100+ datasets found
  1. n

    Demographic data collection in STEM organizations

    • data.niaid.nih.gov
    • digitalcommons.chapman.edu
    • +3more
    zip
    Updated Mar 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    Chapman University
    University of Montana
    Harvard University
    University of California, Davis
    University of California, Berkeley
    Authors
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

    Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

    Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

  2. Data from: Survey: Open Science in Higher Education

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel (2024). Survey: Open Science in Higher Education [Dataset]. http://doi.org/10.5281/zenodo.400518
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Open Science in (Higher) Education – data of the February 2017 survey

    This data set contains:

    • Full raw (anonymised) data set (completed responses) of Open Science in (Higher) Education February 2017 survey. Data are in xlsx and sav format.
    • Survey questionnaires with variables and settings (German original and English translation) in pdf. The English questionnaire was not used in the February 2017 survey, but only serves as translation.
    • Readme file (txt)

    Survey structure

    The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).

    Demographic questions

    Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:

    • Natural Sciences
    • Arts and Humanities or Social Sciences
    • Economics
    • Law
    • Medicine
    • Computer Sciences, Engineering, Technics
    • Other

    The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:

    • Professor
    • Special education teacher
    • Academic/scientific assistant or research fellow (research and teaching)
    • Academic staff (teaching)
    • Student assistant
    • Other

    We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.

    Remark on OER question

    Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.

    Data collection

    The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.

    The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.

    Data clearance

    We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.

    Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).

    References

    Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.

    First results of the survey are presented in the poster:

    Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561

    Contact:

    Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.

    [1] https://www.limesurvey.org

    [2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.

  3. B

    Alberta Survey, 2012B

    • borealisdata.ca
    Updated Mar 2, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population Research Laboratory (2018). Alberta Survey, 2012B [Dataset]. http://doi.org/10.7939/DVN/10004
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 2, 2018
    Dataset provided by
    Borealis
    Authors
    Population Research Laboratory
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/7.1/customlicense?persistentId=doi:10.7939/DVN/10004https://borealisdata.ca/api/datasets/:persistentId/versions/7.1/customlicense?persistentId=doi:10.7939/DVN/10004

    Time period covered
    Jul 2012
    Area covered
    Canada, Alberta
    Description

    The Population Research Laboratory (PRL), a member of the Association of Academic Survey Research Organizations (AASRO), seeks to advance the research, education and service goals of the University of Alberta by helping academic researchers and policy makers design and implement applied social science research projects. The PRL specializes in the gathering, analysis, and presentation of data about demographic, social and public issues. The PRL research team provides expert consultation and implementation of quantitative and qualitative research methods, project design, sample design, web-based, paper-based and telephone surveys, field site testing, data analysis and report writing. The PRL follows scientifically rigorous and transparent methods in each phase of a research project. Research Coordinators are members of the American Association for Public Opinion Research (AAPOR) and use best practices when conducting all types of research. The PRL has particular expertise in conducting computer-assisted telephone interviews (referred to as CATI surveys). When conducting telephone surveys, all calls are displayed as being from the "U of A PRL", a procedure that assures recipients that the call is not from a telemarketer, and thus helps increase response rates. The PRL maintains a complement of highly skilled telephone interviewers and supervisors who are thoroughly trained in FOIPP requirements, respondent selection procedures, questionnaire instructions, and neutral probing. A subset of interviewers are specially trained to convince otherwise reluctant respondents to participate in the study, a practice that increases response rates and lowers selection bias. PRL staff monitors data collection on a daily basis to allow any necessary adjustments to the volume and timing of calls and respondent selection criteria. The Population Research Laboratory (PRL) administered the 2012 Alberta Survey B. This survey of households across the province of Alberta continues to enable academic researchers, government departments, and non-profit organizations to explore a wide range of topics in a structured research framework and environment. Sponsors' research questions are asked together with demographic questions in a telephone interview of Alberta households. This data consists of the information from 1207 Alberta residence, interviewed between June 5, 2012 and June 27, 2012. The amount of responses indicates that the response rate, as calculated percentages representing the number of people who participated in the survey divided by the number selected in the eligible sample, was 27.6% for survey B. The subject ares included in the 2012 Alberta Survey B includes socio-demographic and background variables such as: household composition, age, gender, marital status, highest level of education, household income, religion, ethnic background, place of birth, employment status, home ownership, political party support and perceptions of financial status. In addition, the topics of public health and injury control, tobacco reduction, activity limitations and personal directives, unions, politics and health.

