CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.
National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2020 estimates of housing units and 2021 estimates of population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.
The specific raster datasets included in this publication include:
Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.
Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).
Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.
Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.
Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).
Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.
Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).
Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.
Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.
Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.The geospatial data products described and distributed here are part of the Wildfire Risk to Communities project. This project was directed by Congress in the 2018 Consolidated Appropriations Act (i.e., 2018 Omnibus Act, H.R. 1625, Section 210: Wildfire Hazard Severity Mapping) to help U.S. communities understand components of their relative wildfire risk profile, the nature and effects of wildfire risk, and actions communities can take to mitigate risk. The first edition of these data represented the first time wildfire risk to communities had been mapped nationally with consistent methodology. They provided foundational information for comparing the relative wildfire risk among populated communities in the United States. In this version, the 2nd edition, we use improved modeling and mapping methodology and updated input data to generate the current suite of products.See the Wildfire Risk to Communities website at https://www.wildfirerisk.org for complete project information and an interactive web application for exploring some of the datasets published here. We deliver the data here as zip files by U.S. state (including AK and HI), and for the full extent of the continental U.S.
This data publication is a second edition and represents an update to any previous versions of Wildfire Risk to Communities risk datasets published by the USDA Forest Service. This second edition was originally published on 06/03/2024. On 09/10/2024, a minor correction was made to the abstract in this overall metadata document as well as the individual metadata documents associated with each raster dataset. The supplemental file containing data product descriptions was also updated. In addition, we separated the large CONUS download into a series of smaller zip files (one for each layer).
There are two companion data publications that are part of the WRC 2.0 data update: one that characterizes landscape-wide wildfire hazard and risk for the nation (Scott et al. 2024, https://doi.org/10.2737/RDS-2020-0016-2), and one that delineates wildfire risk reduction zones and provides tabular summaries of wildfire hazard and risk raster datasets (Dillon et al. 2024, https://doi.org/10.2737/RDS-2024-0030).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
This layer contains wildfire hazard potential (WHP) data for the conterminous United States aggregated from states to block groups and 50 km hex bins then enriched with demographic data. The data is from the USDA Forest Service Fire Modeling Institute providing an index of WHP at a 270 meter resolution. Wildfire hazard potential provides information on the relative potential for wildfire that would be difficult for fire crews to contain. "Areas with higher wildfire potential values represent fuels with a higher likelihood of experiencing high-intensity fire with torching, crowning, and other forms of extreme fire behavior." - Fire Modeling Institute. A score of 5 is very high risk and a score between 0-1 is likely non-burnable area such as water or asphalt. "On its own, WHP is not an explicit map of wildfire threat or risk, but when paired with spatial data depicting highly valued resources and assets such as communities, structures, or powerlines, it can approximate relative wildfire risk to those resources and assets. WHP is also not a forecast or wildfire outlook for any particular season, as it does not include any information on current or forecasted weather or fuel moisture conditions. It is instead intended for long-term strategic planning and fuels management."Each layer has been enriched with 2020 Esri demographic attributes to better approximate wildfire hazard risk relating to the human population. This layer is available in a ready to use web map. A hosted imagery layer of this data is available in ArcGIS Living Atlas for additional analysis.Data notes:Zonal Statistics as Table were run against a local copy of the WHP data using US standard geographies as the feature zone input for the analysis. Geographies included are: State, County, Congressional District, ZIP Code, Tract, and Block Group. Statistical tables were joined to geographies. To learn more about zonal statistics, view the documentation here. 50 km hex bins were created using Generate Tessellation and then joined to zonal statistics as described above (step 1).Data was enriched with 2020 Esri Demographics. Attributes include population, households & housing units, growth rate, and calculated variables such as population change over time. To create the population-weighted attributes on the state, congressional district, and county layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average WHP were multiplied.The hex bins were converted into centroids and summarized within the state, congressional district, and county boundaries.The summation of these values were then divided by the total population of each respective geography.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.
National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.
The specific raster datasets in this publication include:
Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.
Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.
Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.
Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.
Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.
Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.
Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.
Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.The geospatial data products described and distributed here are part of the Wildfire Risk to Communities project. This project was directed by Congress in the 2018 Consolidated Appropriations Act (i.e., 2018 Omnibus Act, H.R. 1625, Section 210: Wildfire Hazard Severity Mapping) to help U.S. communities understand components of their relative wildfire risk profile, the nature and effects of wildfire risk, and actions communities can take to mitigate risk. The first edition of these data represented the first time wildfire risk to communities had been mapped nationally with consistent methodology. They provided foundational information for comparing the relative wildfire risk among populated communities in the United States. In this version, the 2nd edition, we use improved modeling and mapping methodology and updated input data to generate the current suite of products.See the Wildfire Risk to Communities website at https://www.wildfirerisk.org for complete project information and an interactive web application for exploring some of the datasets published here. We deliver the data here as zip files by U.S. state (including AK and HI), and for the full extent of the continental U.S.
This data publication is a second edition and represents an update to any previous versions of Wildfire Risk to Communities risk datasets published by the USDA Forest Service. There are two companion data publications that are part of the WRC 2.0 data update: one that includes datasets of wildfire hazard and risk for populated areas of the nation, where housing units are currently present (Jaffe et al. 2024, https://doi.org/10.2737/RDS-2020-0060-2), and one that delineates wildfire risk reduction zones and provides tabular summaries of wildfire hazard and risk raster datasets (Dillon et al. 2024, https://doi.org/10.2737/RDS-2024-0030).
This dataset is the 2023 version of wildfire hazard potential (WHP) for the United States. The files included in this data publication represent an update to any previous versions of WHP or wildland fire potential (WFP) published by the USDA Forest Service. WHP is an index that quantifies the relative potential for high-intensity wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed. This 2023 version of WHP was created from updated national wildfire hazard datasets of annual burn probability and fire intensity generated by the USDA Forest Service, Rocky Mountain Research Station with the large fire simulation system (FSim). Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were the primary inputs to the updated FSim modeling work and therefore form the foundation for this version of the WHP. As such, the data presented here reflect landscape conditions as of the end of 2020. LANDFIRE 2020 vegetation and fuels data were also used directly in the WHP mapping process, along with updated point locations of fire occurrence ca. 1992-2020. With these datasets as inputs, we produced an index of WHP for all of the conterminous United States at 270-meter resolution. We present the final WHP map in two forms: 1) continuous integer values, and 2) five WHP classes of very low, low, moderate, high, and very high. On its own, WHP is not an explicit map of wildfire threat or risk, but when paired with spatial data depicting highly valued resources and assets such as structures or powerlines, it can approximate relative wildfire risk to those specific resources and assets. WHP is also not a forecast or wildfire outlook for any particular season, as it does not include any information on current or forecasted weather or fuel moisture conditions. It is instead intended for long-term strategic fuels management.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The escalating incidents of wildfire pose a critical challenge in Canada, necessitating an understanding of forest structures for the effective implementation of fuel treatment strategies to mitigate wildfire risks. While previous research has explored forest structures and wildfire risk, a gap remains in translating these studies into operational solutions for foresters and land managers. This study addresses this critical gap by employing Light Detection and Ranging (LiDAR) technology for a preliminary assessment of wildfire risks in the Wildfire Urban Interface (WUI) of Whistler. Utilizing LiDAR’s ability to provide a detailed point cloud, the study introduces a simplified yet effective method for mapping crown fuel, ladder fuel and surface fuel. In assessing the crown fuel and ladder fuel, the project uses Canopy Height Models (CHM) and tree segmentation techniques to quantify forest structure. A notable result is the development of a tree volume index (TVI), which allows for a macro-scale evaluation of fuel volumes crucial for wildfire risk assessment. The analysis identifies a moderate positive correlation (0.55) between the LiDAR-derived TVI and data from the Canada Forest Satellite-Based Inventory 2020 (SBFI), demonstrating the approach’s validity and effectiveness in assessing wildfire risks. Furthermore, the study identifies potential surface fuel sources by analyzing pixel metrics, such as the percentage of vegetation returns between 1 and 2.5 m, thus offering insights into wildfire risk assessment. This pilot study exemplifies a novel approach to preliminary fuel mapping, facilitating the understanding of complex forest structures across extensive areas through LiDAR technology, and presents a practical methodology to improve wildfire risk management strategies.
