100+ datasets found
  1. Retail Store Data

    • kaggle.com
    zip
    Updated Oct 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harsh Walia (2021). Retail Store Data [Dataset]. https://www.kaggle.com/datasets/harshwalia/online-store-data
    Explore at:
    zip(45407884 bytes)Available download formats
    Dataset updated
    Oct 26, 2021
    Authors
    Harsh Walia
    Description

    Context

    This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail .

    Content

    Attribute Information:

    InvoiceNo: Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric. InvoiceDate: Invice date and time. Numeric. The day and time when a transaction was generated. UnitPrice: Unit price. Numeric. Product price per unit in sterling (£). CustomerID: Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal. The name of the country where a customer resides.

    PERFORM DATA ANALYSIS AND BRING INSIGHTS FROM THE DATA

  2. y

    US Retail Sales

    • ycharts.com
    html
    Updated Sep 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census Bureau (2025). US Retail Sales [Dataset]. https://ycharts.com/indicators/us_retail_sales
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 16, 2025
    Dataset provided by
    YCharts
    Authors
    Census Bureau
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 31, 1992 - Aug 31, 2025
    Area covered
    United States
    Variables measured
    US Retail Sales
    Description

    View monthly updates and historical trends for US Retail Sales. from United States. Source: Census Bureau. Track economic data with YCharts analytics.

  3. Data usage in consumer products and retail industry 2020

    • statista.com
    Updated May 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Data usage in consumer products and retail industry 2020 [Dataset]. https://www.statista.com/statistics/1262066/data-usage-in-consumer-products-and-retail-industry/
    Explore at:
    Dataset updated
    May 15, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2020
    Area covered
    Worldwide
    Description

    A global survey from Capgemini showed that retail companies were lagging behind consumer products enterprises in the use of data. The gap was significant in the automation of processes and in data collecting: only ** percent of retailers automated data collection, against ** percent of consumer goods companies. However, one in **** organizations in both categories reported to have implemented practices involving data engineering, machine learning, and DevOps.

  4. World: retail sales 2021-2026

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). World: retail sales 2021-2026 [Dataset]. https://www.statista.com/statistics/443522/global-retail-sales/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2022
    Area covered
    Worldwide
    Description

    Global retail sales were projected to amount to around **** trillion U.S. dollars by 2026, up from approximately **** trillion U.S. dollars in 2021. The retail industry encompasses the journey of a good or service. This typically starts with the manufacturing of a product and ends with said product being purchased by a consumer from a retailer. Retail establishments come in many forms such as grocery stores, restaurants, and bookstores. American retailers worldwide As a result of globalization and various trade agreements between markets and countries, many retailers are capable of doing business on a global scale. Many of the world’s leading retailers are American companies. Walmart and Amazon are examples of such American retailers. The success of U.S. retailers can also be seen through their performance in online retail. Retail in the U.S. The domestic retail market in the United States is a lucrative market, in which many companies compete. Walmart, a retail chain offering low prices and a wide selection of products, is the leading retailer in the United States. Amazon, The Kroger Co., Costco, and Target are a selection of other leading U.S. retailers.

  5. Retail Store Performance

    • kaggle.com
    zip
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pereprosov (2024). Retail Store Performance [Dataset]. https://www.kaggle.com/datasets/pereprosov/retail-store-performance
    Explore at:
    zip(34021 bytes)Available download formats
    Dataset updated
    Dec 2, 2024
    Authors
    Pereprosov
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides a comprehensive collection of key performance indicators (KPIs) for retail stores, offering insights into factors influencing store performance, customer engagement, and financial outcomes. The dataset is suitable for various machine learning and data analysis tasks, including regression, classification, and clustering. It can help in understanding the relationships between operational metrics, store characteristics, and sales performance.

