100+ datasets found
  1. Grocery Sales Prediction

    • kaggle.com
    Updated Apr 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sushant chougule (2024). Grocery Sales Prediction [Dataset]. https://www.kaggle.com/datasets/sushantchougule/kolkata-shops-sales
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 5, 2024
    Dataset provided by
    Kaggle
    Authors
    sushant chougule
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Grocery Sales Prediction

    This dataset provides a rich resource for researchers and practitioners interested in retail sales prediction and analysis. It contains information about various grocery products, the outlets where they are sold, and their historical sales data.

    Product Characteristics:

    Item_Identifier: Unique identifier for each product. Item_Weight: Weight of the product item. Item_Fat_Content: Categorical variable indicating the fat content of the product (e.g., low fat, regular). Item_Visibility: Numerical attribute reflecting the visibility of the product in the store (likely a promotional measure). Item_Type: Category of the product (e.g., Snacks, Beverages, Bakery). Item_MRP: Maximum Retail Price of the product. Outlet Information:

    Outlet_Identifier: Unique identifier for each outlet (store). Outlet_Establishment_Year: Year the outlet was established. Outlet_Size: Categorical variable indicating the size of the outlet (e.g., Small, Medium, Large). (Note: This data may have missing values) Outlet_Location_Type: Categorical variable indicating the type of location the outlet is in (e.g., Tier 1 City, Tier 2 City, Upstate). Outlet_Type: Categorical variable indicating the type of outlet (e.g., Supermarket, Grocery Store, Convenience Store). Sales Data:

    Item_Outlet_Sales: The historical sales data for each product-outlet combination. Profit: The profit margin earned on each product sold. Potential Uses

    This dataset can be used for various retail sales analysis and prediction tasks, including:

    Demand forecasting: Build models to predict future sales of individual products or product categories at specific outlets. Promotion optimization: Analyze the effectiveness of different promotional strategies (reflected by Item_Visibility) on sales. Assortment planning: Optimize product selection and placement within stores based on sales history and outlet characteristics. Outlet performance analysis: Compare the performance of different outlets based on sales figures and profit margins. Customer segmentation: Identify customer segments with distinct purchasing behavior based on product types and outlet locations. By analyzing these rich data points, retailers can gain valuable insights to improve their sales strategies, optimize inventory management, and maximize profits.

  2. 4

    Real-world sales forecasting benchmark data - Extended version

    • data.4tu.nl
    • figshare.com
    zip
    Updated Apr 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emir Žunić (2021). Real-world sales forecasting benchmark data - Extended version [Dataset]. http://doi.org/10.4121/14406134.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 20, 2021
    Dataset provided by
    4TU.ResearchData
    Authors
    Emir Žunić
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains two .csv files that can be used as a new benchmark data for the solving of real-world sales forecasting problem. All data are real and obtained experimentally in production environment in one of the biggest retail company in Bosnia and Herzegovina.The available data in this dataset are in period from 2014/03/01 to 2021/03/01. Data are aggregated on monthly basis for 50 top items of one very popular brand in 4 different organizational units.

  3. T

    US Retail Sales

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). US Retail Sales [Dataset]. https://tradingeconomics.com/united-states/retail-sales
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Aug 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 1992 - Jul 31, 2025
    Area covered
    United States
    Description

    Retail Sales in the United States increased 0.50 percent in July of 2025 over the previous month. This dataset provides - U.S. December Retail Sales Increased More Than Forecast - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  4. m

    Supply Chain Demand Forecasting Dataset of Bangladeshi Retailer

    • data.mendeley.com
    Updated May 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Abrar Jahin (2024). Supply Chain Demand Forecasting Dataset of Bangladeshi Retailer [Dataset]. http://doi.org/10.17632/xwmbk7n3c8.1
    Explore at:
    Dataset updated
    May 21, 2024
    Authors
    Md Abrar Jahin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    The historical sales dataset for this research is obtained from a Bangladeshi retailer. The dataset covers a period of 1826 days and includes daily sales data for a particular product from 01 January 2013 to 31 December 2017. The raw sales data has 2 columns: the first column contains timestamps, while the remaining column reflects the quantity sold.

