100+ datasets found
  1. Sales data based on demographics

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Sales data based on demographics [Dataset]. https://www.kaggle.com/datasets/thedevastator/demographical-shopping-purchases-data
    Explore at:
    zip(1541029 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    The Devastator
    Description

    Demographical Shopping Purchases Data

    Analyzing customer purchasing patterns and preferences

    By Joseph Nowicki [source]

    About this dataset

    This dataset contains demographic information about customers who have made purchases in a store, including their name, IP address, region, age, items purchased, and total amount spent. Furthermore, this data can provide insights into customer shopping behaviour for the store in question - from their geographical information to the types of products they purchase. With detailed demographic data like this at hand it is possible to make strategic decisions regarding target customers as well as developing specific marketing campaigns or promotions tailored to meet their needs and interests. By gaining deeper understanding of customer habits through this dataset we unlock more possibilities for businesses seeking higher engagement levels with shoppers

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset includes information such as customer's names, IP address, age, items purchased and amount spent. This data can be used to uncover patterns in spending behavior of shoppers from different areas or regions across demographics like age group or gender.

    Research Ideas

    • Analyze customer shopping trends based on age and region to maximize targetted advertising.
    • Analyze the correlation between customer spending habits based on store versus online behavior.
    • Use IP addresses to track geographical trends in items purchased from a particular online store to identify new markets for targeted expansion

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: Demographic_Data_Orig.csv | Column name | Description | |:---------------|:------------------------------------------------------------------------------------------------| | full.name | The full name of the customer. (String) | | ip.address | The IP address of the customer. (String) | | region | The region of residence of the customer. (String) | | in.store | A boolean value indicating whether the customer made the purchase in-store or online. (Boolean) | | age | The age of the customer. (Integer) | | items | The number of items purchased by the customer. (Integer) | | amount | The total amount spent by the customer. (Float) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Joseph Nowicki.

  2. Retail Data | Retail Sector in North America | Comprehensive Contact...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Retail Data | Retail Sector in North America | Comprehensive Contact Profiles | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/retail-data-retail-sector-in-north-america-comprehensive-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    United States
    Description

    Success.ai’s Retail Data for the Retail Sector in North America offers a comprehensive dataset designed to connect businesses with key players across the diverse retail industry. Covering everything from department stores and supermarkets to specialty shops and e-commerce platforms, this dataset provides verified contact details, business locations, and leadership profiles for retail companies in the United States, Canada, and Mexico.

    With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach, marketing, and business development efforts are powered by accurate, continuously updated, and AI-validated data.

    Backed by our Best Price Guarantee, this solution empowers businesses to thrive in North America’s competitive retail landscape.

    Why Choose Success.ai’s Retail Data for North America?

    1. Verified Contact Data for Precision Outreach

      • Access verified phone numbers, work emails, and LinkedIn profiles of retail executives, store managers, and decision-makers.
      • AI-driven validation ensures 99% accuracy, enabling confident communication and efficient campaign execution.
    2. Comprehensive Coverage Across Retail Segments

      • Includes profiles of retail businesses across major markets, from large department stores and grocery chains to boutique retailers and online platforms.
      • Gain insights into the operational dynamics of retail hubs in cities such as New York, Los Angeles, Toronto, and Mexico City.
    3. Continuously Updated Datasets

      • Real-time updates reflect leadership changes, new store openings, market expansions, and shifts in consumer preferences.
      • Stay aligned with evolving industry trends and emerging opportunities in the North American retail sector.
    4. Ethical and Compliant

      • Adheres to GDPR, CCPA, and other privacy regulations, ensuring responsible and lawful use of data in your campaigns.

    Data Highlights:

    • 170M+ Verified Professional Profiles: Engage with executives, marketing directors, and operations managers across the North American retail sector.
    • 30M Company Profiles: Access firmographic data, including revenue ranges, store counts, and geographic footprints.
    • Store Location Data: Pinpoint retail outlets, regional offices, and distribution centers to refine supply chain and marketing strategies.
    • Leadership Contact Details: Connect with CEOs, CMOs, and procurement officers influencing retail operations and vendor selections.