  4. N

    Weston, OR Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Weston, OR Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/weston-or-population-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Weston
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Weston by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Weston. The dataset can be utilized to understand the population distribution of Weston by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Weston. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Weston.

    Key observations

    Largest age group (population): Male # 55-59 years (36) | Female # 55-59 years (28). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Weston population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Weston is shown in the following column.
    • Population (Female): The female population in the Weston is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Weston for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Weston Population by Gender. You can refer the same here

  5. i

    Demographic and Health Survey 1987 - Thailand

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://catalog.ihsn.org/catalog/2489
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  6. N

    Weston, OR Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Weston, OR Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/weston-or-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Weston
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Weston by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Weston across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 51.46% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Weston is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Weston total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Weston Population by Race & Ethnicity. You can refer the same here

  7. f

    Demographic Profile of Participants.pdf

    • figshare.com
    pdf
    Updated Jan 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Victoria Sefah (2024). Demographic Profile of Participants.pdf [Dataset]. http://doi.org/10.6084/m9.figshare.24953595.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 6, 2024
    Dataset provided by
    figshare
    Authors
    Victoria Sefah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a data collected for the research topic; EXPLORING THE PHYSICAL WELL-BEING OF BREAST CANCER PATIENTS IN KUMASI METROPOLIS: A QUALITATIVE STUDY.

  8. Demographic and Health Survey 2022 - Nepal

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health and Population (MoHP) (2023). Demographic and Health Survey 2022 - Nepal [Dataset]. https://microdata.worldbank.org/index.php/catalog/5910
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset provided by
    Ministry of Health & Population of Nepalhttp://mohp.gov.np/
    Authors
    Ministry of Health and Population (MoHP)
    Time period covered
    2022
    Area covered
    Nepal
    Description

    Abstract

    The 2022 Nepal Demographic and Health Survey (NDHS) is the sixth survey of its kind implemented in the country as part of the worldwide Demographic and Health Surveys (DHS) Program. It was implemented by New ERA under the aegis of the Ministry of Health and Population (MoHP) of the Government of Nepal with the objective of providing reliable, accurate, and up-to-date data for the country.

    The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2022 NDHS collected information on fertility, marriage, family planning, breastfeeding practices, nutrition, food insecurity, maternal and child health, childhood mortality, awareness and behavior regarding HIV/AIDS and other sexually transmitted infections (STIs), women’s empowerment, domestic violence, fistula, mental health, accident and injury, disability, and other healthrelated issues such as smoking, knowledge of tuberculosis, and prevalence of hypertension.

    The information collected through the 2022 NDHS is intended to assist policymakers and program managers in evaluating and designing programs and strategies for improving the health of Nepal’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nepal.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men ageed 15-49, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2022 NDHS is an updated version of the frame from the 2011 Nepal Population and Housing Census (NPHC) provided by the National Statistical Office. The 2022 NDHS considered wards from the 2011 census as sub-wards, the smallest administrative unit for the survey. The census frame includes a complete list of Nepal’s 36,020 sub-wards. Each sub-ward has a residence type (urban or rural), and the measure of size is the number of households.

    In September 2015, Nepal’s Constituent Assembly declared changes in the administrative units and reclassified urban and rural areas in the country. Nepal is divided into seven provinces: Koshi Province, Madhesh Province, Bagmati Province, Gandaki Province, Lumbini Province, Karnali Province, and Sudurpashchim Province. Provinces are divided into districts, districts into municipalities, and municipalities into wards. Nepal has 77 districts comprising a total of 753 (local-level) municipalities. Of the municipalities, 293 are urban and 460 are rural.

