The Property Owners and Managers Survey (POMS) wasa one-time survey designed to learn more about rental housing and the providers of rental housing. The purpose of the survey was to gain a better understanding of the property owners and managers on whom the nation depends to provide affordable rental housing, and of what motivates and shapes their rental and maintenance policies. This dataset contains the single family macrodata.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Homeownership Rate in the United States (RHORUSQ156N) from Q1 1965 to Q2 2025 about homeownership, housing, rate, and USA.
What is Rental Data?
Rental data encompasses detailed information about residential rental properties, including single-family homes, multifamily units, and large apartment complexes. This data often includes key metrics such as rental prices, occupancy rates, property amenities, and detailed property descriptions. Advanced rental datasets integrate listings directly sourced from property management software systems, ensuring real-time accuracy and eliminating reliance on outdated or scraped information.
Additional Rental Data Details
The rental data is sourced from over 20,000 property managers via direct feeds and property management platforms, covering over 30 percent of the national rental housing market for diverse and broad representation. Real-time updates ensure data remains current, while verified listings enhance accuracy, avoiding errors typical of survey-based or scraped datasets. The dataset includes 14+ million rental units with detailed descriptions, rich photography, and amenities, offering address-level granularity for precise market analysis. Its extensive coverage of small multifamily and single-family rentals sets it apart from competitors focused on premium multifamily properties.
Rental Data Includes:
Knowing who your consumers are is essential for businesses, marketers, and researchers. This detailed demographic file offers an in-depth look at American consumers, packed with insights about personal details, household information, financial status, and lifestyle choices. Let's take a closer look at the data:
Personal Identifiers and Basic Demographics At the heart of this dataset are the key details that make up a consumer profile:
Unique IDs (PID, HHID) for individuals and households Full names (First, Middle, Last) and suffixes Gender and age Date of birth Complete location details (address, city, state, ZIP) These identifiers are critical for accurate marketing and form the base for deeper analysis.
Geospatial Intelligence This file goes beyond just listing addresses by including rich geospatial data like:
Latitude and longitude Census tract and block details Codes for Metropolitan Statistical Areas (MSA) and Core-Based Statistical Areas (CBSA) County size codes Geocoding accuracy This allows for precise geographic segmentation and localized marketing.
Housing and Property Data The dataset covers a lot of ground when it comes to housing, providing valuable insights for real estate professionals, lenders, and home service providers:
Homeownership status Dwelling type (single-family, multi-family, etc.) Property values (market, assessed, and appraised) Year built and square footage Room count, amenities like fireplaces or pools, and building quality This data is crucial for targeting homeowners with products and services like refinancing or home improvement offers.
Wealth and Financial Data For a deeper dive into consumer wealth, the file includes:
Estimated household income Wealth scores Credit card usage Mortgage info (loan amounts, rates, terms) Home equity estimates and investment property ownership These indicators are invaluable for financial services, luxury brands, and fundraising organizations looking to reach affluent individuals.
Lifestyle and Interests One of the most useful features of the dataset is its extensive lifestyle segmentation:
Hobbies and interests (e.g., gardening, travel, sports) Book preferences, magazine subscriptions Outdoor activities (camping, fishing, hunting) Pet ownership, tech usage, political views, and religious affiliations This data is perfect for crafting personalized marketing campaigns and developing products that align with specific consumer preferences.
Consumer Behavior and Purchase Habits The file also sheds light on how consumers behave and shop:
Online and catalog shopping preferences Gift-giving tendencies, presence of children, vehicle ownership Media consumption (TV, radio, internet) Retailers and e-commerce businesses will find this behavioral data especially useful for tailoring their outreach.
Demographic Clusters and Segmentation Pre-built segments like:
Household, neighborhood, family, and digital clusters Generational and lifestage groups make it easier to quickly target specific demographics, streamlining the process for market analysis and campaign planning.
Ethnicity and Language Preferences In today's multicultural market, knowing your audience's cultural background is key. The file includes:
Ethnicity codes and language preferences Flags for Hispanic/Spanish-speaking households This helps ensure culturally relevant and sensitive communication.
Education and Occupation Data The dataset also tracks education and career info:
Education level and occupation codes Home-based business indicators This data is essential for B2B marketers, recruitment agencies, and education-focused campaigns.