    Key Features of the Dataset:

    1. Retail Decision-Maker Profiles

      • Identify and engage with store owners, category managers, and marketing directors shaping customer experiences and product strategies.
      • Target professionals responsible for inventory planning, vendor contracts, and store performance.
    2. Advanced Filters for Precision Targeting

      • Filter companies by industry segment (luxury, grocery, e-commerce), geographic location, company size, or revenue range.
      • Tailor outreach to align with regional market trends, customer demographics, and operational priorities.
    3. Market Trends and Operational Insights

      • Analyze trends such as online shopping growth, sustainability practices, and supply chain optimization.
      • Leverage insights to refine product offerings, identify partnership opportunities, and design effective campaigns.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data enable personalized messaging, highlight unique value propositions, and enhance engagement outcomes.

    Strategic Use Cases:

    1. Sales and Lead Generation

      • Present products, services, or technology solutions to retail procurement teams, marketing departments, and operations managers.
      • Build relationships with retailers seeking innovative tools, efficient supply chain solutions, or unique product offerings.
    2. Market Research and Consumer Insights

      • Analyze retail trends, customer behaviors, and seasonal demands to inform marketing strategies and product launches.
      • Benchmark against competitors to identify gaps, emerging niches, and growth opportunities.
    3. E-Commerce and Digital Strategy Development

      • Target e-commerce managers and digital transformation teams driving online retail initiatives and omnichannel integration.
      • Offer solutions to enhance online shopping experiences, logistics, and customer loyalty programs.
    4. Recruitment and Workforce Solutions

      • Engage HR professionals and hiring managers in recruiting talent for store operations, customer service, or marketing roles.
      • Provide workforce optimization tools, training platforms, or staffing services tailored to retail environments.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality retail data at competitive prices, ensuring strong ROI for your marketing and outreach efforts in North America.
    2. Seamless Integration
      ...

  3. Customer Segmentation for a Retail Business

    • kaggle.com
    zip
    Updated Mar 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    richmond abake (2023). Customer Segmentation for a Retail Business [Dataset]. https://www.kaggle.com/datasets/richmondabake/customer-segmentation-for-a-retail-business
    Explore at:
    zip(93614 bytes)Available download formats
    Dataset updated
    Mar 18, 2023
    Authors
    richmond abake
    Description

    This is a project that seeks to analyse customer purchase trends and behaviour over a period of time from a retail shop in order to properly segment them for better customer experience and to properly meet their needs with ease.

  4. Retail Personalization Dataset

    • kaggle.com
    zip
    Updated Aug 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Retail Personalization Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/retail-personalization-dataset
    Explore at:
    zip(5109647 bytes)Available download formats
    Dataset updated
    Aug 14, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains 150,000 retail interaction records representing customer journeys in both e-commerce and in-store environments. It captures detailed behavioral, demographic, and product-related information to support research in product sales history, customer demographics, purchase patterns, personalized shopping experiences, customer behavior analysis, and predictive modeling.

    Each row corresponds to a unique customer–product interaction, including session details, browsing or purchasing behavior, and applied discounts. The purchase column serves as the binary target variable (1 = purchased, 0 = not purchased), making the dataset suitable for various classification and recommendation tasks.

    Key Features

    Size: 150,000 rows × 19 columns

    Target Column: purchase (binary: 1 = purchased, 0 = not purchased)

    Data Types:

    Categorical: User ID, product ID, interaction type, device type, product category, brand, location, gender

    Numerical: Price, discount, age, loyalty score, previous purchase count, average purchase value

    Temporal: Timestamp (to study trends and patterns)

    Text: Search keywords

    Behavioral Data: Interaction type (view, click, add to cart, purchase), purchase history statistics

    Product Metadata: Category, brand, price, discount percentage

    User Demographics: Age, gender, loyalty score

    Applications:

    Retail personalization

    Purchase prediction

    Customer segmentation

    Behavioral pattern analysis

  5. D

    Shopper Demographics Analytics Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Shopper Demographics Analytics Market Research Report 2033 [Dataset]. https://dataintelo.com/report/shopper-demographics-analytics-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Shopper Demographics Analytics Market Outlook



    As per our latest research, the global shopper demographics analytics market size in 2024 is valued at USD 5.3 billion, with a robust CAGR of 14.7% projected through the forecast period. By 2033, the market is expected to reach USD 17.2 billion, reflecting the accelerating adoption of advanced analytics solutions in retail and related sectors. The primary growth driver is the increasing need for retailers and brands to understand and predict consumer behavior in an era characterized by omnichannel shopping and intense competition.




