Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundHealth sciences research is increasingly focusing on big data applications, such as genomic technologies and precision medicine, to address key issues in human health. These approaches rely on biological data repositories and bioinformatic analyses, both of which are growing rapidly in size and scope. Libraries play a key role in supporting researchers in navigating these and other information resources.MethodsWith the goal of supporting bioinformatics research in the health sciences, the University of Arizona Health Sciences Library established a Bioinformation program. To shape the support provided by the library, I developed and administered a needs assessment survey to the University of Arizona Health Sciences campus in Tucson, Arizona. The survey was designed to identify the training topics of interest to health sciences researchers and the preferred modes of training.ResultsSurvey respondents expressed an interest in a broad array of potential training topics, including "traditional" information seeking as well as interest in analytical training. Of particular interest were training in transcriptomic tools and the use of databases linking genotypes and phenotypes. Staff were most interested in bioinformatics training topics, while faculty were the least interested. Hands-on workshops were significantly preferred over any other mode of training. The University of Arizona Health Sciences Library is meeting those needs through internal programming and external partnerships.ConclusionThe results of the survey demonstrate a keen interest in a variety of bioinformatic resources; the challenge to the library is how to address those training needs. The mode of support depends largely on library staff expertise in the numerous subject-specific databases and tools. Librarian-led bioinformatic training sessions provide opportunities for engagement with researchers at multiple points of the research life cycle. When training needs exceed library capacity, partnering with intramural and extramural units will be crucial in library support of health sciences bioinformatic research.
Bioinformatics Market Size 2025-2029
The bioinformatics market size is forecast to increase by USD 15.98 billion at a CAGR of 17.4% between 2024 and 2029.
The market is experiencing significant growth, driven by the reduction in the cost of genetic sequencing and the development of advanced bioinformatics tools for Next-Generation Sequencing (NGS) technologies. These advancements have led to an increase in the volume and complexity of genomic data, necessitating the need for sophisticated bioinformatics solutions. However, the market faces challenges, primarily the shortage of trained laboratory professionals capable of handling and interpreting the vast amounts of data generated. This skills gap can hinder the effective implementation and utilization of bioinformatics tools, potentially limiting the market's growth potential.
Companies seeking to capitalize on market opportunities must focus on addressing this challenge by investing in training programs and collaborating with academic institutions. Additionally, data security, data privacy, and regulatory compliance are crucial aspects of the market, ensuring the protection and ethical use of sensitive biological data. Partnerships with technology providers and service organizations can help bridge the gap in expertise and resources, enabling organizations to leverage the power of bioinformatics for research and development, diagnostics, and personalized medicine applications.
What will be the Size of the Bioinformatics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The market is experiencing significant growth, driven by the increasing demand for precision medicine and the exploration of complex biological systems. Structural variation and gene regulation play crucial roles in gene networks and biological networks, necessitating advanced tools for SNP genotyping and statistical analysis. Precision medicine relies on the identification of mutations and biomarkers through mutation analysis and biomarker validation.
Metabolic networks, protein microarrays, CDNA microarrays, and RNA microarrays contribute to the discovery of new insights in evolutionary biology and conservation biology. The integration of these technologies enables a comprehensive understanding of gene regulation, gene networks, and metabolic pathways, ultimately leading to the development of novel therapeutics. Protein-protein interactions and signal transduction pathways are essential in understanding protein networks and metabolic pathways. Ontology mapping and predictive modeling facilitate data warehousing and data analytics in this field.
How is this Bioinformatics Industry segmented?
The bioinformatics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Molecular phylogenetics
Transcriptomic
Proteomics
Metabolomics
Product
Platforms
Tools
Services
End-user
Pharmaceutical and biotechnology companies
CROs and research institutes
Others
Geography
North America
US
Canada
Mexico
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
Rest of World (ROW)
By Application Insights
The molecular phylogenetics segment is estimated to witness significant growth during the forecast period. In the dynamic and innovative realm of bioinformatics, various technologies and techniques are shaping the future of research and development. Molecular phylogenetics, a significant branch of bioinformatics, employs molecular data to explore the evolutionary connections among species, offering enhanced insights into the intricacies of life. This technique has been instrumental in numerous research domains, such as drug discovery, disease diagnosis, and conservation biology. For instance, it plays a pivotal role in the study of viral evolution. By deciphering the molecular data of distinct virus strains, researchers can trace their evolutionary history and unravel their origins and transmission patterns.