  5. Retail Sales Forecasting

    • kaggle.com
    Updated May 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Panos Kalsos (2025). Retail Sales Forecasting [Dataset]. https://www.kaggle.com/datasets/panoskalsos/retail-sales-forecasting
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Panos Kalsos
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Panos Kalsos

    Released under CC0: Public Domain

    Contents

  6. t

    Evaluating FAIR Models for Rossmann Store Sales Prediction: Insights and...

    • test.researchdata.tuwien.ac.at
    bin, csv, json +1
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dilara Çakmak; Dilara Çakmak; Dilara Çakmak; Dilara Çakmak (2025). Evaluating FAIR Models for Rossmann Store Sales Prediction: Insights and Performance Analysis [Dataset]. http://doi.org/10.70124/f5t2d-xt904
    Explore at:
    csv, text/markdown, json, binAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    TU Wien
    Authors
    Dilara Çakmak; Dilara Çakmak; Dilara Çakmak; Dilara Çakmak
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 2025
    Description

    Context and Methodology

    Research Domain:
    The dataset is part of a project focused on retail sales forecasting. Specifically, it is designed to predict daily sales for Rossmann, a chain of over 3,000 drug stores operating across seven European countries. The project falls under the broader domain of time series analysis and machine learning applications for business optimization. The goal is to apply machine learning techniques to forecast future sales based on historical data, which includes factors like promotions, competition, holidays, and seasonal trends.

    Purpose:
    The primary purpose of this dataset is to help Rossmann store managers predict daily sales for up to six weeks in advance. By making accurate sales predictions, Rossmann can improve inventory management, staffing decisions, and promotional strategies. This dataset serves as a training set for machine learning models aimed at reducing forecasting errors and supporting decision-making processes across the company’s large network of stores.

    How the Dataset Was Created:
    The dataset was compiled from several sources, including historical sales data from Rossmann stores, promotional calendars, holiday schedules, and external factors such as competition. The data is split into multiple features, such as the store's location, promotion details, whether the store was open or closed, and weather information. The dataset is publicly available on platforms like Kaggle and was initially created for the Kaggle Rossmann Store Sales competition. The data is made accessible via an API for further analysis and modeling, and it is structured to help machine learning models predict future sales based on various input variables.

    Technical Details

    Dataset Structure:

    The dataset consists of three main files, each with its specific role:

    1. Train:
      This file contains the historical sales data, which is used to train machine learning models. It includes daily sales information for each store, as well as various features that could influence the sales (e.g., promotions, holidays, store type, etc.).

      https://handle.test.datacite.org/10.82556/yb6j-jw41
      PID: b1c59499-9c6e-42c2-af8f-840181e809db
    2. Test2:
      The test dataset mirrors the structure of train.csv but does not include the actual sales values (i.e., the target variable). This file is used for making predictions using the trained machine learning models. It is used to evaluate the accuracy of predictions when the true sales data is unknown.

      https://handle.test.datacite.org/10.82556/jerg-4b84
      PID: 7cbb845c-21dd-4b60-b990-afa8754a0dd9
    3. Store:
      This file provides metadata about each store, including information such as the store’s location, type, and assortment level. This data is essential for understanding the context in which the sales data is gathered.

      https://handle.test.datacite.org/10.82556/nqeg-gy34
      PID: 9627ec46-4ee6-4969-b14a-bda555fe34db

    Data Fields Description:

    • Id: A unique identifier for each (Store, Date) combination within the test set.

    • Store: A unique identifier for each store.

    • Sales: The daily turnover (target variable) for each store on a specific day (this is what you are predicting).

    • Customers: The number of customers visiting the store on a given day.

    • Open: An indicator of whether the store was open (1 = open, 0 = closed).