    The growth of the shopper demographics analytics market is significantly propelled by the retail sector’s digital transformation. Retailers are increasingly leveraging analytics to gain granular insights into customer demographics, preferences, and purchasing behavior. The integration of artificial intelligence (AI) and machine learning (ML) into analytics platforms has enabled businesses to process vast amounts of data in real time, offering actionable insights that drive personalized marketing and operational efficiency. As consumer expectations for tailored experiences continue to rise, retailers are investing heavily in shopper analytics to enhance customer engagement, improve inventory management, and optimize store layouts, further fueling market expansion.




    Another key growth factor is the proliferation of e-commerce and the corresponding surge in online data generation. E-commerce platforms are uniquely positioned to collect detailed demographic and behavioral data, which can be analyzed to segment customers, predict purchasing trends, and personalize marketing campaigns. The adoption of cloud-based analytics solutions has further democratized access to advanced analytics, allowing even small and medium-sized enterprises (SMEs) to harness the power of shopper demographics analytics. Moreover, the integration of analytics with customer relationship management (CRM) and point-of-sale (POS) systems has streamlined data collection and analysis, enabling businesses to respond swiftly to changing consumer preferences.




    The increasing focus on omnichannel retail strategies is also driving demand for shopper demographics analytics. Retailers are striving to provide a seamless shopping experience across physical stores, online platforms, and mobile applications. Analytics solutions help bridge the gap between different channels by offering a unified view of customer behavior, enabling businesses to deliver consistent and personalized experiences. The rise of smart stores and the deployment of Internet of Things (IoT) devices have further enriched the data ecosystem, providing real-time insights into foot traffic, dwell times, and purchase patterns. These advancements are expected to sustain the market’s high growth trajectory over the coming years.




    From a regional perspective, North America currently dominates the shopper demographics analytics market, owing to the presence of major technology providers and early adoption by leading retailers. However, the Asia Pacific region is witnessing the fastest growth, driven by rapid urbanization, expanding retail infrastructure, and increasing digital adoption among consumers. Europe also holds a significant market share, supported by strong regulatory frameworks and a mature retail sector. The Middle East & Africa and Latin America are emerging as promising markets, as retailers in these regions invest in analytics to stay competitive and cater to evolving consumer demands. These regional dynamics underscore the global relevance and growth potential of shopper demographics analytics.



    Component Analysis



    The shopper demographics analytics market by component is bifurcated into software and services, with software solutions representing the larger share in 2024. The software segment encompasses a wide range of analytics platforms, including proprietary and open-source solutions designed to collect, process, and visualize demographic data. These platforms leverage advanced technologies such as AI, ML, and big data analytics to deliver actionable insights in real time. The growing adoption of cloud-based analytics software has further accelerated market growth, enabling retailers to scale their analytics capabilities without significant upfront investment in IT infrastructure. The continuous evolution of analytics software, with features such as predictive modeling, data v

  6. d

    Demographic Data | USA & Canada | Latest Estimates & Projections To Inform...

    • datarade.ai
    .json, .csv
    Updated Jun 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). Demographic Data | USA & Canada | Latest Estimates & Projections To Inform Business Decisions | GIS Data | Map Data [Dataset]. https://datarade.ai/data-products/gapmaps-ags-usa-demographics-data-40k-variables-trusted-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jun 24, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Canada, United States
    Description

    GapMaps premium demographic data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.

    Demographic Data attributes include:

    Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.

    Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.

    Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.

    Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.

    Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.

    Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.

    Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.

    Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain

    Primary Use Cases for AGS Demographic Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic & segmentation profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular census block level using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)

    8. Network Planning

    9. Customer (Risk) Profiling for insurance/loan approvals

    10. Target Marketing

    11. Competitive Analysis

    12. Market Optimization

    13. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    14. Tenant Recruitment

    15. Target Marketing

    16. Market Potential / Gap Analysis

    17. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    18. Customer Profiling

    19. Target Marketing

    20. Market Share Analysis

  7. Demographic market segmentation of c-store customers United States 2019

    • statista.com
    Updated Mar 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Demographic market segmentation of c-store customers United States 2019 [Dataset]. https://www.statista.com/statistics/1104324/c-stores-urban-and-rural-appeal-united-states/
    Explore at:
    Dataset updated
    Mar 1, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    United States
    Description

    According to a survey conducted by CSP Magazine in 2019, ** percent of urban consumers stated that they are visiting convenience stores more often than they were two years ago, versus only ** percent of rural consumers and ** percent of suburban customers.