Digital and Social Media Habits With everyone online, digital behavior insights are a must:
Internet, TV, radio, and magazine usage Social media platform engagement (Facebook, Instagram, LinkedIn) Streaming subscriptions (Netflix, Hulu) This data helps marketers, app developers, and social media managers connect with their audience in the digital space.
Political and Charitable Tendencies For political campaigns or non-profits, this dataset offers:
Political affiliations and outlook Charitable donation history Volunteer activities These insights are perfect for cause-related marketing and targeted political outreach.
Neighborhood Characteristics By incorporating census data, the file provides a bigger picture of the consumer's environment:
Population density, racial composition, and age distribution Housing occupancy and ownership rates This offers important context for understanding the demographic landscape.
Predictive Consumer Indexes The dataset includes forward-looking indicators in categories like:
Fashion, automotive, and beauty products Health, home decor, pet products, sports, and travel These predictive insights help businesses anticipate consumer trends and needs.
Contact Information Finally, the file includes ke...
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The summary statistics by North American Industry Classification System (NAICS) which include: operating revenue (dollars x 1,000,000), operating expenses (dollars x 1,000,000), salaries wages and benefits (dollars x 1,000,000), and operating profit margin (by percent), of lessors of residential buildings and dwellings (except social housing projects) (NAICS 531111), annual, for five years of data.
VITAL SIGNS INDICATOR List Rents (EC9)
FULL MEASURE NAME List Rents
LAST UPDATED October 2016
DESCRIPTION List rent refers to the advertised rents for available rental housing and serves as a measure of housing costs for new households moving into a neighborhood, city, county or region.
DATA SOURCE real Answers (1994 – 2015) no link
Zillow Metro Median Listing Price All Homes (2010-2016) http://www.zillow.com/research/data/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) List rents data reflects median rent prices advertised for available apartments rather than median rent payments; more information is available in the indicator definition above. Regional and local geographies rely on data collected by real Answers, a research organization and database publisher specializing in the multifamily housing market. real Answers focuses on collecting longitudinal data for individual rental properties through quarterly surveys. For the Bay Area, their database is comprised of properties with 40 to 3,000+ housing units. Median list prices most likely have an upward bias due to the exclusion of smaller properties. The bias may be most extreme in geographies where large rental properties represent a small portion of the overall rental market. A map of the individual properties surveyed is included in the Local Focus section.
Individual properties surveyed provided lower- and upper-bound ranges for the various types of housing available (studio, 1 bedroom, 2 bedroom, etc.). Median lower- and upper-bound prices are determined across all housing types for the regional and county geographies. The median list price represented in Vital Signs is the average of the median lower- and upper-bound prices for the region and counties. Median upper-bound prices are determined across all housing types for the city geographies. The median list price represented in Vital Signs is the median upper-bound price for cities. For simplicity, only the mean list rent is displayed for the individual properties. The metro areas geography rely upon Zillow data, which is the median price for rentals listed through www.zillow.com during the month. Like the real Answers data, Zillow's median list prices most likely have an upward bias since small properties are underrepresented in Zillow's listings. The metro area data for the Bay Area cannot be compared to the regional Bay Area data. Due to afore mentioned data limitations, this data is suitable for analyzing the change in list rents over time but not necessarily comparisons of absolute list rents. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.
Due to the limited number of rental properties surveyed, city-level data is unavailable for Atherton, Belvedere, Brisbane, Calistoga, Clayton, Cloverdale, Cotati, Fairfax, Half Moon Bay, Healdsburg, Hillsborough, Los Altos Hills, Monte Sereno, Moranga, Oakley, Orinda, Portola Valley, Rio Vista, Ross, San Anselmo, San Carlos, Saratoga, Sebastopol, Windsor, Woodside, and Yountville.
Inflation-adjusted data are presented to illustrate how rents have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself. Percent change in inflation-adjusted median is calculated with respect to the median price from the fourth quarter or December of the base year.
