Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Statutory Main Rivers Map is a spatial (polyline) dataset that defines statutory watercourses in England designated as Main Rivers by the Environment Agency.
Watercourses designated as ‘main river’ are generally the larger arterial watercourses. The Environment Agency has permissive powers, but not a duty, to carry out maintenance, improvement or construction work on designated main rivers.
All other open water courses in England are determined by statute as an ‘ordinary watercourse’. On these watercourses the Lead Local flood Authority or, if within an Internal Drainage District, the Internal Drainage Board have similar permissive powers to maintain and improve.
Web Map containing Statutory Main River Map, Statutory Main River Map Variations 2022 and Statutory Main River Variations pre 2021 feature layers.Created for use by Web Mapping Application: Main River Map
A slow-moving area of low pressure and a high amount of atmospheric moisture produced heavy rainfall across Louisiana and southwest Mississippi in August 2016. Over 31 inches of rain was reported in Watson, 30 miles northeast of Baton Rouge, over the duration of the event. The result was major flooding that occurred in the southern portions of Louisiana and included areas surrounding Baton Rouge and Lafayette along rivers such as the Amite, Comite, Tangipahoa, Tickfaw, Vermilion, and Mermentau. The U.S. Geological Survey (USGS) Lower Mississippi-Gulf Water Science Center operates many continuous, streamflow-gaging stations in the impacted area. Peak streamflows of record were measured at 10 locations, and seven other locations experienced peak streamflows ranking in the top 5 for the duration of the period of record. In August 2016, USGS personnel made fifty streamflow measurements at 21 locations on streams in Louisiana. Many of those streamflow measurements were made for the purpose of verifying the accuracy of the stage-streamflow relation at the associated gaging station. USGS personnel also recovered and documented 590 high-water marks after the storm event by noting the location and height of the water above land surface. Many of these high water marks were used to create twelve flood-inundation maps for selected communities of Louisiana that experienced flooding in August 2016. This data release provides the actual flood-depth measurements made in selected river basins of Louisiana that were used to produce the flood-inundation maps published in the companion product (Watson and others, 2017). Reference Watson, K.M., Storm, J.B., Breaker, B.K., and Rose, C.E., 2017, Characterization of peak streamflows and flood inundation of selected areas in Louisiana from the August 2016 flood: U.S. Geological Survey Scientific Investigations Report 2017–5005, 26 p., https://doi.org/10.3133/sir20175005.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Mosaic of old river maps in ECW made from old river maps that have been scanned. After this, the leaf edges are removed and the images are georeferenced in RD. After this, a mosaic was made in ECW format for each print, series or revision. In a corresponding index file (shape) you can find out which year each individual card is.
Map of the rivers the Upper Rhine, the Waal, the Merwede, the Oude and part of the Nieuwe Maas from Lobith to Brielle: in twenty sheets in addition to two supplementary sheets for the Dordtsche Kil / manufactured by order of his Excellency the Minister of the Interior, under the direction of the Chief Engineer at the General Service of the Water Management B.H. Goudriaan. - Scale 1:10,000. - [Delft]: General Department of Water Management, 1830-1835. ([Delft] : the Office and the printing works of the Directorate of Military Reconnaissance). - 1 map series, in 27 sheets: lithography; various formats. A number of sheets of the first series of the river map of the Upper Rhine exist with "Normal Lines Gelderland" in handwriting. On these sheets the results of the bank measurements in 1850-1851 and 1872-1873 are written in manuscript. Three additional map sheets are kept with the depositor of this river map, produced in 1863, on which the river positions and emergency levels along the Dutch main rivers are indicated.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Statutory Main River Map Variations dataset defines proposed changes to the Statutory Main River Map.
Statutory Main Rivers Map defines statutory watercourses in England designated as Main Rivers by Environment Agency.
Watercourses designated as ‘main river’ are generally the larger arterial watercourses. The Environment Agency has permissive powers, but not a duty, to carry out maintenance, improvement or construction work on designated main rivers.
