100+ datasets found
  1. Google: share of online reviews 2021

    • statista.com
    Updated Dec 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Google: share of online reviews 2021 [Dataset]. https://www.statista.com/statistics/1305930/consumer-reviews-posted-google/
    Explore at:
    Dataset updated
    Dec 1, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2021, Google's share of online reviews increased to 71 percent, up from 67 percent in 2020, indicating a rise in willingness from consumers to share their experiences and opinions online. Overall, Google is the platform and search engine on which most consumers leave reviews for local businesses.

  2. u

    Amazon review data 2018

    • cseweb.ucsd.edu
    • nijianmo.github.io
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Amazon review data 2018 [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
    Explore at:
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    Context

    This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:

    • More reviews:

      • The total number of reviews is 233.1 million (142.8 million in 2014).
    • New reviews:

      • Current data includes reviews in the range May 1996 - Oct 2018.
    • Metadata: - We have added transaction metadata for each review shown on the review page.

      • Added more detailed metadata of the product landing page.

    Acknowledgements

    If you publish articles based on this dataset, please cite the following paper:

    • Jianmo Ni, Jiacheng Li, Julian McAuley. Justifying recommendations using distantly-labeled reviews and fined-grained aspects. EMNLP, 2019.
  3. Sites or apps used to evaluate local businesses in the U.S. 2023

    • statista.com
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Sites or apps used to evaluate local businesses in the U.S. 2023 [Dataset]. https://www.statista.com/statistics/315756/local-business-recommendation-methods/
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2023
    Area covered
    United States
    Description

    A November 2021 survey of online users in the United States found that 81 percent of respondents had used Google as a tool to evaluate local businesses in the past 12 months. Yelp was ranked second with over half of respondents using the review platform for such purpose.

  4. Online product review reading behavior in the UK 2021

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Online product review reading behavior in the UK 2021 [Dataset]. https://www.statista.com/statistics/1226424/online-review-reading-behavior-in-the-uk/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2021
    Area covered
    United Kingdom
    Description

    In 2021, many online shoppers in the United Kingdom (UK) considered what previous buyers had to say about products before purchasing the items themselves. Approximately **** in *** UK consumers stated they would check online reviews before buying from a particular business. Even more shoppers said they often avoid enterprises with a rating lower than four.

  5. Trustpilot reviews data in CSV format

    • crawlfeeds.com
    csv, zip
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Trustpilot reviews data in CSV format [Dataset]. https://crawlfeeds.com/datasets/trustpilot-reviews-data-in-csv-format
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Access our Trustpilot Reviews Data in CSV Format, offering a comprehensive collection of customer reviews from Trustpilot.

    This dataset includes detailed reviews, ratings, and feedback across various industries and businesses. Available in a convenient CSV format, it is ideal for market research, sentiment analysis, and competitive benchmarking.

    Leverage this data to gain insights into customer satisfaction, identify trends, and enhance your business strategies. Whether you're analyzing consumer sentiment or conducting competitive analysis, this dataset provides valuable information to support your needs.

  6. h

    amazon_us_reviews

    • huggingface.co
    • tensorflow.org
    Updated Jun 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polina Kazakova (2023). amazon_us_reviews [Dataset]. https://huggingface.co/datasets/polinaeterna/amazon_us_reviews
    Explore at:
    Dataset updated
    Jun 30, 2023
    Authors
    Polina Kazakova
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Amazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.

    Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).

    Each Dataset contains the following columns:

    • marketplace: 2 letter country code of the marketplace where the review was written.
    • customer_id: Random identifier that can be used to aggregate reviews written by a single author.
    • review_id: The unique ID of the review.
    • product_id: The unique Product ID the review pertains to. In the multilingual dataset the reviews for the same product in different countries can be grouped by the same product_id.
    • product_parent: Random identifier that can be used to aggregate reviews for the same product.
    • product_title: Title of the product.
    • product_category: Broad product category that can be used to group reviews (also used to group the dataset into coherent parts).
    • star_rating: The 1-5 star rating of the review.
    • helpful_votes: Number of helpful votes.
    • total_votes: Number of total votes the review received.
    • vine: Review was written as part of the Vine program.
    • verified_purchase: The review is on a verified purchase.
    • review_headline: The title of the review.
    • review_body: The review text.
    • review_date: The date the review was written.
  7. f

    Data from: Evaluation of classification techniques for identifying fake...