Housing affordability is a major concern for many Los Angeles County residents. Housing constitutes the single largest monthly expense for most people. Renters are more susceptible than homeowners to high housing costs, especially if they live in a community without rent control or other tenant protection policies. Compared to homeowners, renters are also more likely to experience housing burden or housing instability and have a higher risk for homelessness.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
https://brightdata.com/licensehttps://brightdata.com/license
Gain a complete view of the real estate market with our Zillow datasets. Track price trends, rental/sale status, and price per square foot with the Zillow Price History dataset and explore detailed listings with prices, locations, and features using the Zillow Properties Listing dataset. Over 134M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:
Zpid
City
State
Home Status
Street Address
Zipcode
Home Type
Living Area Value
Bedrooms
Bathrooms
Price
Property Type
Date Sold
Annual Homeowners Insurance
Price Per Square Foot
Rent Zestimate
Tax Assessed Value
Zestimate
Home Values
Lot Area
Lot Area Unit
Living Area
Living Area Units
Property Tax Rate
Page View Count
Favorite Count
Time On Zillow
Time Zone
Abbreviated Address
Brokerage Name
And much more
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multifamily Properties - AssistedThis National Geospatial Data Asset (NGDA) dataset, shared as a Department of Housing and Urban Development (HUD) feature layer, displays rental housing properties with five or more dwelling units in the United States. Per HUD, "HUD's Multifamily Housing property portfolio consist primarily of rental housing properties with five or more dwelling units such as apartments or town houses, but can also be nursing homes, hospitals, elderly housing, mobile home parks, retirement service centers, and occasionally vacant land. HUD provides subsidies and grants to property owners and developers designed to promote the development and preservation of affordable rental units for low-income populations and those with special needs, such as the elderly and disabled". Tyler House in Washington, D.C.Data currency: current federal service (Multifamily Properties - Assisted)NGDAID: 183 (Assisted Housing - Multifamily Properties (Assisted) – National Geospatial Data Asset (NGDA))For more information, please visit: Office of Multifamily HousingSupport documentation: DD_HUD Assisted Multifamily PropertiesFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Real Property Theme Community. Per the Federal Geospatial Data Committee (FGDC), Real Property is defined as "the spatial representation (location) of real property entities, typically consisting of one or more of the following: unimproved land, a building, a structure, site improvements and the underlying land. Complex real property entities (that is "facilities") are used for a broad spectrum of functions or missions. This theme focuses on spatial representation of real property assets only and does not seek to describe special purpose functions of real property such as those found in the Cultural Resources, Transportation, or Utilities themes."For other NGDA Content: Esri Federal Datasets
Foreclosed rental properties registered with the Chicago Department of Housing under the Keep Chicago Renting ordinance. Prior to 12/12/2022, Owner and Owner Management Agent addresses could not be registered through the registration site so no City, State, or ZIP columns were present in this dataset. Because all previously existing records had Chicago addresses for Owner and Owner Agent, the City and State columns were populated when added to this dataset but ZIP values are only available from 12/12/2022 forward. The Property Address is always in Chicago.
Tables on:
The previous Survey of English Housing live table number is given in brackets below. Please note from July 2024 amendments have been made to the following tables:
Table FA3244 and FA3245 have been combined into table FA3246.
Table FA3211 has been updated and republished.
For data prior to 2022-23 for the above tables, see discontinued tables.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">58.3 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">24.3 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
The 2001 Residential Finance Survey (RFS) was sponsored by the Department of Housing and Urban Development and conducted by the Census Bureau. The RFS is a follow-on survey to the 2000 decennial census designed to collect, process, and produce information about the financing of all nonfarm, residential properties. The 1991 data is also available.
How does scale affect policy support? An exit poll of 1,660 voters and a national survey of over 3,000 respondents measure how support for housing varies between the city- and neighborhood-scale. While homeowners are sensitive to housing's proximity, renters typically do not express NIMBYism (“Not In My Back Yard”). However, in high-rent cities, renters exhibit NIMBYism on par with homeowners, despite supporting large increases in housing citywide. These scale-dependent preferences not only help explain the affordability crisis, but show how institutions can undersupply even widely supported public goods. When preferences are scale-dependent, the scale of decision making matters.
Our US Home Ownership Data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.
Our comprehensive data enrichment solution includes various data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences. 1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc. 2. Demographics - Gender, Age Group, Marital Status, Language etc. 3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc 4. Persona - Consumer type, Communication preferences, Family type, etc 5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc. 6. Household - Number of Children, Number of Adults, IP Address, etc. 7. Behaviours - Brand Affinity, App Usage, Web Browsing etc. 8. Firmographics - Industry, Company, Occupation, Revenue, etc 9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc. 10. Auto - Car Make, Model, Type, Year, etc. 11. Housing - Home type, Home value, Renter/Owner, Year Built etc.
Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).
Consumer Graph Use Cases: 360-Degree Customer View: Get a comprehensive image of customers by the means of internal and external data aggregation. Data Enrichment: Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity. Advertising & Marketing: Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.
This data collection provides information on the characteristics of a national sample of housing units, including apartments, single-family homes, mobile homes, and vacant housing units. Unlike previous years, the data are presented in nine separate parts: Part 1, Work Done Record (Replacement or Additions to the House), Part 2, Housing Unit Record (Main Record), Part 3, Worker Record, Part 4, Mortgages (Owners Only), Part 5, Manager and Owner Record (Renters Only), Part 6, Person Record, Part 7, Mover Group Record, Part 8, Recodes (One Record per Housing Unit), and Part 9, Weights. Data include year the structure was built, type and number of living quarters, occupancy status, access, number of rooms, presence of commercial establishments on the property, and property value. Additional data focus on kitchen and plumbing facilities, types of heating fuel used, source of water, sewage disposal, heating and air-conditioning equipment, and major additions, alterations, or repairs to the property. Information provided on housing expenses includes monthly mortgage or rent payments, cost of services such as utilities, garbage collection, and property insurance, and amount of real estate taxes paid in the previous year. Also included is information on whether the household received government assistance to help pay heating or cooling costs or for other energy-related services. Similar data are provided for housing units previously occupied by respondents who had recently moved. Additionally, indicators of housing and neighborhood quality are supplied. Housing quality variables include privacy of bedrooms, condition of kitchen facilities, basement or roof leakage, breakdowns of plumbing facilities and equipment, and overall opinion of the structure. For quality of neighborhood, variables include use of exterminator services, existence of boarded-up buildings, and overall quality of the neighborhood. In addition to housing characteristics, some demographic data are provided on household members, such as age, sex, race, marital status, income, and relationship to householder. Additional data provided on the householder include years of school completed, Spanish origin, length of residence, and length of occupancy. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR -- https://doi.org/10.3886/ICPSR02912.v2. We highly recommend using the ICPSR version as they made this dataset available in multiple data formats.
VITAL SIGNS INDICATOR
Housing Affordability (EQ2)
FULL MEASURE NAME
Housing Affordability
LAST UPDATED
December 2022
DATA SOURCE
U.S. Census Bureau: Decennial Census - https://nhgis.org
Form STF3 – https://nhgis.org (1980-1990)
Form SF3a – https://nhgis.org (2000)
U.S. Census Bureau: American Community Survey - https://data.census.gov/
Form B25074 (2009-2021)
Form B25095 (2009-2021)
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The share of income brackets used for different Census and American Community Survey (ACS) forms vary over time. To allow for historical comparisons, the Census Bureau merges housing expenditure brackets into three consistent bins (less than 20 percent, 20 percent to 34 percent, and more than 35 percent) that work for all years. The highest income bracket for renters in the ACS data was $100,000 or more, while the homeowner dataset included brackets for $100,000 to $149,999 and $150,000 and above. These brackets were merged together to allow for uniform comparison across tenure. While some studies use 30 percent as the affordability threshold, Vital Signs uses 35 percent as this is the closest break point using the standardized affordability brackets above.
ACS 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
Income breakdown data is only provided for one year as it is not possible to compare consistent inflation-adjusted income brackets over time given Census data limitations. For the county breakdown, Napa was missing ACS 1-Year renter data for all years except 2012 and 2013, and Marin was missing ACS 1-Year renter data for 2019 — these counties used 5-Year data for those years.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY Beginning in 2022, the law requires owners of residential housing units in San Francisco to report certain information about their units to the San Francisco Rent Board on an annual basis. For units (other than condominium units) in buildings of 10 residential units or more, owners were required to begin reporting this information to the Rent Board by July 1, 2022, with updates due on March 1, 2023 and every March 1 thereafter. For condominium units and units in buildings with less than 10 residential units, reporting began on March 1, 2023 with updates due every March 1 thereafter. Owners are also required to inform the Rent Board within 30 days of any change in the name or business contact information of the owner or designated property manager. The Rent Board uses this information to create and maintain a “housing inventory” of all units in San Francisco that are subject to the Rent Ordinance.