Furthermore, the integration of proteomic technologies, network analysis, data integration, and systems biology is expanding the scope of bioinformatics research and applications. Bioinformatics services, open-source bioinformatics, and commercial bioinformatics software are vital components of the market, catering to the diverse needs of researchers, industries, and institutions. Bioinformatics databases, including sequence databases and bioinformatics algorithms, are indispensable resources for storing, accessing, and analyzing biological data. In the realm of personalized medicine and drug di
https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy
The global bioinformatics market is expected to rise from USD 18.7 billion in 2025 to around USD 58.1 billion by 2035, reflecting a CAGR of 12% during the forecast period. The market is undergoing substantial transformation driven by advancements in next-generation sequencing, AI-powered analytics, and rapid data generation from genomics and proteomics.
Attribute | Value |
---|---|
Market Size in 2025 | USD 18.7 billion |
Market Size in 2035 | USD 58.1 billion |
CAGR (2025 to 2035) | 12% |
Exploring Top Countries Driving Innovation, Adoption, and Delivery of Bioinformatics Solutions
Countries | CAGR (2025 to 2035) |
---|---|
United States | 9.6% |
United Kingdom | 9.1% |
China | 11.2% |
India | 11.8% |
South Korea | 10.4% |
According to our latest research, the global bioinformatics market size reached USD 16.2 billion in 2024, reflecting robust industry momentum. The market is exhibiting a healthy compound annual growth rate (CAGR) of 13.1% and is projected to attain a value of USD 42.7 billion by 2033. This vigorous expansion is driven by the rapid integration of computational tools in life sciences, accelerating advancements in genomics, proteomics, and drug discovery. The increasing demand for personalized medicine and the surge in big data analytics within biological research are pivotal growth factors shaping the bioinformatics landscape.
One of the principal growth factors fueling the bioinformatics market is the explosive rise in genomics research, particularly in the context of next-generation sequencing (NGS) technologies. The cost of sequencing has plummeted over the past decade, making large-scale genomic projects more accessible to both public and private sector entities. This democratization of sequencing technology has led to a significant influx of biological data, necessitating sophisticated bioinformatics tools for analysis, interpretation, and storage. The development of cloud-based bioinformatics platforms further enables researchers to manage and analyze vast datasets efficiently, fostering greater collaboration and innovation in genomics-driven healthcare, agriculture, and environmental sciences.
Another critical driver is the increasing adoption of bioinformatics in drug discovery and development. Pharmaceutical and biotechnology companies are leveraging bioinformatics solutions to accelerate target identification, drug candidate screening, and biomarker discovery. The integration of artificial intelligence (AI) and machine learning algorithms within bioinformatics workflows is enhancing the predictive accuracy of drug response models and facilitating the identification of novel therapeutic targets. This not only shortens the drug development lifecycle but also reduces costs and improves the likelihood of clinical success. As precision medicine gains traction, bioinformatics is becoming indispensable in tailoring treatments based on individual genetic profiles, further propelling market growth across the healthcare sector.
The expanding application of bioinformatics beyond human health is another significant growth factor. In agriculture, bioinformatics is instrumental in crop improvement, pest resistance, and livestock management through the analysis of genomic and phenotypic data. Environmental biotechnology also benefits from bioinformatics in monitoring biodiversity, tracking pathogen outbreaks, and assessing ecosystem health. Moreover, forensic biotechnology utilizes bioinformatics for DNA profiling and criminal investigations. These diverse applications underscore the versatility and critical importance of bioinformatics across multiple sectors, driving sustained investment and innovation in the market.