  6. Annual retail store survey, financial estimates by store type and trade...

    • www150.statcan.gc.ca
    • datasets.ai
    • +4more
    Updated Mar 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2017). Annual retail store survey, financial estimates by store type and trade group based on the North American Industry Classification System (NAICS), inactive [Dataset]. http://doi.org/10.25318/2010003501-eng
    Explore at:
    Dataset updated
    Mar 13, 2017
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 9702 series, with data for years 1999 - 2009 (not all combinations necessarily have data for all years), and was last released on 2012-03-28. This table contains data described by the following dimensions (Not all combinations are available): Geography (14 items: Canada;Nova Scotia;Prince Edward Island;Newfoundland and Labrador ...), Trade group (21 items: Total; all trade groups;New car dealers;Used and recreational motor vehicle and parts dealers;Furniture stores ...), Financial estimates (11 items: Sales of goods for resale;Total revenue;Opening inventory;Total operating revenue ...), Type of store (3 items: Total all stores;Chain stores;Non-chain stores ...).

  7. m

    Big Data Analytics in Retail Market - Trends & Industry Analysis

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Dec 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2024). Big Data Analytics in Retail Market - Trends & Industry Analysis [Dataset]. https://www.mordorintelligence.com/industry-reports/big-data-analytics-in-retail-marketing-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 11, 2024
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2021 - 2030
    Area covered
    Global
    Description

    The Data Analytics in Retail Industry is segmented by Application (Merchandising and Supply Chain Analytics, Social Media Analytics, Customer Analytics, Operational Intelligence, Other Applications), by Business Type (Small and Medium Enterprises, Large-scale Organizations), and Geography. The market size and forecasts are provided in terms of value (USD billion) for all the above segments.

  8. T

    US Retail Sales

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). US Retail Sales [Dataset]. https://tradingeconomics.com/united-states/retail-sales
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 1992 - Sep 30, 2025
    Area covered
    United States
    Description

    Retail Sales in the United States increased 0.20 percent in September of 2025 over the previous month. This dataset provides - U.S. December Retail Sales Increased More Than Forecast - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  9. d

    Retail Food Stores

    • catalog.data.gov
    • data.buffalony.gov
    • +3more
    Updated Oct 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). Retail Food Stores [Dataset]. https://catalog.data.gov/dataset/retail-food-stores
    Explore at:
    Dataset updated
    Oct 4, 2025
    Dataset provided by
    data.ny.gov
    Description

    A listing of all retail food stores which are licensed by the Department of Agriculture and Markets.

  10. Retail Store Sales: Dirty for Data Cleaning

    • kaggle.com
    zip
    Updated Jan 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Retail Store Sales: Dirty for Data Cleaning [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/retail-store-sales-dirty-for-data-cleaning
    Explore at:
    zip(226740 bytes)Available download formats
    Dataset updated
    Jan 18, 2025
    Authors
    Ahmed Mohamed
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dirty Retail Store Sales Dataset

    Overview

    The Dirty Retail Store Sales dataset contains 12,575 rows of synthetic data representing sales transactions from a retail store. The dataset includes eight product categories with 25 items per category, each having static prices. It is designed to simulate real-world sales data, including intentional "dirtiness" such as missing or inconsistent values. This dataset is suitable for practicing data cleaning, exploratory data analysis (EDA), and feature engineering.

    File Information

    • File Name: retail_store_sales.csv
    • Number of Rows: 12,575
    • Number of Columns: 11

    Columns Description

    Column NameDescriptionExample Values
    Transaction IDA unique identifier for each transaction. Always present and unique.TXN_1234567
    Customer IDA unique identifier for each customer. 25 unique customers.CUST_01
    CategoryThe category of the purchased item.Food, Furniture
    ItemThe name of the purchased item. May contain missing values or None.Item_1_FOOD, None
    Price Per UnitThe static price of a single unit of the item. May contain missing or None values.4.00, None
    QuantityThe quantity of the item purchased. May contain missing or None values.1, None
    Total SpentThe total amount spent on the transaction. Calculated as Quantity * Price Per Unit.8.00, None
    Payment MethodThe method of payment used. May contain missing or invalid values.Cash, Credit Card
    LocationThe location where the transaction occurred. May contain missing or invalid values.In-store, Online
    Transaction DateThe date of the transaction. Always present and valid.2023-01-15
    Discount AppliedIndicates if a discount was applied to the transaction. May contain missing values.True, False, None

    Categories and Items

    The dataset includes the following categories, each containing 25 items with corresponding codes, names, and static prices:

