This dataset includes polygons that describe areas of rock outcrop in the area of the Stillwater Complex, Montana. The Stillwater Complex is an Archean, ultramafic to mafic layered intrusion exposed in the Beartooth Mountains in south-central Montana. This igneous intrusion contains magmatic mineralization that is variably enriched in strategic and critical commodities such as chromium, nickel, and the platinum-group elements (PGE). Polygons representing rock outcrops were digitized in a Geographic Information System (GIS) using georeferenced maps and orthophoto imagery from published reports and field mapping sheets. This is a compilation of both legacy data and outcrops from recent field mapping. This dataset contains overlapping polygons, as some areas had mapping from different sources that overlapped the same locations.
Comprehensive dataset of 52 Rocks in California, United States as of June, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
Alaska Volcano Observatory's geochemical database contains published whole-rock data for Quaternary volcanic rocks in Alaska, linked to geologist, publication, source volcano (where possible), and other sample and analysis metadata. This database also contains water cation and anion data for recent AVO studies. This website allows users to query the database and return datasets as fully-documented .html or .csv tables. It is our intention to update this dataset as new volcano-related geochemical data is published.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This database contains geochemical data created using an X-ray fluorescence spectrometer (XRF). The samples in the dataset are geological samples of rocks and stone tools from archaeological sites. The data was created at the Laboratoire de caractérisation des matériaux archéologiques of the Université de Montréal. Cette base de données contient des données géochimiques créées par un spectromètre de fluorescence aux rayons X. Les échantillons analysés sont des échantillons géologiques de roches et des outils en pierre provenant de sites archéologiques. Les données ont été créées au Laboratoire de caractérisation des matériaux archéologiques de Université de Montréal.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This U.S. Geological Survey (USGS) data release includes whole rock geochemical and isotopic data, and uranium-lead isotopic data collected by both Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and Sensitive High Resolution Ion Microprobe-Reverse Geometry (SHRIMP-RG) methods for rocks in Colorado, Wyoming, Utah, and New Mexico.
Comprehensive dataset of 1 Rocks in New York, United States as of June, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
We report U-Pb zircon geochronology results for one metavolcanic and one metaplutonic rock sample from the Mount Hayes A-6 Quadrangle of central Alaska. These samples are representative of rock units assigned to the Clearwater terrane of Jones and others (1987), a sequence of greenschist-grade metavolcanic and metasedimentary rocks of poorly constrained age and tectonic origin. Our results indicate a crystallization age of 277.33 +/- 11.84 Ma for a felsic metavolcanic rock, and a 268.05 +/- 11.64 Ma crystallization age for a granitic metaplutonic unit intruding the former.
We compile a new geochemical database (Icelandic Volcanic rocks Isotopic Database, IVID) which includes previously reported 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 187Os/188Os and 3He/4He data and major and trace element concentrations measured in Icelandic volcanic rocks. Isotopic compositions were evaluated, and filtered to identify the highest quality data and data most likely to represent mantle-derived compositions. The carefully filtered, comprehensive geochemical database is an important contribution to the geochemical community and can be used to put further constraints on the generation of geochemical heterogeneity in Iceland. We use the compiled database to examine the spatial distribution of geochemical components in the Icelandic mantle, and test whether melting processes control how source heterogeneity from the deep mantle is extracted on the surface. The PRIMELT software (which combines an inverse model for crystallization in the crust ...
Comprehensive dataset of 2 Rocks in Washington, United States as of July, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OZCHEM is Geoscience Australia's national whole-rock geochemical database. This release of OZCHEM contains over 50000 analyses of rocks, regolith and stream sediments from many regions of Australia. …Show full descriptionOZCHEM is Geoscience Australia's national whole-rock geochemical database. This release of OZCHEM contains over 50000 analyses of rocks, regolith and stream sediments from many regions of Australia. Each analysis includes a geographic location and a geological description, which includes the host stratigraphic unit, where known, and the lithology. Most samples have been collected by Geoscience Australia's field parties. OZCHEM is stored in an ORACLE relational database and is available in comma-delimited flat ASCII format. The data set is also bundled with documentation explaining the database structure and includes definitions of the database tables and columns (attributes).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
2956 Global import shipment records of Rocks with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release presents geologic map data for the bedrock geology of the Aztec 1-degree by 2-degree quadrangle, New Mexico. Geologic mapping incorporates new interpretive contributions and compilation from published geologic map data sources primarily ranging from 1:24,000 to 1:50,000 scale. Much of the geology incorporated from published geologic maps is adjusted based on digital elevation model and natural-color image data sources to improve spatial resolution of the data. Spatial adjustments and new interpretations also eliminate mismatches at source map boundaries. This data set represents only the bedrock geology; deposits of unconsolidated, surficial materials that are typically, but not exclusively, Quaternary in age, are not included in this database. Bedrock in the context of this database includes all metamorphic, sedimentary, and igneous rocks regardless of age. Bedrock geology is continuous to the extent that map units and structures can be appropriately constrained ...
