1 dataset found
  1. m

    Short-range Early Phase COVID-19 Forecasting R-Project and Data

    • data.mendeley.com
    Updated Oct 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Lynch (2023). Short-range Early Phase COVID-19 Forecasting R-Project and Data [Dataset]. http://doi.org/10.17632/cytrb8p42g.3
    Explore at:
    Dataset updated
    Oct 13, 2023
    Authors
    Christopher Lynch
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This R-Project and its data files are provided in support of ongoing research efforts for forecasting COVID-19 cumulative case growth at varied geographic levels. All code and data files are provided to facilitate reproducibility of current research findings. Seven forecasting methods are evaluated with respect to their effectiveness at forecasting one-, three-, and seven-day cumulative COVID-19 cases, including: (1) a Naïve approach; (2) Holt-Winters exponential smoothing; (3) growth rate; (4) moving average (MA); (5) autoregressive (AR); (6) autoregressive moving average (ARMA); and (7) autoregressive integrated moving average (ARIMA). This package is developed to be directly opened and run in RStudio through the provided RProject file. Code developed using R version 3.6.3.

    This software generates the findings of the article entitled "Short-range forecasting of coronavirus disease 2019 (COVID-19) during early onset at county, health district, and state geographic levels: Comparative forecasting approach using seven forecasting methods" using cumulative case counts reported by The New York Times up to April 22, 2020. This package provides two avenues for reproducing results: 1) Regenerate the forecasts from scratch using the provided code and data files and then run the analyses; or 2) Load the saved forecast data and run the analyses on the existing data

    Two related publications listed in "Related Links".

    License info can be viewed in "License Info.txt". The "RProject" folder contains the RProject file which opens the project in RStudio with the desired working directory set. README files in each sub-folder provide additional detail on each folders' contents.

    Copyright (c) 2020 Christopher J. Lynch and Ross Gore Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

    Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use, or other dealings in this Software without prior written authorization.

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Christopher Lynch (2023). Short-range Early Phase COVID-19 Forecasting R-Project and Data [Dataset]. http://doi.org/10.17632/cytrb8p42g.3

Short-range Early Phase COVID-19 Forecasting R-Project and Data

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 13, 2023
Authors
Christopher Lynch
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

This R-Project and its data files are provided in support of ongoing research efforts for forecasting COVID-19 cumulative case growth at varied geographic levels. All code and data files are provided to facilitate reproducibility of current research findings. Seven forecasting methods are evaluated with respect to their effectiveness at forecasting one-, three-, and seven-day cumulative COVID-19 cases, including: (1) a Naïve approach; (2) Holt-Winters exponential smoothing; (3) growth rate; (4) moving average (MA); (5) autoregressive (AR); (6) autoregressive moving average (ARMA); and (7) autoregressive integrated moving average (ARIMA). This package is developed to be directly opened and run in RStudio through the provided RProject file. Code developed using R version 3.6.3.

This software generates the findings of the article entitled "Short-range forecasting of coronavirus disease 2019 (COVID-19) during early onset at county, health district, and state geographic levels: Comparative forecasting approach using seven forecasting methods" using cumulative case counts reported by The New York Times up to April 22, 2020. This package provides two avenues for reproducing results: 1) Regenerate the forecasts from scratch using the provided code and data files and then run the analyses; or 2) Load the saved forecast data and run the analyses on the existing data

Two related publications listed in "Related Links".

License info can be viewed in "License Info.txt". The "RProject" folder contains the RProject file which opens the project in RStudio with the desired working directory set. README files in each sub-folder provide additional detail on each folders' contents.

Copyright (c) 2020 Christopher J. Lynch and Ross Gore Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use, or other dealings in this Software without prior written authorization.

Search
Clear search
Close search
Google apps
Main menu