6 datasets found
  1. 33 World-Wide Stock Market Indices Data

    • kaggle.com
    Updated Nov 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mukhazar ahmad (2022). 33 World-Wide Stock Market Indices Data [Dataset]. https://www.kaggle.com/datasets/mukhazarahmad/worldwide-stock-market-indices-data/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 8, 2022
    Dataset provided by
    Kaggle
    Authors
    mukhazar ahmad
    Area covered
    World
    Description

    This is a comprehensive data sets of almost all the largest stock market indices of the world. I am confident that this data set would make a significant contribution in financial data analytics. These indices include: 1. S&P 500 (^GSPC) 2. Dow 30 (^DJI) 3. Nasdaq (^IXIC) 4. NYSE COMPOSITE DJ (^NYA) 5. NYSE AMEX COMPOSITE INDEX (^XAX) 6. Cboe UK 100 (^BUK100P) 7. Russell 2000 (^RUT) 8. CBOE Volatility Index (^VIX) 9. DAX PERFORMANCE-INDEX (^GDAXI) 10. CAC 40 (^FCHI) 11. ESTX 50 PR.EUR (^STOXX50E) 12. Euronext 100 Index (^N100) 13. BEL 20 (^BFX) 14. MOEX Russia Index (IMOEX.ME) 15. Nikkei 225 (^N225) 16. HANG SENG INDEX (^HSI) 17. SSE Composite Index (000001.SS) 18. Shenzhen Index (399001.SZ) 19. S&P/ASX 200 (^AXJO) 20. ALL ORDINARIES (^AORD) 21. S&P BSE SENSEX (^BSESN) 22. Jakarta Composite Index (^JKSE) 23. S&P/NZX 50 INDEX GROSS (^NZ50) 24. KOSPI Composite Index (^KS11) 25. TSEC weighted index (^TWII) 26. S&P/TSX Composite index (^GSPTSE) 27. IBOVESPA (^BVSP) 28. IPC MEXICO (^MXX) 29. S&P/CLX IPSA (^IPSA) 30. MERVAL (^MERV) 31. TA-125 (^TA125.TA) 32. EGX 30 Price Return Index (^CASE30) 33. Top 40 USD Net TRI Index (^JN0U.JO)

  2. a

    International Roughness Index and rut data

    • open.alberta.ca
    • datasets.ai
    • +2more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Roughness Index and rut data [Dataset]. https://open.alberta.ca/dataset/iri-and-rut-data
    Explore at:
    Description

    This dataset contains pavement roughness and rut depth measured on provincial highways, summarized in 50 metre segments within the lane that the measure was taken.

  3. u

    International Roughness Index and rut data - Catalogue - Canadian Urban Data...

    • data.urbandatacentre.ca
    Updated Oct 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). International Roughness Index and rut data - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/ab-iri-and-rut-data
    Explore at:
    Dataset updated
    Oct 19, 2025
    Description

    This dataset contains pavement roughness and rut depth measured on provincial highways, summarized in 50 metre segments within the lane that the measure was taken.

  4. D

    Data from: A Spatial-statistical model to analyse historical rutting data

    • dataverse.no
    • dataverse.azure.uit.no
    • +1more
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jourdain, Natoya O. A. S.; Steinsland, Ingelin; Vedvik, Emil; Birkhez-Shami, Mamoona; Olsen, William; Gryteselv, Dagfin; Siebert, Doreen; Klein-Paste, Alex; Jourdain, Natoya O. A. S.; Steinsland, Ingelin; Vedvik, Emil; Birkhez-Shami, Mamoona; Olsen, William; Gryteselv, Dagfin; Siebert, Doreen; Klein-Paste, Alex (2024). A Spatial-statistical model to analyse historical rutting data [Dataset]. http://doi.org/10.18710/WD05DG
    Explore at:
    application/x-rlang-transport(453191682), type/x-r-syntax(17950), application/x-rlang-transport(231789348), type/x-r-syntax(17961), application/geo+json(1041458705), application/x-rlang-transport(225460482), type/x-r-syntax(17080), application/x-rlang-transport(691754330), type/x-r-syntax(62447), type/x-r-syntax(63875), zip(13884401), txt(11329), type/x-r-syntax(238340), type/x-r-syntax(62497), application/x-rlang-transport(234059545), application/x-rlang-transport(437458158)Available download formats
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    DataverseNO
    Authors
    Jourdain, Natoya O. A. S.; Steinsland, Ingelin; Vedvik, Emil; Birkhez-Shami, Mamoona; Olsen, William; Gryteselv, Dagfin; Siebert, Doreen; Klein-Paste, Alex; Jourdain, Natoya O. A. S.; Steinsland, Ingelin; Vedvik, Emil; Birkhez-Shami, Mamoona; Olsen, William; Gryteselv, Dagfin; Siebert, Doreen; Klein-Paste, Alex
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    May 21, 2010 - May 21, 2020
    Area covered
    Trøndelag, Norway, Trondheim to Storlien on the Swedish border
    Dataset funded by
    Norwegian University of Science and Technology
    Statens Vegvesen
    Description

    The rutting dataset comprises of the annual rutting for years 2010-2020 (millimetre, calculated as the difference between current and previous year's data), with rut depth measurement from the previous year (millimetre), annual average daily traffic (AADT), lane width (metre), bearing capacity for year 2021 (tonnes), surface curvature index for year 2021, and base curvature index data (2021). The rutting data was collected for 20-metre road segments at specific latitude and longitude locations. The rutting is assumed to be linearly related to known explanatory variables (e.g., lane width) and random and spatial components. Rutting measurements were used to fit spatial-statistical models with random and spatial components in a Bayesian Hierarchical framework. Non spatial-statistical models with random yearly effects were also fitted. We compared these models to determine the importance of accounting for spatial information and to properly account for the rutting variability.