    • StateHoliday: Indicates if the day is a state holiday, with values like:

      • 'a' = public holiday,

      • 'b' = Easter holiday,

      • 'c' = Christmas,

      • '0' = no holiday.

    • SchoolHoliday: Indicates whether the store is affected by school closures (1 = yes, 0 = no).

    • StoreType: Differentiates between four types of stores: 'a', 'b', 'c', 'd'.

    • Assortment: Describes the level of product assortment in the store:

      • 'a' = basic,

      • 'b' = extra,

      • 'c' = extended.

    • CompetitionDistance: Distance (in meters) to the nearest competitor store.

    • CompetitionOpenSince[Month/Year]: The month and year when the nearest competitor store opened.

    • Promo: Indicates whether the store is running a promotion on a particular day (1 = yes, 0 = no).

    • Promo2: Indicates whether the store is participating in Promo2, a continuing promotion for some stores (1 = participating, 0 = not participating).

    • Promo2Since[Year/Week]: The year and calendar week when the store started participating in Promo2.

    • PromoInterval: Describes the months when Promo2 is active, e.g., "Feb,May,Aug,Nov" means the promotion starts in February, May, August, and November.

    Software Requirements

    To work with this dataset, you will need to have specific software installed, including:

    • DBRepo Authorization: This is required to access the datasets via the DBRepo API. You may need to authenticate with an API key or login credentials to retrieve the datasets.

    • Python Libraries: Key libraries for working with the dataset include:

      • pandas for data manipulation,

      • numpy for numerical operations,

      • matplotlib and seaborn for data visualization,

      • scikit-learn for machine learning algorithms.

    Additional Resources

    Several additional resources are available for working with the dataset:

    1. Presentation:
      A presentation summarizing the exploratory data analysis (EDA), feature engineering process, and key insights from the analysis is provided. This presentation also includes visualizations that help in understanding the dataset’s trends and relationships.

    2. Jupyter Notebook:
      A Jupyter notebook, titled Retail_Sales_Prediction_Capstone_Project.ipynb, is provided, which details the entire machine learning pipeline, from data loading and cleaning to model training and evaluation.

    3. Model Evaluation Results:
      The project includes a detailed evaluation of various machine learning models, including their performance metrics like training and testing scores, Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE). This allows for a comparison of model effectiveness in forecasting sales.

    4. Trained Models (.pkl files):
      The models trained during the project are saved as .pkl files. These files contain the trained machine learning models (e.g., Random Forest, Linear Regression, etc.) that can be loaded and used to make predictions without retraining the models from scratch.

    5. sample_submission.csv:
      This file is a sample submission file that demonstrates the format of predictions expected when using the trained model. The sample_submission.csv contains predictions made on the test dataset using the trained Random Forest model. It provides an example of how the output should be structured for submission.

    These resources provide a comprehensive guide to implementing and analyzing the sales forecasting model, helping you understand the data, methods, and results in greater detail.

  7. Customer Sales Forecasting Dataset

    • kaggle.com
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sahil Islam007 (2025). Customer Sales Forecasting Dataset [Dataset]. https://www.kaggle.com/datasets/sahilislam007/custom-sales-forecasting-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 15, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sahil Islam007
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    🗂 Dataset Description Title: Custom Sales Forecasting Dataset

    This dataset contains a synthetic yet realistic representation of product sales across multiple stores and time periods. It is designed for use in time series forecasting, retail analytics, or machine learning experiments focusing on demand prediction and inventory planning. Each row corresponds to daily sales data for a given product at a particular store, enriched with contextual information like promotions and holidays.

    This dataset is ideal for:

    Building and testing time series models (ARIMA, Prophet, LSTM, etc.)