From a regional perspective, North America continues to dominate the global bioinformatics market, accounting for the largest revenue share in 2024. This leadership is attributed to the presence of major industry players, significant government funding for genomics research, and a well-established healthcare infrastructure. Europe follows closely, supported by strong academic research and collaborative initiatives such as the European Bioinformatics Institute. Meanwhile, the Asia Pacific region is witnessing the fastest growth, fueled by rising investments in life sciences, expanding biotechnology industries, and increasing adoption of digital health solutions. Latin America and the Middle East & Africa are also emerging as promising markets, albeit at a comparatively nascent stage, driven by growing awareness and infrastructural improvements.
The bioinformatics market by product & service is segmented into software, hardware, and services, each playing a pivotal role in driving the
https://www.bccresearch.com/aboutus/terms-conditionshttps://www.bccresearch.com/aboutus/terms-conditions
Explore BCC Research's comprehensive report on Bioinformatics technologies Market. This report aims to study current and historical market revenues can be estimated based on the services & platforms, solutions, and application type.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the Global Bioinformatics Services Market Size will be USD XX Billion in 2023 and is set to achieve a market size of USD XX Billion by the end of 2031 growing at a CAGR of XX% from 2024 to 2031.
• The global Bioinformatics services Market will expand significantly by XX% CAGR between 2024 and 2031.
• Based on technology, Because of the growing number of platform applications and the need for improved tools for drug development, the bioinformatics platforms segment dominated the market.
• In terms of service type, The sequencing services segment held the largest share and is anticipated to grow over the coming years
• Based on application, The genomic segment dominated the bioinformatics market
• Based on End-user, academic institutes and research centers segment hold the largest share.
• Based on speciality segment, The medical bioinformatics segment holds the large share and is anticipated to expand at a substantial CAGR during the forecast period.
• The North America region accounted for the highest market share in the Global Bioinformatics Services Market. CURRENT SCENARIO OF THE BIOINFORMATICS SERVICES
Driving Factors of the Bioinformatics Services Market
Expansive uses of bioinformatics across multiple sectors is propelling the market's growth.
Several industries, such as the food, bioremediation, agriculture, forensics, and consumer industries, are also using bioinformatics services to improve the quality of their products and supply chain processes. Companies in a variety of sectors are rapidly utilizing bioinformatics services such as data integration, manipulation, lead generation, data management, in silico analysis, and advanced knowledge discovery.
• Bioinformatics Approaches in Food Sciences
In order to meet the needs of food production, food processing, enhancing the quality and nutritional content of food sources, and many other areas, bioinformatics plays a significant role in forecasting and evaluating the intended and undesired impacts of microorganisms on food, genomes, and proteomics research. Furthermore, bioinformatics techniques can be applied to produce crops with high yields and resistance to disease, among other desirable qualities. Additionally, there are numerous databases with information about food, including its components, nutritional value, chemistry, and biology.
Genome Canada is proud to partner with five Institutes where there are five funding pools within this opportunity and Genome Canada is partnering on the Bioinformatics, Computational Biology and Health Data Sciences pool. (Source:https://genomecanada.ca/genome-canada-partners-with-cihr-to-launch-health-research-training-platform-2024-25/)
• Bioinformatics in agriculture
Bioinformatics is becoming more and more crucial in the gathering, storing, and processing of genomic data in the field of agricultural genomics, or agri-genomics. Generally referred to as agri-informatics, some of the various applications of bioinformatics tools and methods in agriculture focus on improving plant resistance against biotic and abiotic stressors as well as enhancing the nutritional quality in depleted soils. Beyond these uses, computer software-assisted gene discovery has enabled researchers to create focused strategies for seed quality enhancement, incorporate extra micronutrients into plants for improved human health, and create plants with phytoremediation potential.
India/UK-based Agri-Genomics startup, Piatrika Biosystems has raised $1.2 Million in a seed round led by Ankur Capital. The company is bringing sustainable seeds and agri chemicals to market faster and cheaper. The investment will be used to build a strong Product Development team, also for more profound research, and to accelerate the productionising and commercialization of MVP. (Source:https://pressroom.icrisat.org/agri-genomics-startup-piatrika-biosystems-raises-12-million-in-seed-funding-led-by-ankur-capital)
This expansion in the application areas of bioinformatics services is likely to drive the overall market growth. Bioinformatics services such as data integration, manipulation, lead discovery, data management, in silico analysis, and advanced knowledge discovery are increasingly being adopted by companies across various industries.&...