    Electric Household Essentials

    Item CodeItem NamePrice
    Item_1_EHEBlender5.0
    Item_2_EHEMicrowave6.5
    Item_3_EHEToaster8.0
    Item_4_EHEVacuum Cleaner9.5
    Item_5_EHEAir Purifier11.0
    Item_6_EHEElectric Kettle12.5
    Item_7_EHERice Cooker14.0
    Item_8_EHEIron15.5
    Item_9_EHECeiling Fan17.0
    Item_10_EHETable Fan18.5
    Item_11_EHEHair Dryer20.0
    Item_12_EHEHeater21.5
    Item_13_EHEHumidifier23.0
    Item_14_EHEDehumidifier24.5
    Item_15_EHECoffee Maker26.0
    Item_16_EHEPortable AC27.5
    Item_17_EHEElectric Stove29.0
    Item_18_EHEPressure Cooker30.5
    Item_19_EHEInduction Cooktop32.0
    Item_20_EHEWater Dispenser33.5
    Item_21_EHEHand Blender35.0
    Item_22_EHEMixer Grinder36.5
    Item_23_EHESandwich Maker38.0
    Item_24_EHEAir Fryer39.5
    Item_25_EHEJuicer41.0

    Furniture

    Item CodeItem NamePrice
    Item_1_FUROffice Chair5.0
    Item_2_FURSofa6.5
    Item_3_FURCoffee Table8.0
    Item_4_FURDining Table9.5
    Item_5_FURBookshelf11.0
    Item_6_FURBed F...
  11. Retail Market Size, Trends, Share, Research Report 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Retail Market Size, Trends, Share, Research Report 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/retail-industry
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Retail Market is Segments by Product Type (Food, Beverage, and Grocery, Personal and Household Care, Apparel, Footwear and Accessories, and More), by Distribution Channel (Supermarkets/Hypermarkets, Convenience and Discount Stores, Specialty Stores, and More), and by Geography (North America, Europe, Asia-Pacific, and More). The Market Forecasts are Provided in Terms of Value (USD).

  12. Retail trade sales by industry, inactive (x 1,000)

    • www150.statcan.gc.ca
    Updated Feb 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2023). Retail trade sales by industry, inactive (x 1,000) [Dataset]. http://doi.org/10.25318/2010000801-eng
    Explore at:
    Dataset updated
    Feb 21, 2023
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Retail Trade, sales by industries based on North American Industry Classification System (NAICS), monthly.

  13. d

    Retail Store Data | Retail & E-commerce Sector in Asia | Verified Business...

    • datarade.ai
    Updated Feb 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Retail Store Data | Retail & E-commerce Sector in Asia | Verified Business Profiles & eCommerce Professionals | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/retail-store-data-retail-e-commerce-sector-in-asia-veri-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 12, 2018
    Dataset provided by
    Success.ai
    Area covered
    Lebanon, Cyprus, Hong Kong, Jordan, Bangladesh, Malaysia, Singapore, Georgia, Kuwait, Turkmenistan
    Description

    Success.ai delivers unparalleled access to Retail Store Data for Asia’s retail and e-commerce sectors, encompassing subcategories such as ecommerce data, ecommerce merchant data, ecommerce market data, and company data. Whether you’re targeting emerging markets or established players, our solutions provide the tools to connect with decision-makers, analyze market trends, and drive strategic growth. With continuously updated datasets and AI-validated accuracy, Success.ai ensures your data is always relevant and reliable.

    Key Features of Success.ai's Retail Store Data for Retail & E-commerce in Asia:

    Extensive Business Profiles: Access detailed profiles for 70M+ companies across Asia’s retail and e-commerce sectors. Profiles include firmographic data, revenue insights, employee counts, and operational scope.

    Ecommerce Data: Gain insights into online marketplaces, customer demographics, and digital transaction patterns to refine your strategies.

    Ecommerce Merchant Data: Understand vendor performance, supply chain metrics, and operational details to optimize partnerships.

    Ecommerce Market Data: Analyze purchasing trends, regional preferences, and market demands to identify growth opportunities.

    Contact Data for Decision-Makers: Reach key stakeholders, such as CEOs, marketing executives, and procurement managers. Verified contact details include work emails, phone numbers, and business addresses.