All other open water courses in England are determined by statute as an ‘ordinary watercourse’. On these watercourses the Lead Local flood Authority or, if within an Internal Drainage District, the Internal Drainage Board have similar permissive powers to maintain and improve.
The Environment Agency notifies the public and interested parties of our intentions to make a change to the statutory main river map and decides which watercourses are designated as Main Rivers following a legal process to determine and publish changes.
The change, or variation, to the Statutory Main River Map is either a deletion (also known as a demainment) or an addition (also known as an enmainment).
There are two reasons for a change to the Statutory Main River Map - Designation and Factual.
Designation changes are required when we make a decision to lengthen or shorten the section of a river designated as a 'main river'. These changes will determine which risk management authority may carry out maintenance, improvement or construction work on the watercourse. These changes result also in differing legislation applying to the riparian owner and others with an interest.
Factual changes may be required to update the map to represent the real position of the watercourse. They do not involve any changes of authority or management. Typical examples of factual changes are when: a watercourse has changed course naturally, a watercourse has been diverted or a survey of a culvert shows a different alignment.
A change to the Statutory Main River Map goes through the following stages (identified as Status within the data):
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
A 49" x 23" general reference river basin wall map containing river basin boundaries, county boundaries, roads, major water bodies, and cities.
Use this map to explore spatial data in the American River watershed. To add additional data: (1) click Modify Map; (2) then click Add; (3) then click Search for Layers; and (4) in the Sierra Nevada Conservancy search box, type American River Watershed to find extra data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Mosaic of old river maps in ECW made from old river maps that have been scanned. After this, the leaf margins were removed and the images were georeferenced in RD. After this, a mosaic was made in ECW format for each edition, series or revision. In an accompanying index file (shape) you can find the year of each separate card. Map of the rivers Oude and Nieuwe Merwede and the rivers in the Bergsche Veld: in nine sheets / by order of His Excellency the Minister of the Interior, under the direction of the Chief Inspector of the Water Management L.J.A. van der Kun ; measured and produced by the land surveyors at the Public Works Department E. Olivier Dz. And F.F.J. Machen. - 1:10,000. - [Delft: Algemeene Dienst van den Waterstaat, 1857-1858 ([Delft]: Topographic Bureau and Printing Office of the Department of War). - 1 series in 910
The statutory main river map is a 1:10,000 scale spatial (polyline) dataset that defines statutory watercourses designated by Natural Resources Wales as main rivers. The data is for Wales only. 'Main rivers' are usually larger streams and rivers, but some of them are small watercourses of significance. They include certain structures that control or regulate the flow of water in, into or out of the channel.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Mosaic of old river maps in ECW made from old river maps that have been scanned. After this, the leaf edges are removed and the images are georeferenced in RD. After this, a mosaic was made in ECW format for each print, series or revision. In a corresponding index file (shape) you can find out which year each individual card is.