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Bioinformatics Platforms Market market was valued at USD 16.36 Million in 2023 and is projected to reach USD 27.93 Million by 2032, with an expected CAGR of 7.94% during the forecast period. The Bioinformatics Platforms Market includes the software and tools required to understand biological data that contain genomic, proteomic, or metabolic data. These platforms include support for various applications like drug discovery, individualized medicine, and clinically related diagnostics through helps of data integration, statistical analysis and visualization. Some of the emerging trends that are driving the bioinformatics market are cloud-based bioinformatics solutions to support scalability and collaboration, advanced machine learning and artificial intelligence (AI) technologies to accurately analyze raised significance of multi-omics data integration for profound tumor bioinformatics analysis. Such factors pulling the market ahead include increasing volume of biological data in facets like research and clinical trials, evolving sequencing technologies, along with the increasing requirement for enhanced data management and analysis in genomics and proteomics. Further, the rising usage of bioinformatics for customized treatment and the growing number of research studies in genomics complement the market’s growth. Recent developments include: In June 2022, California's biotechnology research startup LatchBio launched an end-to-end bioinformatics platform for handling big biotech data to accelerate scientific discovery., In March 2022, ARUP launched Rio, a bioinformatics pipeline and analytics platform for better, faster next-generation sequencing test results.. Key drivers for this market are: Increasing Demand for Nucleic Acid and Protein Sequencing, Increasing Initiatives from Governments and Private Organizations; Accelerating Growth of Proteomics and Genomics; Increasing Research on Molecular Biology and Drug Discovery. Potential restraints include: Lack of Well-defined Standards and Common Data Formats for Integration of Data, Data Complexity Concerns and Lack of User-friendly Tools. Notable trends are: Sequence Analysis Platform Segment is Expected Hold a Significant Share Over the Forecast Period.
RNA expression analysis was performed on the corpus luteum tissue at five time points after prostaglandin F2 alpha treatment of midcycle cows using an Affymetrix Bovine Gene v1 Array. The normalized linear microarray data was uploaded to the NCBI GEO repository (GSE94069). Subsequent statistical analysis determined differentially expressed transcripts ± 1.5-fold change from saline control with P ≤ 0.05. Gene ontology of differentially expressed transcripts was annotated by DAVID and Panther. Physiological characteristics of the study animals are presented in a figure. Bioinformatic analysis by Ingenuity Pathway Analysis was curated, compiled, and presented in tables. A dataset comparison with similar microarray analyses was performed and bioinformatics analysis by Ingenuity Pathway Analysis, DAVID, Panther, and String of differentially expressed genes from each dataset as well as the differentially expressed genes common to all three datasets were curated, compiled, and presented in tables. Finally, a table comparing four bioinformatics tools' predictions of functions associated with genes common to all three datasets is presented. These data have been further analyzed and interpreted in the companion article "Early transcriptome responses of the bovine mid-cycle corpus luteum to prostaglandin F2 alpha includes cytokine signaling". Resources in this dataset:Resource Title: Supporting information as Excel spreadsheets and tables. File Name: Web Page, url: http://www.sciencedirect.com/science/article/pii/S2352340917304031?via=ihub#s0070
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Bioinformatics Services Market size was valued at USD 11.1 Billion in 2023 and is projected to reach USD 3.58 Billion by 2031, growing at a CAGR of 15.06% from 2024-2031.
