Riverside County's GIS web viewer that supplies various datasets containing parcel, transportation, environmental, and boundary layers and more.
Vector polygon map data of property parcels from Riverside County, California containing 846, 890 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
APN refers to Assessor's Parcel Number FLAG refers to a special designation for the parcel
APN: Assessor Parcel NumberFLOOR: Floor location of condoUNIT: Unit number for addressing purposes
New CREST General Table to replace current General table from the Assessor.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This shapefile contains tax rate area (TRA) boundaries in Riverside County for the specified assessment roll year. Boundary alignment is based on the 2017 county parcel map. A tax rate area (TRA) is a geographic area within the jurisdiction of a unique combination of cities, schools, and revenue districts that utilize the regular city or county assessment roll, per Government Code 54900. Each TRA is assigned a six-digit numeric identifier, referred to as a TRA number. TRA = tax rate area number
This Digital Raster Graphic (DRG) was created using scanned U.S. Geological Survey 7.5-minute 1 to 24,000 scale maps georeferenced in Universal Transverse Mercator (UTM) grid. DRGs can be acquired with or without collar information for use in Geographic Information System (GIS) environment. Collarless DRGs can be edge matched creating a continuous collection of topographic maps.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Cook County GIS Dept map of Proviso, River Forest and Riverside Townships in a pdf format. Includes streets and municipalities.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This ownership dataset utilizes a methodology that results in a federal ownership extent that matches the Federal Responsibility Areas (FRA) footprint from CAL FIRE's State Responsibility Areas for Fire Protection (SRA) data. FRA lands are snapped to county parcel data, thus federal ownership areas will also be snapped. Since SRA Fees were first implemented in 2011, CAL FIRE has devoted significant resources to improve the quality of SRA data. This includes comparing SRA data to data from other federal, state, and local agencies, an annual comparison to county assessor roll files, and a formal SRA review process that includes input from CAL FIRE Units. As a result, FRA lands provide a solid basis as the footprint for federal lands in California (except in the southeastern desert area). The methodology for federal lands involves:
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year
The Geologic Map of the Perris 7.5? Quadrangle, Riverside County, California contains a digital geologic map database of the Perris 7.5? quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, "http://www.esri.com") version 7.2.1 coverages of the various elements of the geologic map.
The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formationname, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc.
[Summary provided by the USGS.]
Aerial Information Systems, Inc. (AIS) was contracted by the Coachella Valley Conservation Commission (CVCC) through a Local Assistance Grant originating from the California Department of Fish and Wildlife (CDFW) to map and describe the essential habitats for bighorn sheep monitoring within the San Jacinto-Santa Rosa Mountains Conservation Area. This effort was completed in support of the Coachella Valley Multiple Species Habitat Conservation Plan (CVMSHCP). The completed vegetation map is consistent with the California Department of Fish and Wildlife classification methodology and mapping standards. The mapping area covers 187,465 acres of existing and potential habitat on the northern slopes of the San Jacinto and Santa Rosa Mountains ranging from near sea level to over 6000 feet in elevation. The map was prepared over a baseline digital image created in 2014 by the US Department of Agriculture '' Farm Service Agency''s National Agricultural Imagery Program (NAIP). Vegetation units were mapped using the National Vegetation Classification System (NVCS) to the Alliance (and in several incidences to the Association) level (See Appendix A for more detail) as described in the second edition of the Manual of California Vegetation Second Edition (Sawyer et al, 2009). The mapping effort was supported by extensive ground-based field gathering methods using CNPS rapid assessment protocol in the adjacent areas as part of the Desert Renewable Energy Conservation Plan (DRECP) to the north and east; and by the 2012 Riverside County Multiple Species Habitat Conservation Plan vegetation map in the western portion of Riverside County adjacent to the west. These ground-based data have been classified and described for the abovementioned adjacent regions and resultant keys and descriptions for those efforts have been used in part for this project.For detailed information please refer to the following report: Menke, J. and D. Johnson. 2015. Vegetation Mapping '' Peninsular Bighorn Sheep Habitat. Final Vegetation Mapping Report. Prepared for the Coachella Valley Conservation Commission. Aerial Information Systems, Inc., Redlands, CA.