    Originally, the 2011 NPHC included 58 urban municipalities. This number increased to 217 as of 2015. On March 10, 2017, structural changes were made in the classification system for urban (Nagarpalika) and rural (Gaonpalika) locations. Nepal currently has 293 Nagarpalika, with 65% of the population living in these urban areas. The 2022 NDHS used this updated urban-rural classification system. The survey sample is a stratified sample selected in two stages. Stratification was achieved by dividing each of the seven provinces into urban and rural areas that together formed the sampling stratum for that province. A total of 14 sampling strata were created in this way. Implicit stratification with proportional allocation was achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at the different levels, and by using a probability-proportional-to-size selection at the first stage of sampling. In the first stage of sampling, 476 primary sampling units (PSUs) were selected with probability proportional to PSU size and with independent selection in each sampling stratum within the sample allocation. Among the 476 PSUs, 248 were from urban areas and 228 from rural areas. A household listing operation was carried out in all of the selected PSUs before the main survey. The resulting list of households served as the sampling frame for the selection of sample households in the second stage. Thirty households were selected from each cluster, for a total sample size of 14,280 households. Of these households, 7,440 were in urban areas and 6,840 were in rural areas. Some of the selected sub-wards were found to be overly large during the household listing operation. Selected sub-wards with an estimated number of households greater than 300 were segmented. Only one segment was selected for the survey with probability proportional to segment size.

    For further details on sample design, see APPENDIX A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four questionnaires were used in the 2022 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Nepal. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.

    Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Nepali, Maithili, and Bhojpuri. The Household, Woman’s, and Man’s Questionnaires were programmed into tablet computers to facilitate computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the three languages for each questionnaire. The Biomarker Questionnaire was completed on paper during data collection and then entered in the CAPI system.

    Cleaning operations

    Data capture for the 2022 NDHS was carried out with Microsoft Surface Go 2 tablets running Windows 10.1. Software was prepared for the survey using CSPro. The processing of the 2022 NDHS data began shortly after the fieldwork started. When data collection was completed in each cluster, the electronic data files were transferred via the Internet File Streaming System (IFSS) to the New ERA central office in Kathmandu. The data files were registered and checked for inconsistencies, incompleteness, and outliers. Errors and inconsistencies were immediately communicated to the field teams for review so that problems would be mitigated going forward. Secondary editing, carried out in the central office at New ERA, involved resolving inconsistencies and coding the open-ended questions. The New ERA senior data processor coordinated the exercise at the central office. The NDHS core team members assisted with the secondary editing. The paper Biomarker Questionnaires were compared with the electronic data file to check for any inconsistencies in data entry. The pictures of vaccination cards that were captured during data collection were verified with the data entered. Data processing and editing were carried out using the CSPro software package. The concurrent data collection and processing offered a distinct advantage because it maximized the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed by July 2022, and the final cleaning of the data set was completed by the end of August.

    Response rate

    A total of 14,243 households were selected for the sample, of which 13,833 were found to be occupied. Of the occupied households, 13,786 were successfully interviewed, yielding a response rate of more than 99%. In the interviewed households, 15,238 women age 15-49 were identified as eligible for individual interviews. Interviews were completed with 14,845 women, yielding a response rate of 97%. In the subsample of households selected for the men’s survey, 5,185 men age 15-49 were identified as eligible for individual interviews and 4,913 were successfully interviewed, yielding a response rate of 95%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors result from mistakes made in implementing data collection and in data processing, such as failing to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and entering the data incorrectly. Although numerous efforts were made during the implementation of the 2022 Nepal Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected sample size. Each of these samples would yield results that differ somewhat from the results of the selected sample. Sampling errors are a measure of the variability among all possible samples. Although the exact degree of variability is unknown, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, and so on), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the

  9. w

    Demographic and Health Survey 2022 - Bangladesh

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitra and Associates (2024). Demographic and Health Survey 2022 - Bangladesh [Dataset]. https://microdata.worldbank.org/index.php/catalog/6290
    Explore at:
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    Mitra and Associates
    Time period covered
    2022
    Area covered
    Bangladesh
    Description

    Abstract

    The 2022 Bangladesh Demographic and Health Survey (2022 BDHS) is the ninth national survey to report on the demographic and health conditions of women and their families in Bangladesh. The survey was conducted under the authority of the National Institute of Population Research and Training (NIPORT), Medical Education and Family Welfare Division, Ministry of Health and Family Welfare (MOHFW), Government of Bangladesh.