    Real-Time Accuracy: AI-powered validation ensures a 99% accuracy rate, keeping your outreach efforts efficient and impactful.

    Compliance and Ethics: All data is ethically sourced and fully compliant with GDPR and other regional data protection regulations.

    Why Choose Success.ai for Retail Store Data?

    Best Price Guarantee: We deliver industry-leading value with the most competitive pricing for comprehensive retail store data.

    Customizable Solutions: Tailor your data to meet specific needs, such as targeting particular regions, industries, or company sizes.

    Scalable Access: Our data solutions are built to grow with your business, supporting small startups to large-scale enterprises.

    Seamless Integration: Effortlessly incorporate our data into your existing CRM, marketing, or analytics platforms.

    Comprehensive Use Cases for Retail Store Data:

    1. Market Entry and Expansion:

    Identify potential partners, distributors, and clients to expand your footprint in Asia’s dynamic retail and e-commerce markets. Use detailed profiles to assess market opportunities and risks.

    1. Personalized Marketing Campaigns:

    Leverage ecommerce data and consumer insights to craft highly targeted campaigns. Connect directly with decision-makers for precise and effective communication.

    1. Competitive Benchmarking:

    Analyze competitors’ operations, market positioning, and consumer strategies to refine your business plans and gain a competitive edge.

    1. Supplier and Vendor Selection:

    Evaluate potential suppliers or vendors using ecommerce merchant data, including financial health, operational details, and contact data.

    1. Customer Engagement and Retention:

    Enhance customer loyalty programs and retention strategies by leveraging ecommerce market data and purchasing trends.

    APIs to Amplify Your Results:

    Enrichment API: Keep your CRM and analytics platforms up-to-date with real-time data enrichment, ensuring accurate and actionable company profiles.

    Lead Generation API: Maximize your outreach with verified contact data for retail and e-commerce decision-makers. Ideal for driving targeted marketing and sales efforts.

    Tailored Solutions for Industry Professionals:

    Retailers: Expand your supply chain, identify new markets, and connect with key partners in the e-commerce ecosystem.

    E-commerce Platforms: Optimize your vendor and partner selection with verified profiles and operational insights.

    Marketing Agencies: Deliver highly personalized campaigns by leveraging detailed consumer data and decision-maker contacts.

    Consultants: Provide data-driven recommendations to clients with access to comprehensive company data and market trends.

    What Sets Success.ai Apart?

    70M+ Business Profiles: Access an extensive and detailed database of companies across Asia’s retail and e-commerce sectors.

    Global Compliance: All data is sourced ethically and adheres to international data privacy standards, including GDPR.

    Real-Time Updates: Ensure your data remains accurate and relevant with our continuously updated datasets.

    Dedicated Support: Our team of experts is available to help you maximize the value of our data solutions.

    Empower Your Business with Success.ai:

    Success.ai’s Retail Store Data for the retail and e-commerce sectors in Asia provides the insights and connections needed to thrive in this competitive market. Whether you’re entering a new region, launching a targeted campaign, or analyzing market trends, our data solutions ensure measurable success.

    ...

  14. F

    Retailers Sales

    • fred.stlouisfed.org
    json
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Retailers Sales [Dataset]. https://fred.stlouisfed.org/series/RETAILSMSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Retailers Sales (RETAILSMSA) from Jan 1992 to Aug 2025 about retail trade, sales, retail, and USA.

  15. y

    US Retail Sales TTM per Capita

    • ycharts.com
    html
    Updated Sep 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census Bureau (2025). US Retail Sales TTM per Capita [Dataset]. https://ycharts.com/indicators/us_retail_sales_ttm_per_capita
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 16, 2025
    Dataset provided by
    YCharts
    Authors
    Census Bureau
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Dec 31, 1992 - Dec 31, 2024
    Area covered
    United States
    Variables measured
    US Retail Sales TTM per Capita
    Description

    View monthly updates and historical trends for US Retail Sales TTM per Capita. from United States. Source: Census Bureau. Track economic data with YCharts…

  16. m

    Online Shopping Statistics and Facts

    • market.biz
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.biz (2025). Online Shopping Statistics and Facts [Dataset]. https://market.biz/online-shopping-statistics/
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    Market.biz
    License

    https://market.biz/privacy-policyhttps://market.biz/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Europe, South America, Africa, North America, Australia, ASIA
    Description

    Introduction

    Online Shopping Statistics: Online shopping has revolutionized the retail industry, providing consumers with unparalleled convenience, a wide range of products, and easy access to services. Factors such as greater internet accessibility, the rise of mobile commerce, and shifting consumer preferences have contributed to the substantial growth of the e-commerce market.