    • scielo.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrey Schmidt dos Santos; Luis Felipe Riehs Camargo; Daniel Pacheco Lacerda (2023). Evaluation of classification techniques for identifying fake reviews about products and services on the internet [Dataset]. http://doi.org/10.6084/m9.figshare.14283143.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELO journals
    Authors
    Andrey Schmidt dos Santos; Luis Felipe Riehs Camargo; Daniel Pacheco Lacerda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract: With the e-commerce growth, more people are buying products over the internet. To increase customer satisfaction, merchants provide spaces for product and service reviews. Products with positive reviews attract customers, while products with negative reviews lose customers. Following this idea, some individuals and corporations write fake reviews to promote their products and services or defame their competitors. The difficulty for finding these reviews was in the large amount of information available. One solution is to use data mining techniques and tools, such as the classification function. Exploring this situation, the present work evaluates classification techniques to identify fake reviews about products and services on the Internet. The research also presents a literature systematic review on fake reviews. The research used 8 classification algorithms. The algorithms were trained and tested with a hotels database. The CONCENSO algorithm presented the best result, with 88% in the precision indicator. After the first test, the algorithms classified reviews on another hotels database. To compare the results of this new classification, the Review Skeptic algorithm was used. The SVM and GLMNET algorithms presented the highest convergence with the Review Skeptic algorithm, classifying 83% of reviews with the same result. The research contributes by demonstrating the algorithms ability to understand consumers’ real reviews to products and services on the Internet. Another contribution is to be the pioneer in the investigation of fake reviews in Brazil and in production engineering.

  8. b

    Amazon reviews Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Mar 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Amazon reviews Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/reviews
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Mar 21, 2023
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.

  9. Number of reviews online shoppers read before making a purchasing decision...

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of reviews online shoppers read before making a purchasing decision 2019-2021 [Dataset]. https://www.statista.com/statistics/1020836/share-of-shoppers-reading-reviews-before-purchase/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2021
    Area covered
    Worldwide
    Description

    In recent years, it has become increasingly important to the consumer to read up on a product, business, or service before spending any money. In 2021, nearly ** percent of online shoppers typically read between *** and *** customer reviews before making a purchasing decision. Less than *** in *** shoppers did not have a habit of reading customer reviews before buying.

  10. m

    sentiment in customer reviews

    • data.mendeley.com
    Updated Jun 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anandakuttan B Unnithan (2018). sentiment in customer reviews [Dataset]. http://doi.org/10.17632/2zfbcy96vp.1
    Explore at:
    Dataset updated
    Jun 5, 2018
    Authors
    Anandakuttan B Unnithan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    9 variables including review comments scrapped from a leading online retail portal . Include reviews from 3600 customers

  11. d

    Consumer Review Data & Ratings, Business Listings Data from Yelp | Real-Time...

    • datarade.ai
    .json, .csv
    Updated May 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja (2024). Consumer Review Data & Ratings, Business Listings Data from Yelp | Real-Time API [Dataset]. https://datarade.ai/data-products/openweb-ninja-yelp-customer-review-data-ratings-local-bu-openweb-ninja
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    May 20, 2024
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    Åland Islands, Turks and Caicos Islands, Algeria, Mayotte, Anguilla, Barbados, Kosovo, Côte d'Ivoire, Turkmenistan, Micronesia (Federated States of)
    Description

    You can analyze the Yelp's data the OpenWeb Ninja API provides to gain insights into the business world. This includes looking at market trends, identifying popular business categories, reading customer reviews and ratings, and understanding the factors that contribute to business success or failure.

    The dataset includes all key business listings data & consumer review data:

    Business Type, Description, Categories, Location, Consumer Review Data, Review Rating, Review Reactions, Review Author Information, Licenses, Highlights, and more!

  12. d

    2005 - 2017 School Quality Review Ratings

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2005 - 2017 School Quality Review Ratings [Dataset]. https://catalog.data.gov/dataset/2005-2017-school-quality-review-ratings
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Yearly data of Quality Review ratings from 2005 to 2017

  13. Gender Bias In Online Reviews

    • figshare.com
    txt
    Updated Jan 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onochie Fan-osuala (2023). Gender Bias In Online Reviews [Dataset]. http://doi.org/10.6084/m9.figshare.12834617.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 19, 2023
    Dataset provided by
    figshare
    Authors
    Onochie Fan-osuala
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains 2 sets of data files that was used in studying genderbias in the evaluation and use of consumer online reviews. AmazonData.csv is data extracted from the Amazon site. YelpData.csv is data from the Yelp site.

  14. Online beauty shoppers who read reviews in the U.S. 2023

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Online beauty shoppers who read reviews in the U.S. 2023 [Dataset]. https://www.statista.com/statistics/1325957/online-beauty-shoppers-reviews-ratings-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2023
    Area covered
    United States
    Description

    In 2023, more than *** in *** consumers from the United States reported that they always read reviews when shopping for beauty products online. Additionally, **** percent reported that they sometimes consult online reviews.

  15. d

    Statistics review 2: Samples and populations

    • catalog.data.gov
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (2025). Statistics review 2: Samples and populations [Dataset]. https://catalog.data.gov/dataset/statistics-review-2-samples-and-populations
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    National Institutes of Health
    Description

    The previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.

