100+ datasets found
  1. Gender Pay Gap Dataset

    • kaggle.com
    zip
    Updated Feb 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fedesoriano (2022). Gender Pay Gap Dataset [Dataset]. https://www.kaggle.com/datasets/fedesoriano/gender-pay-gap-dataset
    Explore at:
    zip(61650632 bytes)Available download formats
    Dataset updated
    Feb 2, 2022
    Authors
    fedesoriano
    Description

    Similar Datasets

    • Company Bankruptcy Prediction: LINK
    • The Boston House-Price Data: LINK
    • California Housing Prices Data (5 new features!): LINK
    • Spanish Wine Quality Dataset: LINK

    Context

    The gender pay gap or gender wage gap is the average difference between the remuneration for men and women who are working. Women are generally considered to be paid less than men. There are two distinct numbers regarding the pay gap: non-adjusted versus adjusted pay gap. The latter typically takes into account differences in hours worked, occupations were chosen, education, and job experience. In the United States, for example, the non-adjusted average female's annual salary is 79% of the average male salary, compared to 95% for the adjusted average salary.

    The reasons link to legal, social, and economic factors, and extend beyond "equal pay for equal work".

    The gender pay gap can be a problem from a public policy perspective because it reduces economic output and means that women are more likely to be dependent upon welfare payments, especially in old age.

    This dataset aims to replicate the data used in the famous paper "The Gender Wage Gap: Extent, Trends, and Explanations", which provides new empirical evidence on the extent of and trends in the gender wage gap, which declined considerably during the 1980–2010 period.

    Citation

    fedesoriano. (January 2022). Gender Pay Gap Dataset. Retrieved [Date Retrieved] from https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset.

    Content

    There are 2 files in this dataset: a) the Panel Study of Income Dynamics (PSID) microdata over the 1980-2010 period, and b) the Current Population Survey (CPS) to provide some additional US national data on the gender pay gap.

    PSID variables:

    NOTES: THE VARIABLES WITH fz ADDED TO THEIR NAME REFER TO EXPERIENCE WHERE WE HAVE FILLED IN SOME ZEROS IN THE MISSING PSID YEARS WITH DATA FROM THE RESPONDENTS’ ANSWERS TO QUESTIONS ABOUT JOBS WORKED ON DURING THESE MISSING YEARS. THE fz variables WERE USED IN THE REGRESSION ANALYSES THE VARIABLES WITH A predict PREFIX REFER TO THE COMPUTATION OF ACTUAL EXPERIENCE ACCUMULATED DURING THE YEARS IN WHICH THE PSID DID NOT SURVEY THE RESPONDENTS. THERE ARE MORE PREDICTED EXPERIENCE LEVELS THAT ARE NEEDED TO IMPUTE EXPERIENCE IN THE MISSING YEARS IN SOME CASES. NOTE THAT THE VARIABLES yrsexpf, yrsexpfsz, etc., INCLUDE THESE COMPUTATIONS, SO THAT IF YOU WANT TO USE FULL TIME OR PART TIME EXPERIENCE, YOU DON’T NEED TO ADD THESE PREDICT VARIABLES IN. THEY ARE INCLUDED IN THE DATA SET TO ILLUSTRATE THE RESULTS OF THE COMPUTATION PROCESS. THE VARIABLES WITH AN orig PREFIX ARE THE ORIGINAL PSID VARIABLES. THESE HAVE BEEN PROCESSED AND IN SOME CASES RENAMED FOR CONVENIENCE. THE hd SUFFIX MEANS THAT THE VARIABLE REFERS TO THE HEAD OF THE FAMILY, AND THE wf SUFFIX MEANS THAT IT REFERS TO THE WIFE OR FEMALE COHABITOR IF THERE IS ONE. AS SHOWN IN THE ACCOMPANYING REGRESSION PROGRAM, THESE orig VARIABLES AREN’T USED DIRECTLY IN THE REGRESSIONS. THERE ARE MORE OF THE ORIGINAL PSID VARIABLES, WHICH WERE USED TO CONSTRUCT THE VARIABLES USED IN THE REGRESSIONS. HD MEANS HEAD AND WF MEANS WIFE OR FEMALE COHABITOR.

    1. intnum68: 1968 INTERVIEW NUMBER
    2. pernum68: PERSON NUMBER 68
    3. wave: Current Wave of the PSID
    4. sex: gender SEX OF INDIVIDUAL (1=male, 2=female)
    5. intnum: Wave-specific Interview Number
    6. farminc: Farm Income
    7. region: regLab Region of Current Interview
    8. famwgt: this is the PSID’s family weight, which is used in all analyses
    9. relhead: ER34103L this is the relation to the head of household (10=head; 20=legally married wife; 22=cohabiting partner)
    10. age: Age
    11. employed: ER34116L Whether or not employed or on temp leave (everyone gets a 1 for this variable, since our wage analyses use only the currently employed)
    12. sch: schLbl Highest Year of Schooling
    13. annhrs: Annual Hours Worked
    14. annlabinc: Annual Labor Income
    15. occ: 3 Digit Occupation 2000 codes
    16. ind: 3 Digit Industry 2000 codes
    17. white: White, nonhispanic dummy variable
    18. black: Black, nonhispanic dummy variable
    19. hisp: Hispanic dummy variable
    20. othrace: Other Race dummy variable
    21. degree: degreeLbl Agent's Degree Status (0=no college degree; 1=bachelor’s without advanced degree; 2=advanced degree)
    22. degupd: degreeLbl Agent's Degree Status (Updated with 2009 values)
    23. schupd: schLbl Schooling (updated years of schooling)
    24. annwks: Annual Weeks Worked
    25. unjob: unJobLbl Union Coverage dummy variable
    26. usualhrwk: Usual Hrs Worked Per Week
    27. labincbus: Labor Income from...
  2. U.S. annual median earnings of workers 2023, by gender