    Online shopping statistics offer key insights into market trends, consumer habits, demographic shifts, popular product categories, and the technologies driving the future of retail. Understanding these insights is essential for both businesses and consumers to successfully navigate the competitive online marketplace and keep up with emerging trends in digital shopping.

  17. U.S. consumers' most important factors when shopping at a retail store 2019

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, U.S. consumers' most important factors when shopping at a retail store 2019 [Dataset]. https://www.statista.com/statistics/1083457/important-factors-when-choosing-retail-stores-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2018
    Area covered
    United States
    Description

    According to a survey carried out in the United States in June 2018, some ** percent of respondents stated that the most important factor when deciding to visit a retail store is the price of the goods offered. Conversely, * percent said loyalty rewards are the most important.

  18. Retail Sales Data with Seasonal Trends & Marketing

    • kaggle.com
    zip
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M abdullah (2024). Retail Sales Data with Seasonal Trends & Marketing [Dataset]. https://www.kaggle.com/datasets/abdullah0a/retail-sales-data-with-seasonal-trends-and-marketing
    Explore at:
    zip(625090 bytes)Available download formats
    Dataset updated
    Sep 18, 2024
    Authors
    M abdullah
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset provides detailed insights into retail sales, featuring a range of factors that influence sales performance. It includes records on sales revenue, units sold, discount percentages, marketing spend, and the impact of seasonal trends and holidays.

    Key Features:

    • Sales Revenue (USD): Total revenue generated from sales.
    • Units Sold: Quantity of items sold.
    • Discount Percentage: The percentage discount applied to products.
    • Marketing Spend (USD): Budget allocated to marketing efforts.
    • Store ID: Identifier for the retail store.
    • Product Category: The category to which the product belongs (e.g., Electronics, Clothing).
    • Date: The date when the sale occurred.
    • Store Location: Geographic location of the store.
    • Day of the Week: Day when the sale took place.
    • Holiday Effect: Indicator of whether the sale happened during a holiday period.

    Use Cases:

    • Predictive Modeling: Build models to forecast future sales based on historical data.
    • Marketing Analysis: Evaluate the effectiveness of marketing spend and discount strategies.
    • Seasonal Trend Analysis: Examine how different seasons and holidays impact sales.
    • Revenue Optimization: Identify strategies to optimize pricing and marketing for increased revenue.

    Notes:

    This dataset is synthetic and generated for analysis purposes. It reflects typical retail sales patterns and is designed to support a wide range of data science and business analytics projects.

  19. y

    US Miscellaneous Store Retailer Sales

    • ycharts.com
    html
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census Bureau (2025). US Miscellaneous Store Retailer Sales [Dataset]. https://ycharts.com/indicators/us_miscellaneous_store_retailer_sales_nsa
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 28, 2025
    Dataset provided by
    YCharts
    Authors
    Census Bureau
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 31, 1992 - Sep 30, 2025
    Area covered
    United States
    Variables measured
    US Miscellaneous Store Retailer Sales
    Description

    View monthly updates and historical trends for US Miscellaneous Store Retailer Sales. from United States. Source: Census Bureau. Track economic data with …

  20. Online Retail Sales and Customer Data

    • kaggle.com
    zip
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Online Retail Sales and Customer Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/online-retail-sales-and-customer-data
    Explore at:
    zip(9098240 bytes)Available download formats
    Dataset updated
    Dec 21, 2023
    Authors
    The Devastator
    Description

    Online Retail Sales and Customer Data

    Transactional Data with Product and Customer Details in Online Retail

    By Marc Szafraniec [source]

    About this dataset

    The InvoiceNo column holds unique identifiers for each transaction conducted. This numerical code serves a twofold purpose: it facilitates effortless identification of individual sales or purchases while simultaneously enabling treasury management by offering a repository for record keeping.