    Forecasting product demand

    Evaluating store-level sales trends

    Training machine learning models with tabular time series data

    Column NameDescription
    order_idUnique identifier for the order placed by a customer.
    customer_idUnique identifier for the customer making the purchase.
    order_dateDate on which the order was placed (YYYY-MM-DD).
    product_categoryCategory of the product purchased (e.g., Sports, Home, Beauty).
    product_priceOriginal price of a single unit of the product (before discount).
    quantityNumber of units of the product ordered.
    payment_methodMethod used for payment (e.g., PayPal, Cash on Delivery).
    delivery_statusCurrent delivery status of the order (e.g., Delivered, Pending).
    cityCity to which the order was delivered.
    stateU.S. state where the customer is located.
    zipcodePostal code of the delivery location.
    product_idUnique identifier for the purchased product.
    discount_appliedFractional discount applied to the order (e.g., 0.20 for 20% off).
    order_valueTotal value of the order after discount (product_price * quantity * (1 - discount_applied)).
    review_ratingCustomer’s review rating of the order on a 1–5 scale.
    return_requestedBoolean value indicating if the customer requested a return (True/False).
  8. Growth forecasts for retail sales pre and post-Coronavirus in the UK 2021,...

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Growth forecasts for retail sales pre and post-Coronavirus in the UK 2021, by sector [Dataset]. https://www.statista.com/statistics/1111013/pre-and-post-coronavirus-growth-forecasts-for-retail-uk/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United Kingdom
    Description

    The coronavirus pandemic has caused massive shocks to the global economy and dampened previously projected growth scenarios worldwide. According to a recent study, clothing and footwear retail was predicted to suffer a **** percent decline annually in 2020. However, with the diminishing of the impact of the pandemic, in 2021 the sector is forecast to grow by **** percent. In total terms, the retail industry is expected to grow by *** percent, as opposed to the *** percent decline in 2020. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Fact and Figures page.

  9. T

    Japan Retail Sales

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Retail Sales [Dataset]. https://tradingeconomics.com/japan/retail-sales-annual
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1971 - Jul 31, 2025
    Area covered
    Japan
    Description

    Retail Sales in Japan increased 0.30 percent in July of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Japan Retail Sales YoY - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  10. Walmart: forecast net sales 2021-2026

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Walmart: forecast net sales 2021-2026 [Dataset]. https://www.statista.com/statistics/1255604/estimated-net-sales-walmart/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2021
    Area covered
    Worldwide
    Description

    According to the data, Walmart's net sales were forecast to be around *** billion U.S. dollars in 2021, following the upsurge in 2020 that was driven by COVID-19. From 2021 onwards, Walmart's net sales were forecast to increase with each consecutive year. By 2026, it was forecast that Walmart's net sales would grow to ***** billion U.S. dollars, which includes store-based and e-commerce net sales.

  11. Envestnet | Yodlee's De-Identified Electronrics Transaction Data |...

    • datarade.ai
    .sql, .txt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Envestnet | Yodlee, Envestnet | Yodlee's De-Identified Electronrics Transaction Data | Row/Aggregate Level | USA Consumer Data covering 3600+ corporations | 90M+ Accounts [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-de-identified-electronrics-transaction-d-envestnet-yodlee
    Explore at:
    .sql, .txtAvailable download formats
    Dataset provided by
    Yodlee
    Envestnethttp://envestnet.com/
    Authors
    Envestnet | Yodlee
    Area covered
    United States of America
    Description

    Envestnet®| Yodlee®'s Electronics Transaction Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

    Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

    We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

    Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

    Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

    Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

    1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

    2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

    3. Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis

  12. Leading retailers in the UK by chain retail sales 2021-2026

    • statista.com
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading retailers in the UK by chain retail sales 2021-2026 [Dataset]. https://www.statista.com/statistics/1303444/leading-retailers-by-chain-retail-sales-uk/
    Explore at:
    Dataset updated
    Jul 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2022
    Area covered
    United Kingdom
    Description

    Based on chain retail sale figures, Tesco was the leading retailer in the United Kingdom (UK) in 2021, with **** billion British pounds. Amazon and Sainsbury's came in second and third in the ranking, with chain retail sales of ** billion British pounds and ** billion British pounds, respectively. Forecasts suggest that Amazon will take over the market in 2026 as the chain retail sales of the online marketplace giant is expected to reach over ** billion British pounds.