Context    WUI wildfire disasters are increasing, as fires are pushed by strong winds and drier fuels across landscapes and into communities. Possible disasters make maintaining and restoring landscape-scale fire in fire-adapted ecosystems difficult. Rapid action is needed to reduce building loss in WUI wildfire disasters. Objectives      In a Colorado case study, I used distance-based empirical modeling to refine potential risk of building loss in WUI wildfire disasters to focus risk-reduction efforts. Methods   New empirical modeling showed 95% of USA building loss in WUI wildfire disasters was within 100 m of wildland vegetation. I used modeling to estimate and map potential relative risk of a WUI wildfire disaster for each of 2,185,953 buildings in Colorado. Results     High-risk buildings were 241,375 or 11% of total buildings. However, the 20-40 m essential defensible space around these buildings covered only 46,767- 114,084 ha. Area within 100 m of wildland vegetation, conta...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data publication includes Community Wildfire Risk Reduction Zone rasters, products delivered as part of the Wildfire Risk to Communities project. There are two types of data included: 1) raster spatial data that delineate Community Wildfire Risk Reduction Zones for all populated areas in the continental United States (CONUS), Alaska, and Hawaii; and 2) tabular summaries by communities, counties, tribal areas, and states of wildfire hazard and risk produced as part of the Wildfire Risk to Communities (WRC) project.
The Community Wildfire Risk Reduction Zones (CWiRRZ) product is a 30-m raster delineating areas where mitigation activities will be most effective at protecting homes from most types of wildfire. The zones are determined by the spatial coincidence of wildfire likelihood (Burn Probability), and populated areas. There are four Risk Reduction Zones: Minimal Exposure Zone, Indirect Exposure Zone, Direct Exposure Zone, and Wildfire Transmission Zone. However, the CWiRRZ raster can be further deconstructed into ten zones, wherein the Wildfire Transmission Zone is separated into the following surface fuel types: Tree, Shrub, Grass, Agriculture, Non-Vegetated, Water, and Outlying Wildlands (area beyond 2400-m from buildings).The geospatial data products described and distributed here are part of the Wildfire Risk to Communities project. This project was directed by Congress in the 2018 Consolidated Appropriations Act (i.e., 2018 Omnibus Act, H.R. 1625, Section 210: Wildfire Hazard Severity Mapping) to help U.S. communities understand components of their relative wildfire risk profile, the nature and effects of wildfire risk, and actions communities can take to mitigate risk.
These data serve two purposes: 1) provide nationally-consistent spatial data that could be used to summarize hazard and risk to populated areas and take into consideration areas with housing units as well as adjacent areas with wildland fuels; and 2) provide communities with a way to spatially identify where different types of risk mitigation activities are likely to be most effective.See the Wildfire Risk to Communities (WRC) website at https://www.wildfirerisk.org for complete project information and an interactive web application for exploring some of the data published here.
These data are considered part of WCR 2.0 which also includes: 1) Scott et al. (2024) containing data regarding wildfire risk across all lands, and 2) Jaffe et al. (2024) containing wildfire risk across lands where only housing units current exist.
These data were originally published on 05/28/2024. On 05/27/2025, minor metadata updates were made and an additional set of tabular summaries have been provided. We re-summarized wildfire hazard and risk metrics within Census state, county, and tribal area polygons using the new Census boundaries and names which are current through the end of 2023. These data will now match what is available on the Wildfire Risk to Communities website (wildfirerisk.org). The original summaries are still included and referred to as "2024" summaries, while the new summaries are referenced as "2025" summaries.
Wildfire - Fire Risk and Fire Responsibility Areas (CAL FIRE) for development of the Parcel Inventory dataset for the Housing Element Site Selection (HESS) Pre-Screening Tool.
