Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
A dataset comprising various variables around housing and demographics for the top 50 American cities by population.
Variables:
Zip Code: Zip code within which the listing is present.
Price: Listed price for the property.
Beds: Number of beds mentioned in the listing.
Baths: Number of baths mentioned in the listing.
Living Space: The total size of the living space, in square feet, mentioned in the listing.
Address: Street address of the listing.
City: City name where the listing is located.
State: State name where the listing is located.
Zip Code Population: The estimated number of individuals within the zip code. Data from Simplemaps.com.
Zip Code Density: The estimated number of individuals per square mile within the zip code. Data from Simplemaps.com.
County: County where the listing is located.
Median Household income: Estimated median household income. Data from the U.S. Census Bureau.
Latitude: Latitude of the zip code. ** Data from Simplemaps.com.**
Longitude: Longitude of the zip code. Data from Simplemaps.com.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.
| Column Name | Description |
|---|---|
Country | The country where the housing market data is recorded 🌍 |
Year | The year of observation 📅 |
Average House Price ($) | The average price of houses in USD 💰 |
Median Rental Price ($) | The median monthly rent for properties in USD 🏠 |
Mortgage Interest Rate (%) | The average mortgage interest rate percentage 📉 |
Household Income ($) | The average annual household income in USD 🏡 |
Population Growth (%) | The percentage increase in population over the year 👥 |
Urbanization Rate (%) | Percentage of the population living in urban areas 🏙️ |
Homeownership Rate (%) | The percentage of people who own their homes 🔑 |
GDP Growth Rate (%) | The annual GDP growth percentage 📈 |
Unemployment Rate (%) | The percentage of unemployed individuals in the labor force 💼 |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The standardised house price-to-income ratio is defined as the ratio of the current price to income ratio relative to the long-term average price-to-income ratio, calculated over the period 2000 to the most recent data available. If the ratio equals 100, it means the current price-to-income ratio is equal to its long term average. House prices are provided by Eurostat, and income is calculated as adjusted household gross disposable income (B7G) per head of population based on Eurostat data.
Facebook
TwitterPortugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices by gross annual workplace-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
URA28 - Gross Median Household Income Compared to Median Property Prices - Dataset - data.gov.ie
Facebook
TwitterAll the following text is copied directly from the original dataset used: https://www.kaggle.com/datasets/fedesoriano/the-boston-houseprice-data
The only difference is that features 12 and 13 have been removed for simplicity. See original link for a version with those features in place.
Gender Pay Gap Dataset: https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset
California Housing Prices Data (5 new features!): https://www.kaggle.com/fedesoriano/california-housing-prices-data-extra-features
Company Bankruptcy Prediction: https://www.kaggle.com/fedesoriano/company-bankruptcy-prediction
Spanish Wine Quality Dataset: https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978.
Input features in order:
1) CRIM: per capita crime rate by town
2) ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
3) INDUS: proportion of non-retail business acres per town
4) CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise)
5) NOX: nitric oxides concentration (parts per 10 million) [parts/10M]
6) RM: average number of rooms per dwelling
7) AGE: proportion of owner-occupied units built prior to 1940
8) DIS: weighted distances to five Boston employment centres
9) RAD: index of accessibility to radial highways
10) TAX: full-value property-tax rate per $10,000 [$/10k]
11) PTRATIO: pupil-teacher ratio by town
[Original features 12 and 13 have been deliberately removed from this version of the dataset]
Output variable:
1) MEDV: Median value of owner-occupied homes in $1000's [k$]
StatLib - Carnegie Mellon University
Harrison, David & Rubinfeld, Daniel. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management. 5. 81-102. 10.1016/0095-0696(78)90006-2. https://www.researchgate.net/profile/Daniel-Rubinfeld/publication/4974606_Hedonic_housing_prices_and_the_demand_for_clean_air/links/5c38ce85458515a4c71e3a64/Hedonic-housing-prices-and-the-demand-for-clean-air.pdf
Belsley, David A. & Kuh, Edwin. & Welsch, Roy E. (1980). Regression diagnostics: identifying influential data and sources of collinearity. New York: Wiley https://www.wiley.com/en-us/Regression+Diagnostics%3A+Identifying+Influential+Data+and+Sources+of+Collinearity-p-9780471691174
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Standardised Price-Income Ratio: sa data was reported at 149.268 Ratio in Dec 2024. This records a decrease from the previous number of 152.371 Ratio for Sep 2024. Australia Standardised Price-Income Ratio: sa data is updated quarterly, averaging 82.643 Ratio from Mar 1970 (Median) to Dec 2024, with 220 observations. The data reached an all-time high of 153.422 Ratio in Jun 2024 and a record low of 62.554 Ratio in Sep 1983. Australia Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Australia – Table AU.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Quarterly. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
Facebook
TwitterThis dataset is created via OECD datasource which is consisted of 2000 between 2020. https://data.oecd.org/price/housing-prices.htm
The housing prices indicator shows indices of residential property prices over time. Included are rent prices, real and nominal house prices, and ratios of price to rent and price to income; the main elements of housing costs. In most cases, the nominal house price covers the sale of newly-built and existing dwellings, following the recommendations from RPPI (Residential Property Prices Indices) manual. The real house price is given by the ratio of nominal price to the consumers’ expenditure deflator in each country, both seasonally adjusted, from the OECD national accounts database. The price to income ratio is the nominal house price divided by the nominal disposable income per head and can be considered as a measure of affordability. The price to rent ratio is the nominal house price divided by the rent price and can be considered as a measure of the profitability of house ownership. This indicator is an index with base year 2015.