  13. Retail Sales Index time series

    • ons.gov.uk
    • cy.ons.gov.uk
    csdb, csv, xlsx
    Updated Jul 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Retail Sales Index time series [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/retailindustry/datasets/retailsales
    Explore at:
    xlsx, csdb, csvAvailable download formats
    Dataset updated
    Jul 25, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    A first estimate of retail sales in value and volume terms for Great Britain, seasonally and non-seasonally adjusted.

  14. SuperStore sales DataSet

    • kaggle.com
    Updated Jan 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amir Motefaker (2023). SuperStore sales DataSet [Dataset]. https://www.kaggle.com/datasets/amirmotefaker/superstore-sales-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 9, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Amir Motefaker
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    Time series analysis deals with time series based data to extract patterns for predictions and other characteristics of the data. It uses a model for forecasting future values in a small time frame based on previous observations. It is widely used for non-stationary data, such as economic data, weather data, stock prices, and retail sales forecasting.

  15. g

    Iowa Liquor Retail Sales

    • console.cloud.google.com
    Updated Feb 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Commerce (2020). Iowa Liquor Retail Sales [Dataset]. https://console.cloud.google.com/marketplace/product/iowa-department-of-commerce/iowa-liquor-sales
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset authored and provided by
    Iowa Department of Commerce
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Iowa
    Description

    This dataset contains every wholesale purchase of liquor in the State of Iowa by retailers for sale to individuals since January 1, 2012. The State of Iowa controls the wholesale distribution of liquor intended for retail sale, which means this dataset offers a complete view of retail liquor sales in the entire state. The dataset contains every wholesale order of liquor by all grocery stores, liquor stores, convenience stores, etc., with details about the store and location, the exact liquor brand and size, and the number of bottles ordered. In addition to being an excellent dataset for analyzing liquor sales, this is a large and clean public dataset of retail sales data. It can be used to explore problems like stockout prediction, retail demand forecasting, and other retail supply chain problems. The data dictionary is available from the State of Iowa's Alcoholic Beverages Division , within the Iowa Department of Commerce . There are some minor discrepancies in the data, discussed in the web view of the data . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery.

  16. w

    Global Retail Planning Service Market Research Report: By Service Type...

    • wiseguyreports.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wWiseguy Research Consultants Pvt Ltd (2024). Global Retail Planning Service Market Research Report: By Service Type (Inventory Management, Sales Forecasting, Merchandising Planning, Supply Chain Management), By End User (Fashion Retailers, Grocery Stores, Electronics Retailers, Home Improvement Stores), By Deployment Model (On-Premises, Cloud-Based, Hybrid), By Functionality (Analytical Tools, Operational Tools, Collaboration Tools) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2032. [Dataset]. https://www.wiseguyreports.com/reports/retail-planning-service-market
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    wWiseguy Research Consultants Pvt Ltd
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2024
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20236.55(USD Billion)
    MARKET SIZE 20247.0(USD Billion)
    MARKET SIZE 203212.0(USD Billion)
    SEGMENTS COVEREDService Type, End User, Deployment Model, Functionality, Regional
    COUNTRIES COVEREDNorth America, Europe, APAC, South America, MEA
    KEY MARKET DYNAMICSIncreasing omnichannel retail strategies, Growing demand for data analytics, Need for inventory optimization, Expansion of e-commerce platforms, Rising focus on customer experience
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDInfor, RELEX Solutions, Manhattan Associates, Microsoft, SAS Institute, Symphony RetailAI, Nielsen, IBM, Oracle, tableau, Epicor Software, Blue Yonder, JDA Software, SAP, Retail Solutions
    MARKET FORECAST PERIOD2025 - 2032
    KEY MARKET OPPORTUNITIESAI-driven analytics integration, Omnichannel retail strategy development, Sustainability-focused planning solutions, Demand forecasting technology advancements, Customizable software solutions for retailers
    COMPOUND ANNUAL GROWTH RATE (CAGR) 6.97% (2025 - 2032)
  17. T