Bioinformatics Services Market: Definition/ Overview
Bioinformatics services cover a wide range of computational tools and methods for managing, analyzing, and interpreting biological data. These services enable the integration of data from domains such as genomics, proteomics, transcriptomics, and metabolomics to provide insights into biological systems. Drug discovery, customized medicine, gene sequencing, and biological data management are some of the most important applications of bioinformatics. Researchers and healthcare professionals use these services to analyze big datasets, detect disease markers, and develop tailored medicines, considerably improving the precision and efficiency of life science research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Familiarity with genome-scale data and the bioinformatic skills to analyze it have become essential for understanding and advancing modern biology and human health, yet many undergraduate biology majors are never exposed to hands-on bioinformatics. This paper presents a module that introduces students to applied bioinformatic analysis within the context of a research-based microbiology lab course. One of the most commonly used genomic analyses in biology is resequencing: determining the sequence of DNA bases in a derived strain of some organism, and comparing it to the known ancestral genome of that organism to better understand the phenotypic differences between them. Many existing CUREs — Course Based Undergraduate Research Experiences — evolve or select new strains of bacteria and compare them phenotypically to ancestral strains. This paper covers standardized strategies and procedures, accessible to undergraduates, for preparing and analyzing microbial whole-genome resequencing data to examine the genotypic differences between such strains. Wet-lab protocols and computational tutorials are provided, along with additional guidelines for educators, providing instructors without a next-generation sequencing or bioinformatics background the necessary information to incorporate whole-genome sequencing and command-line analysis into their class. This module introduces novice students to running software at the command-line, giving them exposure and familiarity with the types of tools that make up the vast majority of open-source scientific software used in contemporary biology. Completion of the module improves student attitudes toward computing, which may make them more likely to pursue further bioinformatics study.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global bioinformatics services market size was valued at approximately $2.5 billion in 2023 and is projected to reach roughly $6.8 billion by 2032, growing at a compound annual growth rate (CAGR) of around 11.5%. This impressive growth trajectory is largely driven by the increasing demand for advanced bioinformatics solutions in genomics and proteomics research, the rising prevalence of chronic diseases necessitating personalized medicine, and the growing application of bioinformatics in drug discovery and development processes. Additionally, the integration of artificial intelligence and machine learning in bioinformatics workflows is further accelerating market expansion by enhancing data analysis capabilities and predictive accuracy.
One of the key growth factors in the bioinformatics services market is the exponential rise in biological data generation, fueled by advancements in sequencing technologies and the decreasing cost of genomic sequencing. This surge in data necessitates sophisticated bioinformatics services to manage, analyze, and interpret complex biological information, driving demand across various sectors. Furthermore, the shift towards personalized medicine, where treatments are tailored to individual genetic profiles, is significantly propelling the need for bioinformatics services. These services are pivotal in identifying genetic markers, understanding disease mechanisms, and devising targeted therapeutic strategies, thereby enhancing treatment outcomes.
Another major driver is the expanding role of bioinformatics in drug discovery and development. Pharmaceutical and biotechnology companies are increasingly leveraging bioinformatics to streamline drug development processes, identify potential drug targets, and optimize clinical trials. The integration of bioinformatics into drug development pipelines not only accelerates the discovery of novel therapeutics but also reduces costs and improves the success rates of clinical trials. Moreover, bioinformatics services are crucial in facilitating multi-omics approaches, which integrate genomics, proteomics, transcriptomics, and metabolomics data to provide comprehensive insights into disease pathways and therapeutic responses.
The growing prevalence of chronic diseases, such as cancer, diabetes, and cardiovascular disorders, is another significant factor driving the bioinformatics services market. As the burden of these diseases continues to rise globally, there is an increasing emphasis on developing innovative treatments and diagnostic tools. Bioinformatics services play a crucial role in understanding disease pathogenesis, identifying potential biomarkers, and developing predictive models for disease progression. Additionally, government initiatives and funding to support genomic research and the establishment of biobanks are further bolstering the market, as they create a conducive environment for the adoption of bioinformatics solutions.
Regionally, North America is expected to maintain its dominance in the bioinformatics services market, owing to the presence of a robust healthcare infrastructure, substantial investment in research and development, and the early adoption of advanced technologies. However, the Asia Pacific region is anticipated to witness the highest growth rate over the forecast period, with a CAGR surpassing 13%. This growth is attributed to increasing investments in healthcare infrastructure, a growing focus on precision medicine, and rising government initiatives to support genomic research. The expanding biotechnology industry and the presence of a large patient pool in countries like China and India further contribute to the region's burgeoning market potential.
In the bioinformatics services market, sequencing services represent a critical segment, driven by the increasing adoption of next-generation sequencing (NGS) technologies. These services are essential for the analysis of vast genomic data, enabling researchers to decipher genetic information with unprecedented speed and accuracy. The growing application of sequencing services in personalized medicine, agricultural biotechnology, and infectious disease research is further propelling this segment's growth. As sequencing technologies continue to evolve, there is a substantial demand for bioinformatics services that can efficiently process and interpret the large volumes of data generated, ensuring the segment's robust expansion in the coming years.