This data set maps the soil-slip susceptibility for several areas in southwestern California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of raster maps containing grid cells coded with soil- slip susceptibility values. In addition, the data set includes the following graphic and text products: (1) postscript graphic plot files containing the soil-slip susceptibility map, topography, cultural data, and a key of the colored map units, and (2) PDF and text files of the Readme (including the metadata file as an appendix) and accompanying text, and a PDF file of the plot files. Intense winter rains commonly generated debris flows in upland areas of southwestern California. These debris flows initiate as small landslides referred to as soil slips. Most of the soil slips mobilize into debris flows that travel down slope at varying speeds and distances. The debris flows can be a serious hazard to people and structures in their paths. The soil-slip susceptibility maps identify those natural slopes most likely to be the sites of soil slips during periods of intense winter rainfall. The maps were largely derived by extrapolation of debris-flow inventory data collected from selected areas of southwestern California. Based on spatial analyses of soil slips, three factors in addition to rainfall, were found to be most important in the origin of soil slips. These factors are geology, slope, and aspect. Geology, by far the most important factor, was derived from existing geologic maps. Slope and aspect data were obtained from 10-meter digital elevation models (DEM). Soil-slip susceptibility maps at a scale of 1:24,000 were derived from combining numerical values for geology, slope, and aspect on a 10-meter cell size for 128 7.5' quadrangles and assembled on 1:100,000-scale topographic maps. The resultant maps of relative soil-slip susceptibility represent the best estimate generated from available debris-flow inventory maps and DEM data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The California Department of Fish and Game (CDFG) contracted with the California Native Plant Society (CNPS) and Aerial Information Systems (AIS) to produce an alliance-level, vegetation classification and map of Western Riverside County, California. The resulting classification and map products will be used to help establish a monitoring basis for the vegetation and habitats of the Western Riverside County Multi-Species Habitat Conservation Plan (MSHCP). The plan aims to conserve over 500,000 acres of land out of the 1.26 million acre total. This area is the largest MSHCP ever attempted and is an integral piece of the network of Southern California Habitat Conservation Plans and Natural Community Conservation Planning (Dudek 2001, Dudek 2003). Riverside County is one of the fastest growing counties in California, as well as one of the most biodiverse counties in the United States. A wide array of habitats are found within the non-developed lands in Western Riverside County, including coastal sage scrub, vernal pools, montane coniferous forest, chaparral, foothill woodland, annual grassland, and desert. In the CNPS contract, vegetation resources were assessed quantitatively through field surveys, data analysis, and final vegetation classification. Field survey data were analyzed statistically to come up with a floristically-based classification. Each vegetation type sampled was classified according to the National Vegetation Classification System to the alliance level (and association level if possible). The vegetation alliances were described floristically and environmentally in standard descriptions, and a final key was produced to differentiate among 101 alliances, 169 associations, and 3 unique stands (for final report, see https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=18245). In a parallel but separate effort by AIS (as reported in this dataset), vegetation mapping was undertaken through interpretation of ortho-rectified, aerial photographs for vegetation signatures in color infrared (CIR) and in natural color (imagery flown in winter or summer). A detailed map has been produced through the following process: 1) hand-delineation of polygons on base CIR imagery, 2) digitization of polygons, and 3) attribution of the vegetation types and overstory cover values. The map was created in a Geographic Information System (GIS) digital format, as was the database of field surveys. The dataset was produced through an on-screen photo interpretation procedure using three sets of geo-referenced imagery. The data is classified to a floristic classification derived through clustering analysis procedures based on species dominance and significance. The classification is based on the MCV (Manual of California Vegetation) in which 103 alliances and 169 floristic associations have been defined for the study area. Over 3300 full plot and reconnaissance points have been used in helping classify the mapped polygons. Mapped polygons are classified to either an association, alliance or mapping unit which may be an aggregation of associations or alliances. The dataset encompasses the western portions of Riverside County from the county boundary on the west eastward to the summit of the San Jacinto Mountains and Anza valley.
This data set maps and describes the geology of the San Bernardino Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the northwestern Eagle Mountains, east-central Pinto Basin, and eastern Pinto Mountains. The quadrangle is underlain by a basement terrane comprising metamorphosed Proterozoic strata, Mesozoic plutonic rocks, and Jurassic and Mesozoic and (or) Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Pinto and Eagle Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, a cover of Miocene sedimentary deposits and basalt overlie the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle Mountains, each in turn overlain by successively younger residual and alluvial, surficial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults in the Pinto and Eagle Mountains and an east-west trending system of high-angle dip- and left-slip faults along the range fronts facing Pinto Basin. In and around the San Bernardino Wash quadrangle, faults of the north-northwest-trending set displace Miocene sedimentary rocks and basalt deposited on the Tertiary erosion surface and some of the faults may offset Pliocene and (or) Pleistocene deposits that accumulated on the oldest pediment. Faults of this system appear to be overlain by Pleistocene deposits that accumulated on younger pediments. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The San Bernardino Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database comprises five coverages: (1) a geologic layer showing the distribution of geologic contacts and units; (2) a structural layer showing the distribution of faults (arcs) and fault ornamentation data (points); (3) a layer showing the distribution of dikes (arcs); a structural point data layer showing (4) bedding and metamorphic foliation attitudes, and (5) cartographic map elements, including unit label leaders and geologic unit annotation. The dataset also includes a scanned topographic base at a scale of 1:24,000. Within the database coverages, geologic contacts , faults, and dikes are represented as lines (arcs and routes), geologic units as areas (polygons and regions), and site-specific data as points. Polygon, region, arc, route, and point attribute tables uniquely identify each geologic datum and link it to descriptive tables that provide more detailed geologic information. The digital database is accompanied by two derivative maps: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base and (2) a PostScript graphic-file containing the geologic map on a 1:24,000 topographic base. Each of these map products is accompanied by a marginal explanation consisting of a Description of Map Units (DMU), a Correlation of Map Units (CMU), and a key to point and line symbols. The database is further accompanied by three document files: (1) a readme that lists the contents of the database and describes how to access it, (2) a pamphlet file that describes the geology of the quadrangle and (3) this metadata file.