  8. w

    Global Customer Loyalty in Retail Market Research Report: By Program Type...

    • wiseguyreports.com
    Updated Oct 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Customer Loyalty in Retail Market Research Report: By Program Type (Points-Based Programs, Tiered Programs, Paid Programs, Coalition Programs), By Customer Demographics (Age, Income Level, Gender, Geographic Distribution), By Industry (Fashion Retail, Grocery Retail, Consumer Electronics, Health and Beauty), By Engagement Channel (Mobile Apps, Web Platforms, In-Store Experiences, Email Marketing) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/customer-loyalty-in-retail-market
    Explore at:
    Dataset updated
    Oct 12, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 202450.6(USD Billion)
    MARKET SIZE 202552.5(USD Billion)
    MARKET SIZE 203575.0(USD Billion)
    SEGMENTS COVEREDProgram Type, Customer Demographics, Industry, Engagement Channel, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSRising consumer expectations, Increased competition, Technological advancements, Data-driven insights, Personalization and engagement
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDKroger, Best Buy, Starbucks, Walgreens Boots Alliance, CVS Health, Lowe's, Nordstrom, The Home Depot, Walmart, Target, Sephora, IKEA, Macy's, Nike, Amazon, Costco
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESPersonalized loyalty programs, Integration with mobile wallets, Expansion in e-commerce platforms, Data analytics for customer insights, Sustainable rewards and incentives
    COMPOUND ANNUAL GROWTH RATE (CAGR) 3.7% (2025 - 2035)
  9. Global Demographic data | Census Data for Marketing & Retail Analytics |...

    • datarade.ai
    .csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Global Demographic data | Census Data for Marketing & Retail Analytics | Consumer Demographic Data [Dataset]. https://datarade.ai/data-products/geopostcodes-population-data-demographic-data-55-year-spa-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Luxembourg, Sint Maarten (Dutch part), Ecuador, Tokelau, Romania, Rwanda, Western Sahara, Kosovo, Saint Martin (French part), South Georgia and the South Sandwich Islands
    Description

    A global database of Census Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.

    Leverage up-to-date census data with population trends for real estate, market research, audience targeting, and sales territory mapping.

    Self-hosted commercial demographic dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The global Census Data is standardized, unified, and ready to use.

    Use cases for the Global Census Database (Consumer Demographic Data)

    • Ad targeting

    • B2B Market Intelligence

    • Customer analytics

    • Real Estate Data Estimations

    • Marketing campaign analysis

    • Demand forecasting

    • Sales territory mapping

    • Retail site selection

    • Reporting

    • Audience targeting

    Census data export methodology

    Our consumer demographic data packages are offered in CSV format. All Demographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Product Features

    • Historical population data (55 years)

    • Changes in population density

    • Urbanization Patterns

    • Accurate at zip code and administrative level

    • Optimized for easy integration

    • Easy customization

    • Global coverage

    • Updated yearly

    • Standardized and reliable

    • Self-hosted delivery

    • Fully aggregated (ready to use)

    • Rich attributes

    Why do companies choose our demographic databases

    • Standardized and unified demographic data structure

    • Seamless integration in your system

    • Dedicated location data expert

    Note: Custom population data packages are available. Please submit a request via the above contact button for more details.

  10. Retail Sales Dataset

    • kaggle.com
    zip
    Updated Aug 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Talib (2023). Retail Sales Dataset [Dataset]. https://www.kaggle.com/datasets/mohammadtalib786/retail-sales-dataset/code
    Explore at:
    zip(11509 bytes)Available download formats
    Dataset updated
    Aug 22, 2023
    Authors
    Mohammad Talib
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Welcome to the Retail Sales and Customer Demographics Dataset! This synthetic dataset has been meticulously crafted to simulate a dynamic retail environment, providing an ideal playground for those eager to sharpen their data analysis skills through exploratory data analysis (EDA). With a focus on retail sales and customer characteristics, this dataset invites you to unravel intricate patterns, draw insights, and gain a deeper understanding of customer behavior.