    The primary objective of the 2022 BDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the BDHS collected information on: • Fertility and childhood mortality levels • Fertility preferences • Awareness, approval, and use of family planning methods • Maternal and child health, including breastfeeding practices • Nutrition levels • Newborn care

    The information collected through the 2022 BDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the population of Bangladesh. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Bangladesh.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2022 BDHS is the Integrated Multi-Purpose Sampling Master Sample, selected from a complete list of enumeration areas (EAs) covering the whole country. It was prepared by the Bangladesh Bureau of Statistics (BBS) for the 2011 population census of the People’s Republic of Bangladesh. The sampling frame contains information on EA location, type of residence (city corporation, other than city corporation, or rural), and the estimated number of residential households. A sketch map that delineates geographic boundaries is available for each EA.

    Bangladesh contains eight administrative divisions: Barishal, Chattogram, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur, and Sylhet. Each division is divided into zilas and each zila into upazilas. Each urban area in an upazila is divided into wards, which are further subdivided into mohallas. A rural area in an upazila is divided into union parishads (UPs) and, within UPs, into mouzas. These administrative divisions allow the country to be separated into rural and urban areas.

    The survey is based on a two-stage stratified sample of households. In the first stage, 675 EAs (237 in urban areas and 438 in rural areas) were selected with probability proportional to EA size. The BBS drew the sample in the first stage following specifications provided by ICF. A complete household listing operation was then carried out by Mitra and Associates in all selected EAs to provide a sampling frame for the second-stage selection of households.

    In the second stage of sampling, a systematic sample of an average of 45 households per EA was selected to provide statistically reliable estimates of key demographic and health variables for urban and rural areas separately and for each of the eight divisions in Bangladesh.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four types of questionnaires were used for the 2022 BDHS: the Household Questionnaire, the Woman’s Questionnaire (completed by ever-married women age 15–49), the Biomarker Questionnaire, and two verbal autopsy questionnaires. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect population and health issues relevant to Bangladesh. In addition, a selfadministered Fieldworker Questionnaire collected information about the survey’s fieldworkers. The questionnaires were adapted for use in Bangladesh after a series of meetings with a Technical Working Group (TWG). The questionnaires were developed in English and then translated to and printed in Bangla.

    Cleaning operations

    The survey data were collected using tablet PCs running Windows 10.1 and Census and Survey Processing System (CSPro) software, jointly developed by the United States Census Bureau, ICF, and Serpro S.A. The Bangla language questionnaire was used for collecting data via computer-assisted personal interviewing (CAPI). The CAPI program accepted only valid responses, automatically performed checks on ranges of values, skipped to the appropriate question based on the responses given, and checked the consistency of the data collected. Answers to the survey questions were entered into the PC tablets by each interviewer. Supervisors downloaded interview data to their computer, checked the data for completeness, and monitored fieldwork progress

    Each day, after completion of interviews, field supervisors submitted data to the servers. Data were sent to the central office via the internet or other modes of telecommunication allowing electronic transfer of files. The data processing manager monitored the quality of the data received and downloaded completed files into the system. ICF provided the CSPro software for data processing and offered technical assistance in preparation of the data editing programs. Secondary editing was conducted simultaneously with data collection. All technical support for data processing and use of PC tablets was provided by ICF.

  10. B

    Alberta Survey, 2013

    • borealisdata.ca
    Updated Mar 2, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population Research Laboratory (2018). Alberta Survey, 2013 [Dataset]. http://doi.org/10.7939/DVN/10573
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 2, 2018
    Dataset provided by
    Borealis
    Authors
    Population Research Laboratory
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7939/DVN/10573https://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7939/DVN/10573

    Time period covered
    Jun 2013 - Jul 2013
    Area covered
    Alberta, Canada
    Description

    The Population Research Laboratory (PRL) administered the 2013 Alberta Survey. This survey of households across the province of Alberta continues to enable academic researchers, government departments, and non-profit organizations to explore a wide range of topics in a structured research framework and environment. Sponsors’ research questions are asked together with demographic questions in a telephone interview of Alberta households.