This data release presents geologic map data for the bedrock geology of the Blanca Peak, Walsenburg, Trinidad, and Alamosa 30' x 60' quadrangles, Colorado. Geologic mapping incorporates new interpretive contributions and compilation from published geologic map data sources primarily ranging from 1:24,000 to 1:50,000 scale. Much of the geology incorporated from published geologic maps is adjusted based on digital elevation model and natural-color image data sources to improve spatial resolution of the data. Spatial adjustments and new interpretations also eliminate mismatches at source map boundaries. This data set represents only the bedrock geology; deposits of unconsolidated, surficial materials that are typically, but not exclusively, Quaternary in age, are not included in this database. Bedrock in the context of this database includes all metamorphic, sedimentary, and igneous rocks regardless of age. Bedrock geology is continuous to the extent that map units and structures can be appropriately constrained, including throughout areas overlain by surficial deposits. Line features that are projected through areas overlain by surficial deposits are generally attributed with lower identity and existence confidence, larger locational confidence values, and a compilation method in the MethodID field indicating features were projected beneath cover (see Turner and others [2022] for a description of MethodID field). Map units represented in this database range from Paleoproterozic and Mesoproterozic metamorphic and intrusive rocks to Pliocene and Quaternary sedimentary and volcanic rocks. Map units and structures in this data set reflect multiple events that are significant at regional and continental scales including multiple Proterozoic accreted terranes, magmatic episodes, supracrustal depositional environments, and continental margin environments, Ancestral Rocky Mountains, Laramide orogeny, Southern Rocky Mountains volcanism, and Rio Grande rift in the Phanerozoic. Map units are organized within geologic provinces as described by the Seamless Integrated Geologic Mapping (SIGMa) (Turner and others, 2022) extension to the Geologic Map Schema (GeMS) (USGS, 2020). Geologic provinces are used to organize map units based on time-dependent, geologic events rather than geographic or rock type groupings that are typical of traditional geologic maps. The detail of geologic mapping is approximately 1:100,000-scale depending on the scale of published geologic maps and new mapping based on field observations or interpretation from basemap data. The database follows the schema and structure of SIGMa (Turner and others, 2022) that is an extension to GeMS (USGS, 2020). Turner, K.J., Workman, J.B., Colgan, J.P., Gilmer, A.K., Berry, M.E., Johnstone, S.A., Warrell, K.F., Dechesne, M., VanSistine, D.P., Thompson, R.A., Hudson, A.M., Zellman, K.L., Sweetkind, D., and Ruleman, C.A., 2022, The Seamless Integrated Geologic Mapping (SIGMa) extension to the Geologic Map Schema (GeMS): U.S. Geological Survey Scientific Investigations Report 2022–5115, 33 p., https://doi.org/ 10.3133/ sir20225115. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema)-A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org/10.3133/tm11B10.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Petrophysical properties are key to populate numerical models of subsurface process simulations and for the interpretation of many geophysical exploration methods. They are characteristic for specific rock types and may vary considerably as a response to subsurface conditions (e.g. temperature and pressure). Hence, the quality of process simulations and geophysical data interpretation critically depend on the knowledge of in-situ physical properties that have been measured for a specific rock unit. Inquiries for rock property values for a specific site might become a very time-consuming challenge given that such data are (1) spread across diverse publications and compilations, (2) heterogeneous in quality and (3) continuously being acquired in different laboratories worldwide. One important quality factor for the usability of measured petrophysical properties is the availability of corresponding metadata such as the sample location, petrography, stratigraphy, or the measuring method, conditions and authorship. The open-access database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. As it has been developed within the scope of the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553), the database mainly contains information relevant for geothermal exploration and reservoir characterization, namely hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility. The uniqueness of this database emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding sample location, petrographic description, chronostratigraphic age and original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis. In addition, information on the experimental set-up (methods) and the measurement conditions are given for quality control. Thus, rock properties can directly be related to in-situ conditions to derive specific parameters relevant for modelling the subsurface or interpreting geophysical data.