    ****Dataset Overview:**

    This dataset is a snapshot of a fictional retail landscape, capturing essential attributes that drive retail operations and customer interactions. It includes key details such as Transaction ID, Date, Customer ID, Gender, Age, Product Category, Quantity, Price per Unit, and Total Amount. These attributes enable a multifaceted exploration of sales trends, demographic influences, and purchasing behaviors.

    Why Explore This Dataset?

    • Realistic Representation: Though synthetic, the dataset mirrors real-world retail scenarios, allowing you to practice analysis within a familiar context.
    • Diverse Insights: From demographic insights to product preferences, the dataset offers a broad spectrum of factors to investigate.
    • Hypothesis Generation: As you perform EDA, you'll have the chance to formulate hypotheses that can guide further analysis and experimentation.
    • Applied Learning: Uncover actionable insights that retailers could use to enhance their strategies and customer experiences.

    Questions to Explore:

    • How does customer age and gender influence their purchasing behavior?
    • Are there discernible patterns in sales across different time periods?
    • Which product categories hold the highest appeal among customers?
    • What are the relationships between age, spending, and product preferences?
    • How do customers adapt their shopping habits during seasonal trends?
    • Are there distinct purchasing behaviors based on the number of items bought per transaction?
    • What insights can be gleaned from the distribution of product prices within each category?

    Your EDA Journey:

    Prepare to immerse yourself in a world of data-driven exploration. Through data visualization, statistical analysis, and correlation examination, you'll uncover the nuances that define retail operations and customer dynamics. EDA isn't just about numbers—it's about storytelling with data and extracting meaningful insights that can influence strategic decisions.

    Embrace the Retail Sales and Customer Demographics Dataset as your canvas for discovery. As you traverse the landscape of this synthetic retail environment, you'll refine your analytical skills, pose intriguing questions, and contribute to the ever-evolving narrative of the retail industry. Happy exploring!

  11. d

    Geodemographic Data | Asia/ MENA | Latest Estimates on Population, Consuming...

    • datarade.ai
    .json, .csv
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2025). Geodemographic Data | Asia/ MENA | Latest Estimates on Population, Consuming Class, Demographics, Retail Spend | GIS Data | Map Data [Dataset]. https://datarade.ai/data-products/gapmaps-premium-geodemographic-data-asia-mena-150m-x-150-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    GapMaps
    Area covered
    Saudi Arabia, Philippines, Singapore, Malaysia, Indonesia, India, Asia
    Description

    Sourcing accurate and up-to-date geodemographic data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.

    GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.

    With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:

    • Better understand your customers
    • Identify optimal locations to expand your retail footprint
    • Define sales territories for franchisees
    • Run targeted marketing campaigns.

    Premium geodemographics data for Asia and MENA includes the latest estimates (updated annually) on:

    1. Population (how many people live in your local catchment)
    2. Demographics (who lives within your local catchment)
    3. Worker population (how many people work within your local catchment)
    4. Consuming Class and Premium Consuming Class (who can can afford to buy goods & services beyond their basic needs and /or shop at premium retailers)
    5. Retail Spending (Food & Beverage, Grocery, Apparel, Other). How much are consumers spending on retail goods and services by category.

    Primary Use Cases for GapMaps Geodemographic Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular 150m x 150m grid levels using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    8. Tenant Recruitment

    9. Target Marketing

    10. Market Potential / Gap Analysis

    11. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    12. Customer Profiling

    13. Target Marketing

    14. Market Share Analysis

  12. w

    Global General Market Research Report: By Product Type (Consumer Goods,...