Facebook
TwitterThis table shows the average House Price/Earnings ratio, which is an important indicator of housing affordability. Ratios are calculated by dividing house price by the median earnings of a borough. The Annual Survey of Hours and Earnings (ASHE) is based on a 1 per cent sample of employee jobs. Information on earnings and hours is obtained in confidence from employers. It does not cover the self-employed nor does it cover employees not paid during the reference period. Information is as at April each year. The statistics used are workplace based full-time individual earnings. Pre-2013 Land Registry housing data are for the first half of the year only, so that they are comparable to the ASHE data which are as at April. This is no longer the case from 2013 onwards as this data uses house price data from the ONS House Price Statistics for Small Areas statistical release. Prior to 2006 data are not available for Inner and Outer London. The lowest 25 per cent of prices are below the lower quartile; the highest 75 per cent are above the lower quartile. The "lower quartile" property price/income is determined by ranking all property prices/incomes in ascending order. The 'median' property price/income is determined by ranking all property prices/incomes in ascending order. The point at which one half of the values are above and one half are below is the median. Regional data has not been published by DCLG since 2012. Data for regions has been calculated by the GLA. Data since 2014 has been calculated by the GLA using Land Registry house prices and ONS Earnings data. Link to DCLG Live Tables An interactive map showing the affordability ratios by local authority for 2013, 2014 and 2015 is also available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Switzerland Price to Income Ratio: sa data was reported at 125.810 2015=100 in 2024. This records an increase from the previous number of 124.006 2015=100 for 2023. Switzerland Price to Income Ratio: sa data is updated yearly, averaging 110.203 2015=100 from Dec 1970 (Median) to 2024, with 55 observations. The data reached an all-time high of 142.115 2015=100 in 1989 and a record low of 72.862 2015=100 in 2001. Switzerland Price to Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Switzerland – Table CH.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the unadjusted lower quartile house priced for residential property sales (transactions) in the area for a 12 month period with April in the middle (year-ending September). These figures have been produced by the ONS (Office for National Statistics) using the Land Registry (LR) Price Paid data on residential dwelling transactions.
The LR Price Paid data are comprehensive in that they capture changes of ownership for individual residential properties which have sold for full market value and covers both cash sales and those involving a mortgage.
The lower quartile is the value determined by putting all the house sales for a given year, area and type in order of price and then selecting the price of the house sale which falls three quarters of the way down the list, such that 75Percentage of transactions lie above and 25Percentage lie below that value. These are particularly useful for assessing housing affordability when viewed alongside average and lower quartile income for given areas.
Note that a transaction occurs when a change of freeholder or leaseholder takes place regardless of the amount of money involved and a property can transact more than once in the time period.
The LR records the actual price for which the property changed hands. This will usually be an accurate reflection of the market value for the individual property, but it is not always the case. In order to generate statistics that more accurately reflect market values, the LR has excluded records of houses that were not sold at market value from the dataset. The remaining data are considered a good reflection of market values at the time of the transaction. For full details of exclusions and more information on the methodology used to produce these statistics please see http://www.ons.gov.uk/peoplepopulationandcommunity/housing/qmis/housepricestatisticsforsmallareasqmi
The LR Price Paid data are not adjusted to reflect the mix of houses in a given area. Fluctuations in the types of house that are sold in that area can cause differences between the lower quartile transactional value of houses and the overall market value of houses.
If, for a given year, for house type and area there were fewer than 5 sales records in the LR Price Paid data, the house price statistics are not reported." Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset contains the ratio of lower quartile/median house price to lower quartile/median earnings in England This dataset uses the median/lower quartile house price data sourced from ONS House Price Statistics for Small Areas (HPSSA) statistical release for years 2013-2015 and house price data sourced directly from Land Registry prior to 2013. This leads to slight differences in the distribution of affordability ratios before and after 2013 which should be noted if the dataset is used as a time series. It is planned to update the ratios with the HPSSA dataset for all years in the future. The house price data is then compared to the median/lower quartile income data of full time workers from the Annual Survey of Hours and Earnings (ASHE) produced by the ONS. This data was derived from Table 576 and 577, available for download as an Excel spreadsheet from the Live tables page (https://www.gov.uk/government/statistical-data-sets/live-tables-on-housing-market-and-house-prices). More details about the data sources are also available in the link provided.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
A dataset comprising the price, address, number of bathrooms, number of bedrooms, city, and province of real estate listings for Canada's top 45 most populous cities, according to the 2021 census.
Variables:
This dataset can be used for basic linear regression problems or for basic exploratory data analysis.
Data is currently representative of prices as of October 29th 2023. Future updates will occur monthly.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Taiwan Housing Price to Income Ratio data was reported at 9.160 Times in Dec 2017. This records a decrease from the previous number of 9.220 Times for Sep 2017. Taiwan Housing Price to Income Ratio data is updated quarterly, averaging 6.735 Times from Mar 2002 (Median) to Dec 2017, with 64 observations. The data reached an all-time high of 9.460 Times in Jun 2017 and a record low of 4.150 Times in Sep 2002. Taiwan Housing Price to Income Ratio data remains active status in CEIC and is reported by Construction and Planning Agency, Ministry of the Interior. The data is categorized under Global Database’s Taiwan – Table TW.EB017: Housing Price and Housing Loan Payment to Income Ratio.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Global Housing Watch tracks developments in housing markets across the world on a quarterly basis. It provides current data on house prices as well as metrics used to assess valuation in housing markets, such as house price‑to‑rent and house-price‑to‑income ratios. This collection includes only a subset of indicators from the source dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Poland increased to 215.66 points in the second quarter of 2025 from 213.20 points in the first quarter of 2025. This dataset provides the latest reported value for - Poland Housing Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.