  11. N

    China, Maine Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). China, Maine Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/d02c99d7-c980-11ee-9145-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, Maine
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of China town by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of China town across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 50.47% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the China town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of China town total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China town Population by Race & Ethnicity. You can refer the same here

  12. B

    Alberta Survey, 2007

    • borealisdata.ca
    Updated Mar 2, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population Research Laboratory (2018). Alberta Survey, 2007 [Dataset]. http://doi.org/10.7939/DVN/10570
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 2, 2018
    Dataset provided by
    Borealis
    Authors
    Population Research Laboratory
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7939/DVN/10570https://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7939/DVN/10570

    Time period covered
    Apr 2007 - Jun 2007
    Area covered
    Canada, Alberta
    Description

    The 2007 Alberta Survey (AS) is the 19th annual provincial survey administered by the Population Research Laboratory (PRL). This omnibus survey of households in the province of Alberta continues to enable academic researchers, government departments, and non-profit organizations to explore a wide range of research topics in a structured research framework and environment. Sponsors’ research questions are asked together with demographic questions in a telephone interview of Alberta households.

  13. N

    Adelanto, CA Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Adelanto, CA Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/65ecf345-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California, Adelanto
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Adelanto by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Adelanto. The dataset can be utilized to understand the population distribution of Adelanto by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Adelanto. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Adelanto.

    Key observations

    Largest age group (population): Male # 0-4 years (2,026) | Female # 10-14 years (2,041). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Adelanto population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Adelanto is shown in the following column.
    • Population (Female): The female population in the Adelanto is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Adelanto for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Adelanto Population by Gender. You can refer the same here

  14. N

    Chandler, IN Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Chandler, IN Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/chandler-in-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Chandler, IN
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Chandler by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Chandler. The dataset can be utilized to understand the population distribution of Chandler by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Chandler. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Chandler.

    Key observations

    Largest age group (population): Male # 45-49 years (410) | Female # 40-44 years (263). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Chandler population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Chandler is shown in the following column.
    • Population (Female): The female population in the Chandler is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Chandler for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Chandler Population by Gender. You can refer the same here

  15. N

    York, NE Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). York, NE Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/york-ne-population-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    York, Nebraska
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of York by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for York. The dataset can be utilized to understand the population distribution of York by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in York. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for York.

    Key observations

    Largest age group (population): Male # 15-19 years (423) | Female # 20-24 years (345). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the York population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the York is shown in the following column.
    • Population (Female): The female population in the York is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in York for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for York Population by Gender. You can refer the same here

  16. N

    Powers, OR Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Powers, OR Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/powers-or-population-by-gender/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Powers, OR
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Powers by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Powers. The dataset can be utilized to understand the population distribution of Powers by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Powers. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Powers.

    Key observations

    Largest age group (population): Male # 85+ years (40) | Female # 35-39 years (67). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Powers population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Powers is shown in the following column.
    • Population (Female): The female population in the Powers is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Powers for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Powers Population by Gender. You can refer the same here

  17. N

    New Site, AL Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). New Site, AL Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/new-site-al-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alabama, New Site
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of New Site by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for New Site. The dataset can be utilized to understand the population distribution of New Site by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in New Site. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for New Site.

    Key observations

    Largest age group (population): Male # 75-79 years (64) | Female # 30-34 years (35). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the New Site population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the New Site is shown in the following column.
    • Population (Female): The female population in the New Site is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in New Site for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for New Site Population by Gender. You can refer the same here

  18. N

    Wood County, OH Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Wood County, OH Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/wood-county-oh-population-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ohio, Wood County
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Wood County by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Wood County. The dataset can be utilized to understand the population distribution of Wood County by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Wood County. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Wood County.

    Key observations

    Largest age group (population): Male # 20-24 years (7,702) | Female # 20-24 years (7,538). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Wood County population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Wood County is shown in the following column.
    • Population (Female): The female population in the Wood County is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Wood County for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Wood County Population by Gender. You can refer the same here

  19. N

    Chandler, IN Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Chandler, IN Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/chandler-in-population-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    IN, Chandler
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Chandler by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Chandler across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 50.42% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Chandler is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Chandler total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Chandler Population by Race & Ethnicity. You can refer the same here

  20. N

    College Springs, IA Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). College Springs, IA Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b2297cea-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    College Springs, Iowa
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of College Springs by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of College Springs across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a majority of male population, with 56.68% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the College Springs is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of College Springs total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for College Springs Population by Race & Ethnicity. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K

Demographic data collection in STEM organizations

Explore at:
zipAvailable download formats
Dataset updated
Mar 9, 2022
Dataset provided by
Chapman University
University of Montana
Harvard University
University of California, Davis
University of California, Berkeley
Authors
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
License

https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

Description

Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

Search
Clear search
Close search
Google apps
Main menu