    • wiseguyreports.com
    Updated Oct 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global General Market Research Report: By Product Type (Consumer Goods, Industrial Goods, Services, Digital Products), By Distribution Channel (Online Retail, Physical Retail, Direct Sales, Distributors), By Customer Demographics (Age Group, Income Level, Gender, Occupation), By Purchase Behavior (Brand Loyalty, Price Sensitivity, Shopping Frequency, Review Influence) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/general-market
    Explore at:
    Dataset updated
    Oct 14, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20241931.6(USD Billion)
    MARKET SIZE 20252010.8(USD Billion)
    MARKET SIZE 20353000.0(USD Billion)
    SEGMENTS COVEREDProduct Type, Distribution Channel, Customer Demographics, Purchase Behavior, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSeconomic growth trends, consumer behavior shifts, technological advancements, regulatory changes, competitive landscape evolution
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDAmazon, ExxonMobil, Procter & Gamble, CocaCola, Samsung Electronics, Walmart, Microsoft, Tesla, Alphabet, Johnson & Johnson, Berkshire Hathaway, Intel, PepsiCo, Apple, IBM, Meta Platforms
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESDigital transformation acceleration, Sustainable product innovation, E-commerce market expansion, Remote work solutions growth, Health and wellness focus.
    COMPOUND ANNUAL GROWTH RATE (CAGR) 4.1% (2025 - 2035)
  13. w

    Global Kroger Customer Market Research Report: By Customer Demographics (Age...

    • wiseguyreports.com
    Updated Oct 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Kroger Customer Market Research Report: By Customer Demographics (Age Group, Income Level, Family Size, Gender), By Shopping Behavior (Frequency of Shopping, Preferred Shopping Channel, Product Purchase Patterns), By Product Preferences (Organic Products, Discounted Items, Brand Loyalty, Private Label Purchases), By Technology Adoption (Online Shopping, Mobile App Usage, Social Media Engagement) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/kroger-customer-market
    Explore at:
    Dataset updated
    Oct 12, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 202424.6(USD Billion)
    MARKET SIZE 202525.4(USD Billion)
    MARKET SIZE 203535.0(USD Billion)
    SEGMENTS COVEREDCustomer Demographics, Shopping Behavior, Product Preferences, Technology Adoption, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSconsumer preferences shift, competitive pricing strategies, technological integration, sustainability focus, e-commerce growth
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDMetro AG, Costco Wholesale, Walmart, Target, Whole Foods Market, Trader Joe's, Aldi, Tesco, Amazon, Lidl, Ahold Delhaize, Safeway
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESE-commerce expansion for grocery delivery, Health and wellness product lines, Sustainable packaging initiatives, Personalized shopping experiences, Loyalty program enhancements
    COMPOUND ANNUAL GROWTH RATE (CAGR) 3.2% (2025 - 2035)
  14. Data usage in consumer products and retail industry 2020

    • statista.com
    Updated May 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Data usage in consumer products and retail industry 2020 [Dataset]. https://www.statista.com/statistics/1262066/data-usage-in-consumer-products-and-retail-industry/
    Explore at:
    Dataset updated
    May 15, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2020
    Area covered
    Worldwide
    Description

    A global survey from Capgemini showed that retail companies were lagging behind consumer products enterprises in the use of data. The gap was significant in the automation of processes and in data collecting: only ** percent of retailers automated data collection, against ** percent of consumer goods companies. However, one in **** organizations in both categories reported to have implemented practices involving data engineering, machine learning, and DevOps.

  15. y

    US Retail Sales

    • ycharts.com
    html
    Updated Sep 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census Bureau (2025). US Retail Sales [Dataset]. https://ycharts.com/indicators/us_retail_sales
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 16, 2025
    Dataset provided by
    YCharts
    Authors
    Census Bureau
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 31, 1992 - Aug 31, 2025
    Area covered
    United States
    Variables measured
    US Retail Sales
    Description

    View monthly updates and historical trends for US Retail Sales. from United States. Source: Census Bureau. Track economic data with YCharts analytics.

  16. Consumers' choice of retailer types by age in US Q2 2021

    • statista.com
    Updated Jun 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Consumers' choice of retailer types by age in US Q2 2021 [Dataset]. https://www.statista.com/statistics/1246658/retailer-type-preference-by-age-us/
    Explore at:
    Dataset updated
    Jun 16, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 5, 2021 - May 6, 2021
    Area covered
    United States
    Description

    According to a survey conducted in May 2021, more than half of consumers in the older age groups (** and over) in the United States preferred big box/department stores and pharmacy/convenience stores for their retail purchases compared to consumers in the younger age groups. Online marketplaces were popular across both younger and older consumers. Over ********* of respondents in the age groups 18-34 and 35-54 stated to have used online marketplaces such as Amazon and Etsy in the past three months. This rate was even higher with those aged over ** (at ** percent).

