, by region

Explore at:
Dataset updated
Nov 29, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2025
Area covered
United Kingdom
Description

Renters in the UK spent on average 32.5 percent of their income on rent as of January 2025. Scotland and Yorkshire and Humber were the most affordable regions, with households spending less than 28 percent of their gross income on rent. Conversely, London, South West, and South East had a higher ratio. Greater London is the most expensive region for renters Greater London has a considerably higher rent than the rest of the UK regions. In 2024, the average rental cost in Greater London was more than twice higher than in the North West or West Midlands. Compared with Greater London, rent in the South East region was about 600 British pounds cheaper. London property prices continue to increase In recent years, house prices in the UK have been steadily increasing, and the period after the COVID-19 pandemic has been no exception. Prime residential property prices in Central London are forecast to continue rising until 2027. A similar trend in prime property prices is also expected in Outer London.

Search
Clear search
Close search
Google apps
Main menu