Geochronology is the science of determining the age of rocks, fossils, and sediments and other materials. This database contains geochronologic data in GIS point format for published geochronological dates on Precambrian rocks, acquired and published by the Minnesota Geological along with selected published dates from adjacent. Compiled by the MGS for distribution. The file contains a full reference for each sample. To view the data on the web just click on this link to the Geochronology sample locations with the Minnesota bedrock geology and topography web map.
Comprehensive dataset of 1 Rocks in Mexico as of July, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Paleozoic and Mesozoic rocks from 22 wells were analyzed. Fifteen wells are on the Appalachian Plateau, six are in the Ridge and Valley, and one well is in the Triassic rocks of the Newark basin of southeastern Pennsylvania. As further geochemical data are obtained by the Pennsylvania Geological Survey, the database will be accordingly updated.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PETROG, AGSO's Petrography Database, is a relational computer database of petrographic data obtained from microscopic examination of thin sections of rock samples. The database is designed for petrographic descriptions of crystalline igneous and metamorphic rocks, and also for sedimentary petrography. A variety of attributes pertaining to thin sections can be recorded, as can the volume proportions of component minerals, clasts and matrix.
PETROG is one of a family of field and laboratory databases that include mineral deposits, regolith, rock chemistry, geochronology, stream-sediment geochemistry, geophysical rock properties and ground spectral properties for remote sensing. All these databases rely on a central Field Database for information on geographic location, outcrops and rock samples. PETROG depends, in particular, on the Field Database's SITES and ROCKS tables, as well as a number of lookup tables of standard terms. ROCKMINSITES, a flat view of PETROG's tables combined with the SITES and ROCKS tables, allows thin-section and mineral data to be accessed from geographic information systems and plotted on maps.
This guide presents an overview of PETROG's infrastructure and describes in detail the menus and screen forms used to input and view the data. In particular, the definitions of most fields in the database are given in some depth under descriptions of the screen forms - providing, in effect, a comprehensive data dictionary of the database. The database schema, with all definitions of tables, views and indexes is contained in an appendix to the guide.
2011 (updated 2021) Rock Properties Database: Density Magnetic Susceptibility, and Natural Remnant Magnetization of Rocks in MinnesotaGeologic interpretation of gravity and magnetic anomaly data in a given area is greatly enhanced if density, magnetic susceptibility (MS) and natural remanent magnetization (NRM) data are available for representative rock-types (Chandler and others, 2008). Along with geologic information from outcrop and drill-holes, rock property data help relate geophysical anomaly signatures to probable rock types, and provide constraints on the use of anomaly data as a tool for mapping and for modeling geology at depth. Rock property data are particularly important to Minnesota where Precambrian rocks, which comprise the bulk of the bedrock surface, are associated with a wide range of density, MS and NRM values and are mostly under a thick cover of unconsolidated glacial sediments. Full documentation can be found here: Rock PropertiesRevised and updated rock property database. Includes revised locations, new point locations, and downhole drill core data for density and magnetic susceptibility. This database also contains gravity stations throughout Minnesota.
This dataset includes polygons that describe areas of rock outcrop in the area of the Stillwater Complex, Montana. The Stillwater Complex is an Archean, ultramafic to mafic layered intrusion exposed in the Beartooth Mountains in south-central Montana. This igneous intrusion contains magmatic mineralization that is variably enriched in strategic and critical commodities such as chromium, nickel, and the platinum-group elements (PGE). Polygons representing rock outcrops were digitized in a Geographic Information System (GIS) using georeferenced maps and orthophoto imagery from published reports and field mapping sheets. This is a compilation of both legacy data and outcrops from recent field mapping. This dataset contains overlapping polygons, as some areas had mapping from different sources that overlapped the same locations.