  17. U.S. specialty retail store consumer satisfaction 2024

    • statista.com
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. specialty retail store consumer satisfaction 2024 [Dataset]. https://www.statista.com/statistics/882672/customer-satisfaction-with-selected-specialty-retail-stores-us/
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2024 - Dec 2024
    Area covered
    United States
    Description

    In 2024, Pet Supplies Plus was the leading pet care retailer in terms of customer satisfaction in the United States. The company scored ** on a 100-point scale, overtaking Ace Hardware (hardware and home improvement) by ********* that year.

  18. d

    Wave 24, August 2011

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ipsos (2023). Wave 24, August 2011 [Dataset]. http://doi.org/10.5683/SP2/HPLUMJ
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Ipsos
    Time period covered
    Aug 1, 2011
    Description

    Ipsos Global @dvisor wave 24 was conducted on August 5 and August 18, 2011. It included the following question sections: A: Demographic Profile, B: Consumer Confidence, R: Reuters Battery, BD: Retail Confidence.

  19. Online Retail Market in the US by Product and Device - Forecast and Analysis...

    • technavio.com
    pdf
    Updated Mar 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2022). Online Retail Market in the US by Product and Device - Forecast and Analysis 2022-2026 [Dataset]. https://www.technavio.com/report/online-retail-market-industry-in-the-us-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Mar 3, 2022
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2021 - 2026
    Description

    Snapshot img

    The online retail market share in the US is expected to increase to USD 460.13 billion from 2021 to 2026, and the market’s growth momentum will accelerate at a CAGR of 11.64%.

    The report extensively covers online retail market in the US segmentation by the following:

    Product - Apparel, footwear, and accessories, consumer electronics and electricals, food and grocery, home furniture and furnishing, and others
    Device - Smartphones and tablets and PCs
    

    The US online retail market report offers information on several market vendors, including Amazon.com Inc., Apple Inc., Best Buy Co. Inc., Costco Wholesale Corp., eBay Inc., Kroger Co., Target Corp., The Home Depot Inc., Walmart Inc., and Wayfair Inc. among others.

    This online retail market in the US research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches.

    What will the Online Retail Market Size in the US be During the Forecast Period?

    Download the Free Report Sample to Unlock the Online Retail Market Size in the US for the Forecast Period and Other Important Statistics

    Online Retail Market in the US: Key Drivers, Trends, and Challenges

    The growing seasonal and holiday sales is notably driving the online retail market growth in the US, although factors such as transportation and logistics may impede the market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the online retail industry in the US. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.

    Key US Online Retail Market Driver

    The growing seasonal and holiday sales is one of the key drivers supporting the US online retail market growth. For instance, from November 1 to December 24, e-commerce sales in the US increased by 11% in 2021, when compared to a massive 47.2% growth in the holiday season of 2020. E-commerce sales made up 20.9 % of total retail sales in the holiday season of 2021, slightly higher than 20.6 percent in 2020. Thanksgiving, Black Friday, and Cyber Monday are the days that see a high amount of online shopping. Apparel, footwear and accessories, consumer electronics, computer hardware, and toys are the largest gaining product categories during the holiday season. Consumers in the US spent $204.5 billion online in November and December 2021, up 8.6% over the same period in 2020. Such exciting sales and offers are driving the market growth.

    Key US Online Retail Market Trend

    Omni-channel retailing is one of the key US online retail market trends fueling the market growth. It is rapidly becoming the norm for many retailers in the US. It offers consumers the option to shop online and pick up the merchandise from the store nearest to their location on the same day. Retailers are observing a high web influence on their in-store sales. For instance, Best Buy is integrating its offline and online stores to boost revenues. As a part of its omnichannel strategy, the retailer is utilizing physical stores as distribution centers for online purchases. According to Best Buy, 40% of its online shoppers prefer picking up their purchases from physical stores. Best Buy also challenges online and discount retailers with its match-to-price strategy, claiming to offer gadgets at or below the price offered by competitors. Such strategies are expected to boost market growth during the forecast period.