Data analysis services form another significant component of the bioinformatics services m
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Forensic Genetics Bioinformatics Market report segments the industry into By Application (Criminal Investigation, Paternity Testing, Disaster Victim Identification, Others), By Technology (DNA Sequencing, Data Analysis Software, Bioinformatics Tools), By End User (Forensic Laboratories, Law Enforcement Agencies, Research Institutes), and Geography (North America, Europe, Asia-Pacific, Middle East and Africa, South America).
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global bioinformatics software market size was valued at approximately USD 10 billion in 2023, and it is projected to reach around USD 25 billion by 2032, growing at a robust CAGR of 11% during the forecast period. This remarkable growth is fueled by the increased application of bioinformatics in drug discovery and development, the rising demand for personalized medicine, and the ongoing advancements in sequencing technologies. The convergence of biology and information technology has led to the optimization of biological data management, propelling the market's expansion as it transforms the landscape of biotechnology and pharmaceutical research. The rapid integration of artificial intelligence and machine learning techniques to process complex biological data further accentuates the growth trajectory of this market.
An essential growth factor for the bioinformatics software market is the burgeoning demand for sequencing technologies. The decreasing cost of sequencing has led to a massive increase in the volume of genomic data generated, necessitating advanced software solutions to manage and interpret this data efficiently. This demand is particularly evident in genomics and proteomics, where bioinformatics software plays a critical role in analyzing and visualizing large datasets. Additionally, the adoption of cloud computing in bioinformatics offers scalable resources and cost-effective solutions for data storage and processing, further fueling market growth. The increasing collaboration between research institutions and software companies to develop innovative bioinformatics tools is also contributing positively to market expansion.
Another significant driver is the growth of personalized medicine, which relies heavily on bioinformatics for the analysis of individual genetic information to tailor therapeutic strategies. As healthcare systems worldwide move towards precision medicine, the demand for bioinformatics software that can integrate genetic, phenotypic, and environmental data becomes more pronounced. This trend is not only transforming patient care but also significantly impacting drug development processes, as pharmaceutical companies aim to create more effective and targeted therapies. The strategic partnerships and collaborations between biotech firms and bioinformatics software providers are critical in advancing personalized medicine and enhancing patient outcomes.
The increasing prevalence of complex diseases such as cancer and neurological disorders necessitates comprehensive research efforts, driving the need for robust bioinformatics software. These diseases require multi-omics approaches for better understanding, diagnosis, and treatment, where bioinformatics tools are indispensable. The ongoing research and development activities in this area, supported by government funding and private investments, are fostering innovation in bioinformatics solutions. Furthermore, the development of user-friendly and intuitive software interfaces is expanding the market beyond specialized research labs to include clinical settings and hospitals, broadening the potential user base and enhancing market penetration.
From a regional perspective, North America currently leads the bioinformatics software market, thanks to its advanced technological infrastructure, significant investment in healthcare R&D, and the presence of numerous key market players. The region accounted for the largest market share in 2023 and is expected to maintain its dominance throughout the forecast period. Meanwhile, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by increasing investments in biotechnology and pharmaceutical research, expanding healthcare infrastructure, and the rising adoption of bioinformatics in emerging economies like China and India. Europe's market growth is also significant, supported by substantial funding for genomic research and a strong focus on precision medicine initiatives.