** This data set represents Moderate, High, and Very High Fire Hazard Severity Zones in State Responsibility Areas (SRA) and Very High Fire Hazard Severity Zones in Local Responsibility Areas (LRA) for the San Francisco Bay Region and some of its surrounding counties. The data was assembled by the Metropolitan Transportation Commission from multiple shapefiles provided by the California Department of Forestry and Fire Protection. The SRA data was extracted from a statewide shapefile and the LRA data is a combination of county shapefiles. All source data was downloaded from the Office of the State Fire Marshal's Fire Hazard Severity Zones Maps page (https://osfm.fire.ca.gov/divisions/community-wildfire-preparedness-and-mitigation/wildland-hazards-building-codes/fire-hazard-severity-zones-maps/). **
State Responsibility Areas PRC 4201 - 4204 and Govt. Code 51175-89 direct CAL FIRE to map areas of significant fire hazards based on fuels, terrain, weather, and other relevant factors. These zones, referred to as Fire Hazard Severity Zones (FHSZ), define the application of various mitigation strategies to reduce risk associated with wildland fires.
CAL FIRE is remapping FHSZ for SRA and Very High Fire Hazard Severity Zones (VHFHSZ) recommendations in LRA to provide updated map zones, based on new data, science, and technology.
Local Responsibility Areas Government Code 51175-89 directs the CAL FIRE to identify areas of very high fire hazard severity zones within LRA. Mapping of the areas, referred to as VHFHSZ, is based on data and models of, potential fuels over a 30-50 year time horizon and their associated expected fire behavior, and expected burn probabilities to quantify the likelihood and nature of vegetation fire exposure (including firebrands) to buildings. Details on the project and specific modeling methodology can be found at https://frap.cdf.ca.gov/projects/hazard/methods.html. Local Responsibility Area VHFHSZ maps were initially developed in the mid-1990s and are now being updated based on improved science, mapping techniques, and data.
Local government had 120 days to designate, by ordinance, very high fire hazard severity zones within their jurisdiction after receiving the CAL FIRE recommendations. Local governments were able to add additional VHFHSZs. There was no requirement for local government to report their final action to CAL FIRE when the recommended zones are adopted. Consequently, users are directed to the appropriate local entity (county, city, fire department, or Fire Protection District) to determine the status of the local fire hazard severity zone ordinance.
In late 2005, to be effective in 2008, the California Building Commission adopted California Building Code Chapter 7A requiring new buildings in VHFHSZs to use ignition resistant construction methods and materials. These new codes include provisions to improve the ignition resistance of buildings, especially from firebrands. The updated very high fire hazard severity zones will be used by building officials for new building permits in LRA. The updated zones will also be used to identify property whose owners must comply with natural hazards disclosure requirements at time of property sale and 100 foot defensible space clearance. It is likely that the fire hazard severity zones will be used for updates to the safety element of general plans.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
The threat of potential wildfires present a danger to residential homes, commercial areas, and natural ecosystems. It is important to track AFD Wildfire Division's mitigation efforts to help prioritize and direct resources to vulnerable areas, identify neighborhoods for community outreach efforts, and prepare for emergency response.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Risk to Homes integrates wildfire likelihood and intensity with generalized consequences to a home everywhere on the landscape, as if structures were present, and if a wildfire occurs. This data is based on modeled vegetation and not on building construction materials. No matter the impact level, remember that conditions vary widely with local topography, fuels, and weather, especially local winds. In all areas, under warm, dry, windy, and drought conditions, expect higher hazard conditions which may result in higher likelihood of fire starts, higher fire intensities, more ember activity, a wildfire more difficult to control, and more severe fire effects and impacts. 