  16. d

    Dataplex: Google Reviews & Ratings Dataset | Track Consumer Sentiment &...

    • data.dataplex-consulting.com
    Updated Mar 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataplex (2025). Dataplex: Google Reviews & Ratings Dataset | Track Consumer Sentiment & Location-Based Insights [Dataset]. https://data.dataplex-consulting.com/products/dataplex-google-reviews-ratings-dataset-track-consumer-s-dataplex
    Explore at:
    Dataset updated
    Mar 6, 2025
    Dataset authored and provided by
    Dataplex
    Area covered
    Montserrat, Uruguay, Bahamas, Rwanda, Argentina, Tanzania, Uzbekistan, Kuwait, Lao People's Democratic Republic, Mexico
    Description

    Gain valuable customer feedback for specific locations with daily updated Google Reviews & Ratings data. Perfect for businesses looking to analyze sentiment, track performance, and benchmark against competitors.

  17. Apple iPhone 15 (15 pro, plus and pro max) Reviews

    • kaggle.com
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nuhmanpk (2023). Apple iPhone 15 (15 pro, plus and pro max) Reviews [Dataset]. https://www.kaggle.com/datasets/nuhmanpk/iphone-15-15-pro-pro-max-reviews
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 20, 2023
    Dataset provided by
    Kaggle
    Authors
    nuhmanpk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contain video transcript from a limited number of youtubers who post Their review on iPhone 15, 15 plus , pro and pro max model . These are the videos used for the videos. Video Credits are owned by respective creators.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13244501%2Fc3bf6524f3ddfa376794de29f97651a1%2F_results_14_0.png?generation=1695205189424943&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13244501%2F645638973f5f8f5782cc8720ac4214c1%2F_results_15_0.png?generation=1695205202162850&alt=media" alt="">

    For more check Here

  18. E

    TripAdvisor Statistics By Users, Demographics And Facts (2025)

    • electroiq.com
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Electro IQ (2025). TripAdvisor Statistics By Users, Demographics And Facts (2025) [Dataset]. https://electroiq.com/stats/tripadvisor-statistics/
    Explore at:
    Dataset updated
    Apr 14, 2025
    Dataset authored and provided by
    Electro IQ
    License

    https://electroiq.com/privacy-policyhttps://electroiq.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    TripAdvisor Statistics: TripAdvisor, which started its journey in the year 2000, has become an integral pillar in the travel industry, providing a space where travelers can write reviews, book hotels, and learn about experiences. With the year 2025 now arriving, the company continues to play an important role in the travel decisions made across the globe.

    The article talks about how TripAdvisor statistics performed in the year 2024 through relevant figures regarding revenue, engagement from users, and market impact.​

  19. h

    Amazon-Reviews-2023

    • huggingface.co
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McAuley-Lab (2023). Amazon-Reviews-2023 [Dataset]. https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset authored and provided by
    McAuley-Lab
    Description

    Amazon Review 2023 is an updated version of the Amazon Review 2018 dataset. This dataset mainly includes reviews (ratings, text) and item metadata (desc- riptions, category information, price, brand, and images). Compared to the pre- vious versions, the 2023 version features larger size, newer reviews (up to Sep 2023), richer and cleaner meta data, and finer-grained timestamps (from day to milli-second).

  20. o

    Product and Price Data, Product Reviews Data from Google Shopping |...

    • datastore.openwebninja.com
    Updated Dec 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja (2023). Product and Price Data, Product Reviews Data from Google Shopping | Ecommerce Data | Real-Time API [Dataset]. https://datastore.openwebninja.com/products/openweb-ninja-product-data-product-reviews-data-more-fro-openweb-ninja
    Explore at:
    Dataset updated
    Dec 12, 2023
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    Anguilla, Saint Kitts and Nevis, Congo, Kazakhstan, Åland Islands, Namibia, Bouvet Island, Azerbaijan, Marshall Islands, Sri Lanka
    Description

    Fast and Reliable real-time API access to Product Data with 35B+ Product Listings, including extensive Product Details, Product Reviews Data, all Product Offers, and more, from Google Shopping - the largest product aggregate on the web.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2022). Google: share of online reviews 2021 [Dataset]. https://www.statista.com/statistics/1305930/consumer-reviews-posted-google/
Organization logo

Google: share of online reviews 2021

Explore at:
Dataset updated
Dec 1, 2022
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

In 2021, Google's share of online reviews increased to 71 percent, up from 67 percent in 2020, indicating a rise in willingness from consumers to share their experiences and opinions online. Overall, Google is the platform and search engine on which most consumers leave reviews for local businesses.

Search
Clear search
Close search
Google apps
Main menu