Lifesciences Data Mining and Visualization are becoming increasingly vital in the bioinformatics software market. As the volume of biological data continues to grow exponentially, the need for sophisticated tools to mine and visualize this data is paramount. These tools enable researchers to uncover hidden patterns and insights from complex datasets, facilitating breakthroughs in genomics, proteomics, and other life sciences fields. The integration of advanced data mining techniques with visualization capabilities allows for a more intuitive
https://www.bccresearch.com/aboutus/terms-conditionshttps://www.bccresearch.com/aboutus/terms-conditions
The study provides a detailed analysis of the economic, technological and potential application of bioinformatics; it also examines the market factors and identifies the market potential through the year 2017. The study is aimed at the pharmaceutical industry, biotechnology firms, research laboratories and individuals interested in exploiting the commercial opportunities offered in this field.
https://www.techsciresearch.com/privacy-policy.aspxhttps://www.techsciresearch.com/privacy-policy.aspx
Global Bioinformatics Market Size, Share, Growth & Bioinformatics Market Analysis 2026 By Product & Services, By Applications, By Sectors, By Region, Competition, Forecast & Opportunities,
Pages | 185 |
Market Size | |
Forecast Market Size | |
CAGR | |
Fastest Growing Segment | |
Largest Market | |
Key Players |
Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically
The COVID-19 pandemic has shown that bioinformatics--a multidisciplinary field that combines biological knowledge with computer programming concerned with the acquisition, storage, analysis, and dissemination of biological data--has a fundamental role in scientific research strategies in all disciplines involved in fighting the virus and its variants. It aids in sequencing and annotating genomes and their observed mutations; analyzing gene and protein expression; simulation and modeling of DNA, RNA, proteins and biomolecular interactions; and mining of biological literature, among many other critical areas of research. Studies suggest that bioinformatics skills in the Latin American and Caribbean region are relatively incipient, and thus its scientific systems cannot take full advantage of the increasing availability of bioinformatic tools and data. This dataset is a catalog of bioinformatics software for researchers and professionals working in life sciences. It includes more than 300 different tools for varied uses, such as data analysis, visualization, repositories and databases, data storage services, scientific communication, marketplace and collaboration, and lab resource management. Most tools are available as web-based or desktop applications, while others are programming libraries. It also includes 10 suggested entries for other third-party repositories that could be of use.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Computational Biology Industry market was valued at USD XX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 13.33% during the forecast period. The computational biology industry is booming, driven by the growth in volumes of biological data generated by advancing genomics, proteomics, and systems biology. It involves an interdisciplinary approach that links biology, computer science, and mathematics to analyze complicated biological systems and processes-deemed indispensable for drug discovery, personalized medicine, and agricultural biotechnology. The rising incidence of chronic diseases necessitates targeted therapies and precise diagnostics, thereby becoming a key driver for market growth. The tools of computational biology, which include bioinformatics software, machine learning algorithms, and modeling simulations, enable the extraction of meaningful insights from vast datasets, accelerating the pace of scientific discovery. Technological advancements are further enhancing the functionality of computational biology. The way biological data is interpreted in terms of analysis is undergoing a fundamental shift with AI and machine learning being increasingly integrated in data analysis. Moreover, cloud computing makes it easy for researchers to share data as well as collaborate, making innovation in this field flourish. Geographical center, North America, strong existence of research institutions, biotechnology firms, and investments by funding in life sciences research. Asia-Pacific is emerging, with increased investments in the healthcare and biotechnology sectors and growing importance of personalized medicine. Essentially, the overall industry of computational biology would seem to have excellent chances for sustained expansion based on the further advancing nature of technology, be it a need to gain a clearer sense of incredible data sizes or the overall emphasis to expand focus around precision health solutions. Biological science continually advancing, through computation will unlock new sights, it will be driving an innovation engine across every single domain of healthcare delivery services. Recent developments include: February 2023: The Centre for Development of Advanced Computing (C-DAC) launched two software tools critical for research in life sciences. Integrated Computing Environment, one of the products, is an indigenous cloud-based genomics computational facility for bioinformatics that integrates ICE-cube, a hardware infrastructure, and ICE flakes. This software will help securely store and analyze petascale to exascale genomics data., January 2023: Insilico Medicine, a clinical-stage, end-to-end artificial intelligence (AI)-driven drug discovery company, launched the 6th generation Intelligent Robotics Lab to accelerate its AI-driven drug discovery. The fully automated AI-powered robotics laboratory performs target discovery, compound screening, precision medicine development, and translational research.. Key drivers for this market are: Increase in Bioinformatics Research, Increasing Number of Clinical Studies in Pharmacogenomics and Pharmacokinetics; Growth of Drug Designing and Disease Modeling. Potential restraints include: Lack of Trained Professionals. Notable trends are: Industry and Commercials Sub-segment is Expected to hold its Highest Market Share in the End User Segment.