  5. t

    Supplementary data for: comparison of selected terramechanical test...

    • service.tib.eu
    Updated May 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Supplementary data for: comparison of selected terramechanical test procedures and cartographic indices to predict rutting caused by machine traffic during a cut-to-length thinning-operation. - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/goe-doi-10-25625-lqjbml
    Explore at:
    Dataset updated
    May 16, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Terramechanical instruments were applied at newly assigned machine operating trails, in broadleaved-dominated mixed stands on cambisols in Lower Saxony, Germany. Afterward, a regularly planned cut-to-length thinning-operation was conducted. Measuring results were correlated with observed rut depth, resulting from the operating machines. Post-operational soil properties were quantified.

  6. f

    Performance indexes of chopped basalt fiber.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jul 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiangbing Xie; Yahui He; Chenchen Liu; Kaiwei Wang; Zhezhe Fan; Huixia Li; Jinggan Shao (2024). Performance indexes of chopped basalt fiber. [Dataset]. http://doi.org/10.1371/journal.pone.0307438.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 29, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Xiangbing Xie; Yahui He; Chenchen Liu; Kaiwei Wang; Zhezhe Fan; Huixia Li; Jinggan Shao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How to select suitable pavement materials for asphalt pavements according to the functional requirements of layers is still the focus of research by scholars in various countries. However, their effectiveness in combating high-temperature rutting and fatigue cracking in middle and lower layers is limited. To address this issue, a study optimized the incorporation of basalt fibers in different layers to improve road performance based on design specifications. Nine asphalt pavement structures with varying amounts of basalt fibers were assessed using an orthogonal test method. The optimal structure was determined considering factors such as fatigue life and overloading using the finite element method for modeling. Results showed that fiber dosage had a minimal impact on road surface bending subsidence and the location of tensile strain in the lower layer. Shear stresses were concentrated mainly at the outer edges of loads. Optimal dosages of basalt fiber were determined for different layers: 0.3% for the upper layer, 0.1% for the middle layer, and 0.3% for the lower layer. The optimal structure consists of a strong base with a thin-surfaced semi-rigid base layer, with 0.3% for the upper layer and 0.1% for the middle layer. This study provided valuable insights into designing basalt fiber asphalt pavement structures.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
mukhazar ahmad (2022). 33 World-Wide Stock Market Indices Data [Dataset]. https://www.kaggle.com/datasets/mukhazarahmad/worldwide-stock-market-indices-data/data
Organization logo

33 World-Wide Stock Market Indices Data

World-Wide Stock Market Indices Data (1997 - 2022)

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Nov 8, 2022
Dataset provided by
Kaggle
Authors
mukhazar ahmad
Area covered
World
Description

This is a comprehensive data sets of almost all the largest stock market indices of the world. I am confident that this data set would make a significant contribution in financial data analytics. These indices include: 1. S&P 500 (^GSPC) 2. Dow 30 (^DJI) 3. Nasdaq (^IXIC) 4. NYSE COMPOSITE DJ (^NYA) 5. NYSE AMEX COMPOSITE INDEX (^XAX) 6. Cboe UK 100 (^BUK100P) 7. Russell 2000 (^RUT) 8. CBOE Volatility Index (^VIX) 9. DAX PERFORMANCE-INDEX (^GDAXI) 10. CAC 40 (^FCHI) 11. ESTX 50 PR.EUR (^STOXX50E) 12. Euronext 100 Index (^N100) 13. BEL 20 (^BFX) 14. MOEX Russia Index (IMOEX.ME) 15. Nikkei 225 (^N225) 16. HANG SENG INDEX (^HSI) 17. SSE Composite Index (000001.SS) 18. Shenzhen Index (399001.SZ) 19. S&P/ASX 200 (^AXJO) 20. ALL ORDINARIES (^AORD) 21. S&P BSE SENSEX (^BSESN) 22. Jakarta Composite Index (^JKSE) 23. S&P/NZX 50 INDEX GROSS (^NZ50) 24. KOSPI Composite Index (^KS11) 25. TSEC weighted index (^TWII) 26. S&P/TSX Composite index (^GSPTSE) 27. IBOVESPA (^BVSP) 28. IPC MEXICO (^MXX) 29. S&P/CLX IPSA (^IPSA) 30. MERVAL (^MERV) 31. TA-125 (^TA125.TA) 32. EGX 30 Price Return Index (^CASE30) 33. Top 40 USD Net TRI Index (^JN0U.JO)

Search
Clear search
Close search
Google apps
Main menu