    In concordance with the invoice number is the InvoiceDate column. It provides a date-time stamp associated with every transaction, which can reveal patterns in purchasing behaviour over time and assists with record-keeping requirements.

    The StockCode acts as an integral part of this dataset; it encompasses alphanumeric sequences allocated distinctively to every item in stock. Such a system aids unequivocally identifying individual products making inventory records seamless.

    The Description field offers brief elucidations about each listed product, adding layers beyond just stock codes to aid potential customers' understanding of products better and make more informed choices.

    Detailed logs concerning sold quantities come under the Quantity banner - it lists the units involved per transaction alongside aiding calculations regarding total costs incurred during each sale/purchase offering significant help tracking inventory levels based on products' outflow dynamics within given periods.

    Retail isn't merely about what you sell but also at what price you sell- A point acknowledged via our inclusion of unit prices exerted on items sold within transactions inside our dataset's UnitPrice column which puts forth pertinent pricing details serving as pivotal factors driving metrics such as gross revenue calculation etc

    Finally yet importantly is our dive into foreign waters - literally! With impressive international outreach we're looking into segmentation bases like geographical locations via documenting countries (under the name Country) where transactions are conducted & consumers reside extending opportunities for businesses to map their customer bases, track regional performance metrics, extend localization efforts and overall contributing to the formulation of efficient segmentation strategies.

    All this invaluable information can be found in a sortable CSV file titled online_retail.csv. This dataset will prove incredibly advantageous for anyone interested in or researching online sales trends, developing customer profiles, or gaining insights into effective inventory management practices

    How to use the dataset

    Identifying Products: StockCode is the unique identifier for each product. You can use it to identify individual products, track their sales, or discover patterns related to specific items.

    Assessing Sales Volume: Quantity column tells you about the number of units of a product involved in each transaction. Along with InvoiceNo, you can analyze overall sales volume or specific purchases throughout your selected period.

    Observing Price Fluctuations: By using the UnitPrice, not only can the total cost per transaction be calculated (by multiplying with Quantity), but also insightful observations like price fluctuations over time or determining most profitable items could be derived.

    Analyzing Description Patterns/Trends: The Description field sheds light upon what kind of products are being traded. This could provide some inspiration for text analysis like term frequency-inverse document frequency (TF-IDF), sentiment analysis on descriptions, etc., to figure out popular trends at given times.

    Analysing Geographical Trends: With the help of Country column, geographical trends in sales volumes across different nations can easily be analyzed i.e., which location has more customers or which country orders more quantity or expensive units based on unit price and quantity columns respectively.

    Keep in mind that proper extraction and transformation methodology should be applied while handling data from different columns as per their datatypes (textual/alphanumeric/numeric) requirements.

    This dataset not only allows retailers to gain an immediate understanding into their operations but could also serve as a base dataset for those interested in machine learning regarding predicting future transactions

    Research Ideas

    • Inventory Management: By tracking the 'Quantity' and 'StockCode' over time, a business could use this data to notice if certain products are frequently purchased together or in specific seasons, allowing them to better stock their inventory.
    • Pricing Strategy:...
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Harsh Walia (2021). Retail Store Data [Dataset]. https://www.kaggle.com/datasets/harshwalia/online-store-data
Organization logo

Retail Store Data

Retail store Transacation data for bringing Insights

Explore at:
274 scholarly articles cite this dataset (View in Google Scholar)
zip(45407884 bytes)Available download formats
Dataset updated
Oct 26, 2021
Authors
Harsh Walia
Description

Context

This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail .

Content

Attribute Information:

InvoiceNo: Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric. InvoiceDate: Invice date and time. Numeric. The day and time when a transaction was generated. UnitPrice: Unit price. Numeric. Product price per unit in sterling (£). CustomerID: Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal. The name of the country where a customer resides.

PERFORM DATA ANALYSIS AND BRING INSIGHTS FROM THE DATA

Search
Clear search
Close search
Google apps
Main menu