CDFW BIOS GIS Dataset, Contact: Lynn Sweet, Description: This map is one in a series of vegetation maps produced by the University of California, Riverside Center for Conservation Biology (UCR CCB) for the Coachella Valley Multiple Species Habitat Conservation Plan. UCR CCB created a fine-scale vegetation map of the Dos Palmas Conservation Area (Reserve Management Unit 4 under the Plan) that covers approximately 25,800 acres in the Coachella Valley of Riverside County, California.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Aerial Information Systems, Inc. (AIS) was contracted by the Western Riverside County Regional Conservation Authority to perform an update to their original 2005 Western Riverside Vegetation Map. The project was funded through a Local Assistance Grant from the California Department of Fish and Wildlife (CDFW). The original vegetation layer was created in 2005 using a baseline image dataset created from 2000/01 Emerge imagery flown in early spring. The original map has been used to monitor and evaluate the habitat in the Western Riverside County Multi-species Habitat Conservation Plan (MSHCP). An update to the original map was needed to address changes in vegetation makeup that have occurred in the intervening years due to widespread and multiple burns in the mapping area, urban expansion, and broadly occurring vegetation succession.The update conforms to the standards set by the National Vegetation Classification System (NVCS) published in 2008 by the Federal Geographic Data Committee. (FGDC-STD-005-2008, Vegetation Subcommittee, Federal Geographic Data Committee, February 2008) The update also adheres to the vegetation types as represented in the 2008-second edition of the Manual of California Vegetation (MCV2). Extensive ground based field data both within and nearby the western Riverside County mapping area has been acquired since the completion of the project in 2005. This additional data has resulted in the reclassification of several vegetation types that are addressed in the updated vegetation map. The mapping area covers 1,017,364 acres of the original 1.2 million acres mapped in the 2005 study. The new study covers portions of the Upper Santa Ana River Valley, Perris Plain, and the foothills of the San Jacinto and Santa Ana Mountains but excludes US Forest Service land. The final geodatabase includes an updated 2012 vegetation map. Vegetative and cartographic comparisons between the newly created 2012 image-based map and the original vegetation map produced in 2005 are described in this report.The Update mapping was performed using baseline digital imagery created in 2012 by the US Department of Agriculture '' Farm Service Agency''s National Agricultural Imagery Program (NAIP). Vegetation units were mapped using the National Vegetation Classification System (NVCS) to the Alliance and Association level as depicted in the MCV2. Approximately 55 percent of the study area is classified to vegetated or naturally occurring sparsely vegetated types; the remaining 45 percent is unvegetated, with over a third (36 percent) in urban development and an additional 9 percent in agriculture. The major tasks for the Update project consisted of updating the original mapping classification to conform to the changes and refinements to the MCV2 classification, updating the existing vegetation map to 2012 conditions, retroactively correcting the 2005 vegetation interpretations, creating the final report and project metadata, and producing the final vegetation geodatabase. After completion of the original 2005 vegetation map, CDFW crosswalked the original mapping units to the NVCS hierarchical names as defined in the Manual of California Vegetation (MCV).The original crosswalk was revised during the Update effort to reflect changes in the original MCV classification as depicted in the second edition (MCV2). Changes were minor and did not result in a significant effort in the updating process. The updating process in many steps is similar to the creation of the original vegetation map. First, photo interpreters review the study area for terrain, environmental features, and probable vegetation types present. Questionable photo signatures on the new baseline imagery (2012 NAIP) were compared to the original 2000/01 Emerge imagery. Photo signatures for a given vegetation polygon were correlated between the two image datasets. Production level updates to the linework and labeling commenced following the correlation of the two baseline image datasets and the subsequent refinement of photo interpretation criteria and biogeographical descriptions of the types. Existing datasets depicting topography, fire history, climate and past vegetation gathering efforts aided photo interpreters in their delineations and floristic assignments during the updating effort. The production updating effort took approximately 11 months.
CREST Tax Year Table to replace current Assessor Tax Year table.