    Bosnia and Herzegovina Retail Sales MoM

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Bosnia and Herzegovina Retail Sales MoM [Dataset]. https://tradingeconomics.com/bosnia-and-herzegovina/retail-sales
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    Aug 31, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 1995 - Jul 31, 2025
    Area covered
    Bosnia and Herzegovina
    Description

    Retail Sales in Bosnia and Herzegovina decreased 2.60 percent in July of 2025 over the previous month. This dataset provides the latest reported value for - Bosnia and Herzegovina Retail Sales MoM - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  18. E-Commerce Retail Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). E-Commerce Retail Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/e-commerce-retail-market-industry-analysis
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    E-Commerce Retail Market Size 2025-2029

    The e-commerce retail market size is forecast to increase by USD 4,833.5 billion at a CAGR of 12% between 2024 and 2029.

    The market is experiencing significant growth, driven by the advent of personalized shopping experiences. Consumers increasingly expect tailored recommendations and seamless interactions, leading retailers to integrate advanced technologies such as Artificial Intelligence (AI) to enhance the shopping journey. However, this market is not without challenges. Strict regulatory policies related to compliance and customer protection pose obstacles for retailers, requiring continuous investment in technology and resources to ensure adherence.
    Retailers must navigate these challenges to effectively capitalize on the market's potential and deliver value to customers. By focusing on personalization and regulatory compliance, e-commerce retailers can differentiate themselves, build customer loyalty, and ultimately thrive in this dynamic market. Balancing the need for innovation with regulatory requirements is a delicate task, necessitating strategic planning and operational agility. Fraud prevention and customer retention are crucial aspects of e-commerce, with payment gateways ensuring secure transactions.
    

    What will be the Size of the E-Commerce Retail Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic market, shopping carts and checkout processes streamline transactions, while sales forecasting and marketing automation help businesses anticipate consumer demand and optimize promotions. SMS marketing and targeted advertising reach customers effectively, driving sales growth. Warranty claims and customer support chatbots ensure post-purchase satisfaction, bolstering customer loyalty. Retail technology advances, including sustainable packaging, green logistics, and mobile optimization, cater to environmentally-conscious consumers. Legal compliance, data encryption, and fraud detection safeguard businesses and consumer trust. Product reviews, search functionality, and personalized recommendations enhance the shopping experience, fostering customer engagement.
    Dynamic pricing and delivery networks adapt to market fluctuations and consumer preferences, respectively. E-commerce software integrates various functionalities, from circular economy initiatives and website accessibility to email automation and real-time order tracking. Overall, the e-commerce landscape continues to evolve, with businesses adopting innovative strategies to meet the needs of diverse customer segments and stay competitive.
    

    How is this E-Commerce Retail Industry segmented?

    The e-commerce retail industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Apparel and accessories
      Groceries
      Footwear
      Personal and beauty care
      Others
    
    
    Modality
    
      Business to business (B2B)
      Business to consumer (B2C)
      Consumer to consumer (C2C)
    
    
    Device
    
      Mobile
      Desktop
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    By Product Insights

    The apparel and accessories segment is estimated to witness significant growth during the forecast period. The market for apparel and accessories is experiencing significant growth, fueled by several key trends. Increasing consumer affluence and a shift toward premiumization are driving this expansion, with the organized retail sector seeing particular growth. Influenced by social media trends, the Gen Z demographic is a major contributor to this rise in online shopping. This demographic is known for their preference for the latest fashion trends and their willingness to invest in premium products, making them a valuable market segment. Machine learning and artificial intelligence are increasingly being used for returns management and personalized recommendations, enhancing the customer experience.