    Key US Online Retail Market Challenge

    Transportation and logistics are some of the factors hindering the US online retail market growth. Product procurement or sourcing, shipment of ordered items, and delivery to customers are the three major processes where the intervention of transportation and logistics come into the picture. All these processes require a high investment of both time and money, which challenges the efficiency and effectiveness of retailers and their costing strategies. The higher cost incurred from transportation and logistics reduces the margin of retailers, and most of the time, retailers are unable to break even. Between rising fuel prices, driver shortages, as well as a governmental and societal push for increased digitization and sustainability, transport and logistics will continue to be under a lot of pressure. Such factors will negatively impact the market growth during the forecast period.

    This online retail market in the US analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth strategies for 2022-2026.

    Who are the Major Online Retail Market Vendors in the US?

    The report analyzes the market’s competitive landscape and offers information on several market vendors, includi

  20. World: retail sales 2021-2026

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). World: retail sales 2021-2026 [Dataset]. https://www.statista.com/statistics/443522/global-retail-sales/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2022
    Area covered
    Worldwide
    Description

    Global retail sales were projected to amount to around **** trillion U.S. dollars by 2026, up from approximately **** trillion U.S. dollars in 2021. The retail industry encompasses the journey of a good or service. This typically starts with the manufacturing of a product and ends with said product being purchased by a consumer from a retailer. Retail establishments come in many forms such as grocery stores, restaurants, and bookstores. American retailers worldwide As a result of globalization and various trade agreements between markets and countries, many retailers are capable of doing business on a global scale. Many of the world’s leading retailers are American companies. Walmart and Amazon are examples of such American retailers. The success of U.S. retailers can also be seen through their performance in online retail. Retail in the U.S. The domestic retail market in the United States is a lucrative market, in which many companies compete. Walmart, a retail chain offering low prices and a wide selection of products, is the leading retailer in the United States. Amazon, The Kroger Co., Costco, and Target are a selection of other leading U.S. retailers.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). Sales data based on demographics [Dataset]. https://www.kaggle.com/datasets/thedevastator/demographical-shopping-purchases-data
Organization logo

Sales data based on demographics

Analyzing customer purchasing patterns and preferences

Explore at:
zip(1541029 bytes)Available download formats
Dataset updated
Jan 12, 2023
Authors
The Devastator
Description

Demographical Shopping Purchases Data

Analyzing customer purchasing patterns and preferences

By Joseph Nowicki [source]

About this dataset

This dataset contains demographic information about customers who have made purchases in a store, including their name, IP address, region, age, items purchased, and total amount spent. Furthermore, this data can provide insights into customer shopping behaviour for the store in question - from their geographical information to the types of products they purchase. With detailed demographic data like this at hand it is possible to make strategic decisions regarding target customers as well as developing specific marketing campaigns or promotions tailored to meet their needs and interests. By gaining deeper understanding of customer habits through this dataset we unlock more possibilities for businesses seeking higher engagement levels with shoppers

More Datasets

For more datasets, click here.

Featured Notebooks

  • 🚨 Your notebook can be here! 🚨!

How to use the dataset

This dataset includes information such as customer's names, IP address, age, items purchased and amount spent. This data can be used to uncover patterns in spending behavior of shoppers from different areas or regions across demographics like age group or gender.

Research Ideas

  • Analyze customer shopping trends based on age and region to maximize targetted advertising.
  • Analyze the correlation between customer spending habits based on store versus online behavior.
  • Use IP addresses to track geographical trends in items purchased from a particular online store to identify new markets for targeted expansion

Acknowledgements

If you use this dataset in your research, please credit the original authors. Data Source

License

See the dataset description for more information.

Columns

File: Demographic_Data_Orig.csv | Column name | Description | |:---------------|:------------------------------------------------------------------------------------------------| | full.name | The full name of the customer. (String) | | ip.address | The IP address of the customer. (String) | | region | The region of residence of the customer. (String) | | in.store | A boolean value indicating whether the customer made the purchase in-store or online. (Boolean) | | age | The age of the customer. (Integer) | | items | The number of items purchased by the customer. (Integer) | | amount | The total amount spent by the customer. (Float) |

Acknowledgements

If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Joseph Nowicki.

Search
Clear search
Close search
Google apps
Main menu