Geologic Map of the Elsinore 7.5? Quadrangle, Riverside County, California ontains a digital geologic map database of the Elsinore 7.5 - quadrangle, Riverside County, California that includes:
ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map.
A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map.
Portable Document Format (.pdf) files of:
a. This Readme; includes in Appendix I, data contained in els_met.txt
b. The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale.
The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
[Summary provided by the USGS.]
The data set for the Corona South 7.5' quadrangle was prepared under the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) as part of an ongoing effort to develop a regional geologic framework of southern California, and to utilize a Geographic Information System (GIS) format to create regional digital geologic databases. These regional databases are being developed as contributions to the National Geologic Map Database of the National Cooperative Geologic Mapping Program of the USGS.
This data set maps and describes the geology of the Corona South 7.5' quadrangle, Riverside and Orange Counties, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage containing geologic contacts and units, (2) a coverage containing structural data, (3) a coverage containing geologic unit annotation and leaders, and (4) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) a postscript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), and a key for point and line symbols, and (2) PDF files of the Readme (including the metadata file as an appendix), and the graphic produced by the Postscript plot file.
The Corona South quadrangle is located near the northern end of the Peninsular Ranges Province. Diagonally crossing the quadrangle is the northern end of the Elsinore Fault zone, a major active right-lateral strike-slip fault zone of the San Andreas Fault system. East of the fault zone is the Perris block and to the west the Santa Ana Mountains block. Basement in the Perris block part of the quadrangle is almost entirely Cretaceous volcanic rocks and granitic rocks of the Cretaceous Peninsular Ranges batholith. Three small exposures of very low metamorphic grade siliceous rocks correlated on the basis of lithology with Mesozoic age rocks are located near the eastern edge of the quadrangle. Exposures of batholithic rocks is restricted to mostly granodiorite of the Cajalco pluton that underlies extensive areas to the east and north. There are limited amounts of undifferentiated granitic rock and one small body of gabbro. The most extensive basement rocks are volcanic shallow intrusives and extrusives of the Estelle Mountain volcanics. The volcanics, predominantly latite and rhyolite, are quarried as a source of crushed rock.
West of the Elsinore Fault zone is a thick section of Bedford Canyon Formation of Jurassic age. This unit consists of incipiently metamorphosed marine sedimentary rocks consisting of argillite, slate, graywacke, impure quartzite, and small pods of limestone. Bedding and other primary sedimentary structures are commonly preserved and tight folds are common. Incipiently developed transposed layering, S1, is locally well developed. Included within the siliceous rocks are small outcrops of fossiliferous limestone than contain a fauna indicating the limestone formed in a so-called black smoker environment. Unconformably overlying and intruding the Bedford Canyon Formation is the Santiago Peak Volcanics of Cretaceous age. These volcanics consist of basaltic andesite, andesite, dacite, rhyolite, breccia and volcanoclastic rocks. Much of the unit has been hydrothermally altered; the alteration was contemporaneous with the volcanism. A minor occurrence of serpentine and associated silica-carbonate rock occurs in association with the volcanics.
Sedimentary rocks of late Cretaceous and Paleogene age and a few Neogene age rocks occur within the Elsinore Fault zone. Marine sandstone of the middle Miocene Topanga Formation occurs within the fault zone southeast of Corona. Underlying the Topanga Formation is the nonmarine undivided Sespe and Vaqueros Formation that are predominantly sandstone. Sandstone, siltstone, and conglomerate of the marine and nonmarine Paleocene Silverado Formation extends essentially along the entire length of the fault zone in the quadrangle. Clay beds in the Silverado Formation have been an important source of clay. In the northwest corner of the quadrangle is a thick, faulted, sedimentary section that ranges in age from Cretaceous to early Pliocene-Miocene.
Emanating from the Santa Ana Mountains is an extensive alluvial fan complex that underlies Corona and the surrounding valleys. This fan complex includes both Pleistocene and Holocene age deposits.
The Elsinore Fault zone at the base of the Santa Ana Mountains splays in the northwestern part of the quadrangle; beyond the quadrangle boundary the name Elsinore Fault is generally not used. The southern splay takes a more western trend and to the west of the quadrangle is termed the Whittier Fault, a major active fault. The eastern splay continues on strike along the east side of the Chino (Puente) Hills north of the quadrangle where it is termed the Chino Fault. The Chino Fault appears to have very limited displacement.
The geologic map data base contains original U.S. Geological Survey data generated by detailed field observation recorded on 1:24,000 scale aerial photographs. The map was created by transferring lines from the aerial photographs to a 1:24,000 scale topographic base. The map was digitized and lines, points, and polygons were subsequently edited using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units are polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.
Riverside County's GIS web viewer that supplies various datasets containing parcel, transportation, environmental, and boundary layers and more.