Riverside County's GIS web viewer that supplies various datasets containing parcel, transportation, environmental, and boundary layers and more.
Vector polygon map data of property parcels from Riverside County, California containing 846, 890 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
APN refers to Assessor's Parcel Number FLAG refers to a special designation for the parcel
This data set of polygon features represents Riverside County's water bodies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The California Department of Fish and Game (CDFG) contracted with the California Native Plant Society (CNPS) and Aerial Information Systems (AIS) to produce an alliance-level, vegetation classification and map of Western Riverside County, California. The resulting classification and map products will be used to help establish a monitoring basis for the vegetation and habitats of the Western Riverside County Multi-Species Habitat Conservation Plan (MSHCP). The plan aims to conserve over 500,000 acres of land out of the 1.26 million acre total. This area is the largest MSHCP ever attempted and is an integral piece of the network of Southern California Habitat Conservation Plans and Natural Community Conservation Planning (Dudek 2001, Dudek 2003). Riverside County is one of the fastest growing counties in California, as well as one of the most biodiverse counties in the United States. A wide array of habitats are found within the non-developed lands in Western Riverside County, including coastal sage scrub, vernal pools, montane coniferous forest, chaparral, foothill woodland, annual grassland, and desert. In the CNPS contract, vegetation resources were assessed quantitatively through field surveys, data analysis, and final vegetation classification. Field survey data were analyzed statistically to come up with a floristically-based classification. Each vegetation type sampled was classified according to the National Vegetation Classification System to the alliance level (and association level if possible). The vegetation alliances were described floristically and environmentally in standard descriptions, and a final key was produced to differentiate among 101 alliances, 169 associations, and 3 unique stands (for final report, see https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=18245). In a parallel but separate effort by AIS (as reported in this dataset), vegetation mapping was undertaken through interpretation of ortho-rectified, aerial photographs for vegetation signatures in color infrared (CIR) and in natural color (imagery flown in winter or summer). A detailed map has been produced through the following process: 1) hand-delineation of polygons on base CIR imagery, 2) digitization of polygons, and 3) attribution of the vegetation types and overstory cover values. The map was created in a Geographic Information System (GIS) digital format, as was the database of field surveys. The dataset was produced through an on-screen photo interpretation procedure using three sets of geo-referenced imagery. The data is classified to a floristic classification derived through clustering analysis procedures based on species dominance and significance. The classification is based on the MCV (Manual of California Vegetation) in which 103 alliances and 169 floristic associations have been defined for the study area. Over 3300 full plot and reconnaissance points have been used in helping classify the mapped polygons. Mapped polygons are classified to either an association, alliance or mapping unit which may be an aggregation of associations or alliances. The dataset encompasses the western portions of Riverside County from the county boundary on the west eastward to the summit of the San Jacinto Mountains and Anza valley.
The Cahuilla Valley and Terwilliger Valley groundwater basins, 9-006 and 7-026 respectively (California Department of Water Resources 2016) located approximately 25 miles southwest of Palm Springs, are the sole-source for groundwater supply for the rural disadvantaged community and two Native American Tribes, the Ramona Band of Cahuilla and the Cahuilla. The characteristics and sustainable yield of the Cahuilla Valley and Terwilliger Valley groundwater basins are not well understood and are threatened by increasing water use and potential changes in water sustainability related to climate change. Previous USGS studies of the Cahuilla-Terwilliger Valley groundwater basins defined the thicknesses and characteristics of the alluvial sediments that constitute the main water-bearing unit of the aquifer system and identified where wells completed in the underlying fractured bedrock are located (Moyle, 1976; Landon and others, 2015; Woolfenden and Bright, 1988). However, although the fractured bedrock is an important part of the aquifer system for domestic and some irrigation supply, the thickness and hydraulic characteristics of the fractured bedrock are not well understood (Landon and others, 2015; Moyle 1976). Existing gravity data identified a possible conduit for groundwater flow beneath Cahuilla Creek in the Cahuilla and Durasno Valleys (Landon and others, 2015). Electrical resistivity tomography (ERT) data was collected in August 2018 to evaluate the cross-sectional depth to bedrock underlying a narrow section of Durasno Valley, and to help select locations for groundwater monitoring wells. Data from two transects were collected perpendicular to Cahuilla Creek, and offset by approximately 600 meters (m).
This data set of polygon feature represents Riverside County's water district. Data was spatially adjusted in 2020.
This is the Zoning polygon layer for planning purposes.
This data set of polygon features represents Riverside County's liquefaction zones.
ZONE: Internal attribute SUSCEPTIBILITY: Generalized description of liquefaction susceptibility
© Earth Consultants International
This layer is a component of NaturalFeaturesAndHazards.
This data set of line features represent Riverside County's recorded street centerlines. This data set was designed to carry out functions of the Transportation department and is not a true street network layer. Centerlines do not have complete "connectivity" due to the fact that this layer is primarily roads that have been recorded but does not necessarily contain all roads.
© If you need additional information about CENTERLINES, please contact the Transportation Department at 951-955-6880 or on the web at http://www.tlma.co.riverside.ca.us/trans/office.shtm
This layer is a component of TransportationFeatures.
Data layer that are involved with transportation within the county.
This data set of polygon features represents Riverside County's Incorporated City Boundaries. Topology has been run and all gaps and overlaps have been fixed. The data has been adjusted to match Riverside County Parcel Boundaries. The city name field is used to represent the citys' name. Every polygon that represents an incorporated city must have a city name. Maintained by Stella Spadafora, 05/2015
© RCIT GIS, LAFCO
This layer is a component of Administrative Boundaires.
CDFW BIOS GIS Dataset, Contact: Karyn L Drennen, Description: The Biological Monitoring Program is a part of the Western Riverside County Multi-Species Habitat Conservation Plan (MSHCP), which was permitted in June, 2004. The Monitoring Program monitors the status of 146 Covered Species within a designated Conservation Area to provide information to permittees, land managers, the public, and wildlife agencies (i.e., the California Department of Fish and Wildlife and the U.S. Fish and Wildlife Service).
CDFW BIOS GIS Dataset, Contact: U.S. Fish & Wildlife Service USFWS, Description: These data identify, in general, the areas where final critical habitat for the Riverside fairy shrimp (Streptocephalus woottoni) occur. The purpose is to provide the user with a general idea of areas where final critical habitat for the Riverside fairy shrimp (Streptocephalus woottoni) occur.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
City of Riverside Open Data for use in the city.Source: Topographic Contour 2012 City
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This Digital Raster Graphic (DRG) was created using scanned U.S. Geological Survey 7.5-minute 1 to 24,000 scale maps georeferenced in Universal Transverse Mercator (UTM) grid. DRGs can be acquired with or without collar information for use in Geographic Information System (GIS) environment. Collarless DRGs can be edge matched creating a continuous collection of topographic maps.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year
Riverside County 2019 images. 6 inch resolution. Projected to California State Plane Zone VI.
The Digital Geologic-GIS Map of the Riverside Quadrangle, Tennessee is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rive_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rive_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rive_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (natr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (natr_tn_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rive_geology_metadata_faq.pdf). Please read the natr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Tennessee Division of Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rive_geology_metadata.txt or rive_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Geospatial data about Riverside County, California Zoning. Export to CAD, GIS, PDF, CSV and access via API.
Geospatial data about Riverside County, CA Cities. Export to CAD, GIS, PDF, CSV and access via API.
Geospatial data about Riverside County, California Airport Runways. Export to CAD, GIS, PDF, CSV and access via API.
Riverside County's GIS web viewer that supplies various datasets containing parcel, transportation, environmental, and boundary layers and more.