B. HOW THE DATASET IS CREATED The Rent Board has developed a secure website portal that provides an interface for owners to submit the required information (The Housing Inventory). The Rent Board uses the information provided to generate reports and surveys, to investigate and analyze rents and vacancies, to monitor compliance with the Rent Ordinance, and to assist landlords and tenants and other City departments as needed. The Rent Board may not use the information to operate a “rental registry” within the meaning of California Civil Code Sections 1947.7 – 1947.8.
C. UPDATE PROCESS The Housing Inventory is continuously updated as it receives submissions from the public. The portal is available to the public 24/7. The Rent Board Staff also makes regular updates to the data during regular business hours, and the data is shared to DataSF every 24 hours.
D. HOW TO USE THIS DATASET It is important to note that this dataset contains information submitted by residential property owners and tenants. The Rent Board does not review or verify the accuracy of the data submitted. Please note that historical data is subject to change.
Notes for Analysis - Addresses have been anonymized to the block level - Latitude & Longitude are the closest mid-block point to the unit - Each row is a unit. To count total units, first select a year then count unique ids. Do not sum unit count.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset captures rental prices across different locations, property types, and features. It was compiled to explore trends in housing costs, identify factors influencing rent, and support predictive modeling for rental price estimation. Ideal for regression analysis, data visualization, and real estate insights.
The purpose of the SEPHER data set is to allow for testing, assessing and generating new analysis and metrics that can address inequalities and climate injustice. The data set was created by Tedesco, M., C. Hultquist, S. E. Char, C. Constantinides, T. Galjanic, and A. D. Sinha.
SEPHER draws upon four major source datasets: CDC Social Vulnerability Index, FEMA National Risk Index, Home Mortgage Disclosure Act, and Evictions datasets. The data from these source datasets have been merged, cleaned, and standardized and all of the variables documented in the data dictionary.
CDC Social Vulnerability Index
CDC Social Vulnerability Index (SVI) dataset is a dataset prepared for the Centers for Disease Control and Prevention for the purpose of assessing the degree of social vulnerability of American communities to natural hazards and anthropogenic events. It contains data on 15 social factors taken or derived from Census reports as well as rankings of each tract based on these individual factors, groups of factors corresponding to four related themes (Socioeconomic, Household Composition & Disability, Minority Status & Language, and Housing Type & Transportation) and overall. The data is available for the years 2000, 2010, 2014, 2016, and 2018.
FEMA National Risk Index
The National Risk Index (NRI) dataset compiled by the Federal Emergency Management Agency (FEMA) consists of historic natural disaster data from across the United States at a tract-level. The dataset includes information about 18 natural disasters including earthquakes, tsunamis, wildfires, volcanic activity and many others. Each disaster is detailed out in terms of its frequency, historic impact, potential exposure, expected annual loss and associated risk. The dataset also includes some summary variables for each tract including the total expected loss in terms of building loss, human loss and agricultural loss, the population of the tract, and the area covered by the tract. It finally includes a few more features to characterize the population such as social vulnerability rating and community resilience.
Home Mortgage Disclosure Act
The Home Mortgage Disclosure Act (HMDA) dataset contains loan-level data for home mortgages including information on applications, denials, approvals, and institution purchases. It is managed and expanded annually by the Consumer Financial Protection Bureau based on the data collected from financial institutions. The dataset is used by public officials to make decisions and policies, uncover lending patterns and discrimination among mortgage applicants, and investigate if lenders are serving the housing needs of the communities. It covers the period from 2007 to 2017.
Evictions
The Evictions dataset is compiled and managed by the Eviction Lab at Princeton University and consists of court records related to eviction cases in the United States between 2000 and 2016. Its purpose is to estimate the prevalence of court-ordered evictions and compare eviction rates among states, counties, cities, and neighborhoods. Besides information on eviction filings and judgments, the dataset includes socioeconomic and real estate data for each tract including race/ethnic origin, household income, poverty rate, property value, median gross rent, rent burden, and others.
Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.
A. Usecase/Applications possible with the data:
Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data
Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.
Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.
Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.
Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.
Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.
Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.
How does it work?
The Property Owners and Managers Survey (POMS) wasa one-time survey designed to learn more about rental housing and the providers of rental housing. The purpose of the survey was to gain a better understanding of the property owners and managers on whom the nation depends to provide affordable rental housing, and of what motivates and shapes their rental and maintenance policies. This dataset contains the single family macrodata.