    Ethical sourcing and supply chain optimization are also essential, as consumers demand transparency and sustainability. Cybersecurity threats continue to pose challenges, requiring robust strategies and technologies. B2C and C2C e-commerce are thriving, with influencer marketing and e-commerce analytics playing significant roles. Customer reviews are essential for building trust and brand loyalty, while reputation management and affiliate marketing help expand reach. Sustainable e-commerce and b2b e-commerce are also gaining traction, with third-party logistics and social commerce offering new opportunitie

  19. Retail sales revenue development forecast in Germany 2011-2025

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Retail sales revenue development forecast in Germany 2011-2025 [Dataset]. https://www.statista.com/statistics/1283781/retail-sales-revenue-forecast-germany/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    Based on a forecast, retail sales revenues in Germany will amount to over *** billion euros in 2025. Figures are expected to increase annually. This timeline shows the retail sales revenue development in Germany from 2011 to 2025.

  20. T

    Iowa Liquor Sales

    • arjunrana.com
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +4more
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Revenue, Alcoholic Beverages (2025). Iowa Liquor Sales [Dataset]. https://arjunrana.com/projects/bigquery_ML/
    Explore at:
    csv, kml, application/geo+json, kmz, application/rssxml, tsv, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Iowa Department of Revenue, Alcoholic Beverages
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains the spirits purchase information of Iowa Class “E” liquor licensees by product and date of purchase from January 1, 2012 to current. The dataset can be used to analyze total spirits sales in Iowa of individual products at the store level.

    Class E liquor license, for grocery stores, liquor stores, convenience stores, etc., allows commercial establishments to sell liquor for off-premises consumption in original unopened containers.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
sushant chougule (2024). Grocery Sales Prediction [Dataset]. https://www.kaggle.com/datasets/sushantchougule/kolkata-shops-sales
Organization logo

Grocery Sales Prediction

Forecasting Grocery Demand: Drive Sales with Data-Driven Strategies

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 5, 2024
Dataset provided by
Kaggle
Authors
sushant chougule
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Grocery Sales Prediction

This dataset provides a rich resource for researchers and practitioners interested in retail sales prediction and analysis. It contains information about various grocery products, the outlets where they are sold, and their historical sales data.

Product Characteristics:

Item_Identifier: Unique identifier for each product. Item_Weight: Weight of the product item. Item_Fat_Content: Categorical variable indicating the fat content of the product (e.g., low fat, regular). Item_Visibility: Numerical attribute reflecting the visibility of the product in the store (likely a promotional measure). Item_Type: Category of the product (e.g., Snacks, Beverages, Bakery). Item_MRP: Maximum Retail Price of the product. Outlet Information:

Outlet_Identifier: Unique identifier for each outlet (store). Outlet_Establishment_Year: Year the outlet was established. Outlet_Size: Categorical variable indicating the size of the outlet (e.g., Small, Medium, Large). (Note: This data may have missing values) Outlet_Location_Type: Categorical variable indicating the type of location the outlet is in (e.g., Tier 1 City, Tier 2 City, Upstate). Outlet_Type: Categorical variable indicating the type of outlet (e.g., Supermarket, Grocery Store, Convenience Store). Sales Data:

Item_Outlet_Sales: The historical sales data for each product-outlet combination. Profit: The profit margin earned on each product sold. Potential Uses

This dataset can be used for various retail sales analysis and prediction tasks, including:

Demand forecasting: Build models to predict future sales of individual products or product categories at specific outlets. Promotion optimization: Analyze the effectiveness of different promotional strategies (reflected by Item_Visibility) on sales. Assortment planning: Optimize product selection and placement within stores based on sales history and outlet characteristics. Outlet performance analysis: Compare the performance of different outlets based on sales figures and profit margins. Customer segmentation: Identify customer segments with distinct purchasing behavior based on product types and outlet locations. By analyzing these rich data points, retailers can gain valuable insights to improve their sales strategies, optimize inventory management, and maximize profits.

Search
Clear search
Close search
Google apps
Main menu