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Computational Biology Platform market, currently valued at $218 million in 2025, is projected to experience robust growth, driven by the increasing adoption of cloud-based solutions and the rising need for advanced data analysis in drug discovery, genomics research, and personalized medicine. The market's Compound Annual Growth Rate (CAGR) of 4.9% from 2025 to 2033 indicates a steady expansion, fueled by factors such as decreasing sequencing costs, the exponential growth of biological data, and the increasing sophistication of bioinformatics tools. Large enterprises, particularly pharmaceutical companies and biotechnology firms, are the primary adopters of these platforms, leveraging them for faster drug development and more efficient clinical trials. However, the market also sees significant traction from Small and Medium Enterprises (SMEs) adopting cloud-based solutions for cost-effectiveness and scalability. The preference for cloud-based solutions over on-premises deployments reflects a broader trend toward accessibility, collaboration, and reduced infrastructure management burden. While data security and privacy concerns represent a potential restraint, ongoing advancements in data encryption and compliance regulations are mitigating this risk. The market is geographically diversified, with North America currently holding a substantial market share, but significant growth potential exists in regions like Asia-Pacific, driven by increasing research investment and the rising number of genomics research centers. The competitive landscape is dynamic, featuring both established players like Illumina and newer entrants offering specialized platforms. The success of individual companies will depend on their ability to innovate, adapt to evolving technological advancements, provide robust data security measures, and offer seamless integration with existing research workflows. The continuous development of artificial intelligence (AI) and machine learning (ML) algorithms within these platforms is further accelerating market growth, enabling more accurate predictions, advanced pattern recognition, and improved insights from complex biological data. This technological advancement enhances the platform's effectiveness in accelerating research, drug development processes, and personalized medicine initiatives. The expanding applications of computational biology across various scientific fields are likely to sustain the market’s positive trajectory in the foreseeable future.
https://meditechinsights.com/privacy-policy/https://meditechinsights.com/privacy-policy/
The Global Bioinformatics Market is expected to grow at a rate of 13-14% by 2029. The rising government initiatives and funding for genomics research, increasing applications of bioinformatics in drug discovery and development, and advancements in sequencing technology are some of the key factors driving the global bioinformatics market. To learn more about the research […]
https://www.polarismarketresearch.com/privacy-policyhttps://www.polarismarketresearch.com/privacy-policy
Bioinformatics Services Market will grow from USD 4,399.58 Million to USD 16,297.10 Million by 2034, showing an impressive CAGR of 15.7%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundHealth sciences research is increasingly focusing on big data applications, such as genomic technologies and precision medicine, to address key issues in human health. These approaches rely on biological data repositories and bioinformatic analyses, both of which are growing rapidly in size and scope. Libraries play a key role in supporting researchers in navigating these and other information resources.MethodsWith the goal of supporting bioinformatics research in the health sciences, the University of Arizona Health Sciences Library established a Bioinformation program. To shape the support provided by the library, I developed and administered a needs assessment survey to the University of Arizona Health Sciences campus in Tucson, Arizona. The survey was designed to identify the training topics of interest to health sciences researchers and the preferred modes of training.ResultsSurvey respondents expressed an interest in a broad array of potential training topics, including "traditional" information seeking as well as interest in analytical training. Of particular interest were training in transcriptomic tools and the use of databases linking genotypes and phenotypes. Staff were most interested in bioinformatics training topics, while faculty were the least interested. Hands-on workshops were significantly preferred over any other mode of training. The University of Arizona Health Sciences Library is meeting those needs through internal programming and external partnerships.ConclusionThe results of the survey demonstrate a keen interest in a variety of bioinformatic resources; the challenge to the library is how to address those training needs. The mode of support depends largely on library staff expertise in the numerous subject-specific databases and tools. Librarian-led bioinformatic training sessions provide opportunities for engagement with researchers at multiple points of the research life cycle. When training needs exceed library capacity, partnering with intramural and extramural units will be crucial in library support of health sciences bioinformatic research.