5 Categories; Low 0-40th Moderate 40-70th High 70-90th Very High 90-95th Extreme - >95th Water and Non-Burnable Low: The potential impact to structures when wildfire occurs is expected to be low. If a fire ignites near a structure, there is potential for loss. Low represents up to the 0 to 40th percentile of values across the landscape. Moderate: The potential impact to structures when wildfire occurs is moderate. If a fire ignites near a structure, there is high potential for loss. High represents the 40th to 70th percentile of values across the landscape. High: The potential impact to structures when wildfire occurs is high. If a fire ignites near a structure, there is high potential for loss. High represents the 70th to 90th percentile of values across the landscape. Very High: The potential impact to structures when wildfire occurs is very high. If a fire ignites near a structure, there is high potential for loss. High represents the 90th to 95th percentile of values across the landscape. Extreme: The potential impact to structures when wildfire occurs is very high. If a fire ignites near a structure, there is high potential for loss. High represents the top 5 percent of values across the landscape.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The wildland fire potential (WFP) map is a raster geospatial product produced by the USDA Forest Service, Fire Modeling Institute that is intended to be used in analyses of wildfire risk or hazardous fuels prioritization at large landscapes (100s of square miles) up through regional or national scales. The WFP map builds upon, and integrates, estimates of burn probability (BP) and conditional probabilities of fire intensity levels (FILs) generated for the national interagency Fire Program Analysis system (FPA) using a simulation modeling system called the Large Fire Simulator (FSim; Finney et al. 2011). The specific objective of the 2012 WFP map is to depict the relative potential for wildfire that would be difficult for suppression resources to contain, based on past fire occurrence, 2008 fuels data from LANDFIRE, and 2012 estimates of wildfire likelihood and intensity from FSim. Areas with higher WFP values, therefore, represent fuels with a higher probability of experiencing high-intensity fire with torching, crowning, and other forms of extreme fire behavior under conducive weather conditions. Using the FPA FSim products as inputs, as well as spatial data for vegetation and fuels characteristics from LANDFIRE and point locations of fire occurrence from FPA (ca. 1992 - 2010), we used a logical series of geospatial processing steps to produce an index of WFP for all of the conterminous United States at 270 meter resolution. The final WFP map is classified into five WFP classes of very low, low, moderate, high, and very high. We don't intend for the WFP map to take the place of any of the FSim products; rather, we hope that it provides a useful addition to the information available to managers, policy makers, and scientists interested in wildland fire risk analysis in the United States. On its own, WFP does not provide an explicit map of wildfire threat or risk, because no information on the effects of wildfire on specific values such as habitats, structures or infrastructure is incorporated in its development. However, the WFP map could be used to create value-specific risk maps when paired with spatial data depicting highly valued resources (Thompson et al. 2011). It is important to note that the WFP is also not a forecast or wildfire outlook for any particular season, as it does not include any information on current or forecasted weather or fuel moisture conditions. It is instead intended for long-term strategic planning and fuels management.This dataset is the classified Wildland Fire Potential (WFP). It is intended for use in strategic wildland fire planning and land management planning at mostly regional to national scales. We have classified continuous WFP values into very low, low, moderate, high, and very high WFP classes, with national wildland fire and fuels planning objectives in mind.For a technical overview of the Fire Simulation (FSim) system developed by the USDA Forest Service, Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk see Finney et al. 2011. The utility of the calibrated FSim BP and FIL data for quantitative geospatial wildfire risk assessment is detailed in a companion paper by Thompson et al. 2011.
Finney, Mark A.; McHugh, Charles W.; Grenfell, Isaac C.; Riley, Karin L.; Short, Karen C. 2011. A Simulation of Probabilistic Wildfire Risk Components for the Continental United States. Stochastic Environmental Research and Risk Assessment 25:973-1000. https://doi.org/10.1007/s00477-011-0462-z
Thompson, Matthew P.; Calkin, David E.; Finney, Mark A.; Ager, Alan A.; Gilbertson-Day, Julie W. 2011. Integrated national-scale assessment of wildfire risk to human and ecological values. Stochastic Environmental Research and Risk Assessment 25:761-780. https://doi.org/10.1007/s00477-011-0461-0
Original metadata date was 11/09/2015. Minor metadata updates on 12/15/2016 and 11/13/2019.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.