Map of the river IJssel from Westervoort to Kampen : in twenty sheets in addition to two supplementary sheets / produced by order of His Excellency the Minister of Interior Affairs, under the direction of the acting Chief Engineer and of the Engineer at the General Service of the Water Management L.J.A. van der Kun and R. Musquetier. - Scale 1:10,000. - Delft: General Department of Water Management, 1840-1846. -1 series in 27 sheets : lithography; various formats.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This water flow network dataset is a route feature class rather than a simple polyline. The geometry is generated by merging the river lines of individual geometric network datasets. This layer contains an integrated flow network that includes known flow connections through rivers, lakes and groundwater aquifers. In places where the network is depicted flowing through lakes or through underground channels, the flow channels are schematic only, and do not represent the precise location of these flow channels. The appropriate Geological Survey Ireland data sets should be consulted where underground flows or connections are known or suspected.This dataset is provided by the Environmental Protection Agency (EPA). For more information please see https://gis.epa.ie/geonetwork/srv/eng/catalog.search#/metadata/c4043e19-38ec-4120-a588-8cd01ac94a9c
A slow-moving area of low pressure and a high amount of atmospheric moisture produced heavy rainfall across Louisiana and southwest Mississippi in August 2016. Over 31 inches of rain was reported in Watson, 30 miles northeast of Baton Rouge, over the duration of the event. The result was major flooding that occurred in the southern portions of Louisiana and included areas surrounding Baton Rouge and Lafayette along rivers such as the Amite, Comite, Tangipahoa, Tickfaw, Vermilion, and Mermentau. The U.S. Geological Survey (USGS) Lower Mississippi-Gulf Water Science Center operates many continuous, streamflow-gaging stations in the impacted area. Peak streamflows of record were measured at 10 locations, and seven other locations experienced peak streamflows ranking in the top 5 for the duration of the period of record. In August 2016, USGS personnel made fifty streamflow measurements at 21 locations on streams in Louisiana. Many of those streamflow measurements were made for the purpose of verifying the accuracy of the stage-streamflow relation at the associated gaging station. USGS personnel also recovered and documented 590 high-water marks after the storm event by noting the location and height of the water above land surface. Many of these high water marks were used to create twelve flood-inundation maps for selected communities of Louisiana that experienced flooding in August 2016. This data release provides the actual flood-depth measurements made in selected river basins of Louisiana that were used to produce the flood-inundation maps published in the companion product (Watson and others, 2017). Reference Watson, K.M., Storm, J.B., Breaker, B.K., and Rose, C.E., 2017, Characterization of peak streamflows and flood inundation of selected areas in Louisiana from the August 2016 flood: U.S. Geological Survey Scientific Investigations Report 2017–5005, 26 p., https://doi.org/10.3133/sir20175005.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Mosaic of old river maps in ECW made from old river maps that have been scanned. After this, the leaf edges are removed and the images are georeferenced in RD. After this, a mosaic was made in ECW format for each print, series or revision. In a corresponding index file (shape) you can find out which year each individual card is.
Upper Rhine, Waal, Upper and Lower Merwede, Dordsche Kil, Oude Maas, Noord, Brielsche Nieuwe Maas / [Rijkswaterstaat]. - Scale 1:10,000. - [Second revision]. - ['s-Gravenhage ; Delft: Topographical establishment: Topographical Service, 1914-1961]. - 1 series in 35 sheets : lithography; various formats. Title taken from map sheet Lobith. 1917. The deck titles vary along the top of the card. Attributions and impressions vary. Some map sheets in combination with other series. Some sheets with 2nd, 3rd, 4th, 5th partial 5th, and 6th edition. This mosaic contains the additional editions of this series.
This dataset comprises river centrelines, digitised from OS 1:50,000 mapping. It consists of four components: rivers; canals; surface pipes (man-made channels for transporting water such as aqueducts and leats); and miscellaneous channels (including estuary and lake centre-lines and some underground channels). This dataset is a representation of the river network in Great Britain as a set of line segments, i.e. it does not comprise a geometric network.
Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as input were acquired by the SuperDove cubesats comprising the PlanetScope constellation, but the original images cannot be redistributed due to licensing restrictions; the end products derived from these images are provided instead. The large number of cubesats in the PlanetScope constellation allows for frequent temporal coverage and the neural network-based approach takes advantage of this high density time series of information by estimating depth via one of four NNDR methods described in the manuscript: 1. Mean-spec: the images are averaged over time and the resulting mean image is used as input to the NNDR. 2. Mean-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is averaged to obtain the final depth map. 3. NN-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is then used as input to a second, ensembling neural network that essentially weights the depth estimates from the individual images so as to optimize the agreement between the image-derived depth estimates and field measurements of water depth used for training; the output from the ensembling neural network serves as the final depth map. 4. Optimal single image: a separate NNDR is applied independently to each image in the time series and only the image that yields the strongest agreement between the image-derived depth estimates and the field measurements of water depth used for training is used as the final depth map. MATLAB (Version 24.1, including the Deep Learning Toolbox) for performing this analysis is provided in the function NN_depth_ensembling.m available on the main landing page for the data release of which this is a child item, along with a flow chart illustrating the four different neural network-based depth retrieval methods. To develop and test this new NNDR approach, the method was applied to satellite images from the American River near Fair Oaks, CA, acquired in October 2020. Field measurements of water depth available through another data release (Legleiter, C.J., and Harrison, L.R., 2022, Field measurements of water depth from the American River near Fair Oaks, CA, October 19-21, 2020: U.S. Geological Survey data release, https://doi.org/10.5066/P92PNWE5) were used for training and validation. The depth maps produced via each of the four methods described above are provided as GeoTIFF files, with file name suffixes that indicate the method employed: American_mean-spec.tif, American_mean-depth.tif, American_NN-depth.tif, and American-single-image.tif. The spatial resolution of the depth maps is 3 meters and the pixel values within each map are water depth estimates in units of meters.
Mosaic of old river maps in ECW made from old river maps that have been scanned. After this, the leaf margins were removed and the images were georeferenced in RD. After this, a mosaic was made in ECW format for each edition, series or revision. In an accompanying index file (shape) you can find the year of each separate card. Dammed Maas, Upper and Lower Merwede, Bergsche Maas, Amer, Biesbosch, Hollandsch Diep, Haringvliet and part of Volkerak / [Rijkswaterstaat]. - The Hague: Staatsdrukkerij, 1933-1960. - 1 series in 53 pages: lithography; various formats. Author credits and impression vary. The cover titles along the top of the card vary. Single map sheets in combination with other series.
https://data.gov.tw/licensehttps://data.gov.tw/license
This is a view service of the CEH 1:50k rivers dataset. This is a river centreline network, based originally on OS 1:50,000 mapping. There are four layer: rivers; canals; surface pipes (man-made channels such as aqueducts and leats) and miscellaneous channels (including estuary and lake centre-lines and some underground channels).The dataset was produced within a long-term project of the Institute of Hydrology (now CEH) between the mid-1970s and the late 1990s. The project digitised, (either manually or using 'laser scanners') the "blue line" layer of the Ordnance Survey's 1:50,000 2nd series (Landranger) maps. The dataset consists of all the single blue lines from the source maps, plus centre-lines from double sided rivers, lakes and estuaries. All gaps in the source material have been closed, using local knowledge where necessary, to give a river network that is continuous from source to mouth
https://data.gov.tw/licensehttps://data.gov.tw/license
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Mosaic of old river maps in ECW made from old river maps that have been scanned. After this, the leaf edges are removed and the images are georeferenced in RD. After this, a mosaic was made in ECW format for each print, series or revision. In a corresponding index file (shape) you can find out which year each individual card is.
Upper Rhine, Waal, Upper and Lower Merwede, Dordsche Kil, Oude Maas, Noord, Brielsche Nieuwe Maas / [Rijkswaterstaat]. - Scale 1:10,000. - [Second revision]. - ['s-Gravenhage ; Delft: Topographical establishment: Topographical Service, 1914-1961]. - 1 series in 35 sheets : lithography; various formats. Title taken from map sheet Lobith. 1917. The deck titles vary along the top of the card. Attributions and impressions vary. Some map sheets in combination with other series. Some sheets with 2nd, 3rd, 4th, 5th partial 5th, and 6th edition.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Statutory Main Rivers Map is a spatial (polyline) dataset that defines statutory watercourses in England designated as Main Rivers by the Environment Agency.
Watercourses designated as ‘main river’ are generally the larger arterial watercourses. The Environment Agency has permissive powers, but not a duty, to carry out maintenance, improvement or construction work on designated main rivers.
All other open water courses in England are determined by statute as an ‘ordinary watercourse’. On these watercourses the Lead Local flood Authority or, if within an Internal Drainage District, the Internal Drainage Board have similar permissive powers to maintain and improve.