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. annual median earnings of workers 2023, by gender [Dataset]. https://www.statista.com/statistics/1186135/us-median-annual-worker-earnings-by-gender/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the median annual earnings of full-time male workers in the United States stood at ****** U.S. dollars after being adjusted for inflation, which was significantly higher than the median earnings of full-time women at ******. For further reading, see the female to male earnings ratio.

  3. Share of income in the world earned by women 2000-2023

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of income in the world earned by women 2000-2023 [Dataset]. https://www.statista.com/statistics/1341674/income-women-worldwide/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Since 2000, the share of the world's total labor income before tax earned by women fluctuated between ***** percent to ***** percent. This is significantly less than their male counterparts. There are also differences between the world regions.

  4. F

    Employed full time: Median usual weekly real earnings: Wage and salary...

    • fred.stlouisfed.org
    json
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over: Women [Dataset]. https://fred.stlouisfed.org/series/LES1252882800Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over: Women (LES1252882800Q) from Q1 1979 to Q2 2025 about full-time, females, salaries, workers, earnings, 16 years +, wages, median, real, employment, and USA.

  5. F

    Employed part time: Median usual weekly nominal earnings (second quartile):...

    • fred.stlouisfed.org
    json
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed part time: Median usual weekly nominal earnings (second quartile): Wage and salary workers: 16 years and over: Black or African American: Women [Dataset]. https://fred.stlouisfed.org/series/LEU0262885100Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed part time: Median usual weekly nominal earnings (second quartile): Wage and salary workers: 16 years and over: Black or African American: Women (LEU0262885100Q) from Q1 2000 to Q2 2025 about part-time, second quartile, African-American, females, salaries, workers, earnings, 16 years +, wages, median, employment, and USA.

  6. Women's average earnings as percentage of men's in Sweden 2014-2023

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Women's average earnings as percentage of men's in Sweden 2014-2023 [Dataset]. https://www.statista.com/statistics/528596/sweden-women-s-average-earnings/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Sweden
    Description

    In Sweden, men earn slightly more than women. From 2016 to 2021, women's average earnings in the country were 96 percent of that of their male counterparts, but dropped to 95 percent in 2022. This is despite the fact that women have a higher educational level than men.Unequal pay, a frequently observed problem Even though women in Sweden earn less on average than men, the gender pay gap is smaller in Sweden than in several other European countries. However, in a survey about attitudes towards gender equality, equal pay for equal work was considered the second most important issue facing women and girls in Sweden today. Gender difference in the distribution among occupations and sectors The main reason for the lack of equal pay for men and women is that the latter group tends to work in occupations where average salaries are lower than in those dominated by men. For instance, the average salary in the human health sector in Sweden is 35,000 Swedish kronor, compared to 57,200 in financial institutions and insurance companies. The health care sector in the country has a high share of female employees.

  7. Average annual earnings for full-time employees in the UK 1999-2025, by...

    • statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Average annual earnings for full-time employees in the UK 1999-2025, by gender [Dataset]. https://www.statista.com/statistics/802209/full-time-annual-salary-in-the-uk-by-gender/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2024
    Area covered
    United Kingdom
    Description

    In 2025, the average annual full-time salary for men in the United Kingdom was 41,832 British pounds, compared with 35,670 pounds for women, a difference of 6,162 pounds. In the previous year, men earned an average annual salary of 40,053, compared with women who earned 34,001.

  8. Average female and male earnings and female-to-male earnings ratio

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Dec 17, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2015). Average female and male earnings and female-to-male earnings ratio [Dataset]. http://doi.org/10.25318/1110014301-eng
    Explore at:
    Dataset updated
    Dec 17, 2015
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Average female and male earnings and female-to-male earnings ratio, Canada.

  9. N

    Alabama annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Alabama annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/alabama-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alabama
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Alabama. The dataset can be utilized to gain insights into gender-based income distribution within the Alabama population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Alabama, among individuals aged 15 years and older with income, there were 1.76 million men and 1.81 million women in the workforce. Among them, 943.71 thousand men were engaged in full-time, year-round employment, while 736.67 thousand women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 9.92% fell within the income range of under $24,999, while 16.27% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 23.67% of men in full-time roles earned incomes exceeding $100,000, while 10.51% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Alabama median household income by race. You can refer the same here

  10. F

    Employed full time: Median usual weekly real earnings: Wage and salary...

    • fred.stlouisfed.org
    json
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 to 24 years: Women [Dataset]. https://fred.stlouisfed.org/series/LEU0252883100Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 to 24 years: Women (LEU0252883100Q) from Q1 2000 to Q2 2025 about 16 to 24 years, full-time, females, salaries, workers, earnings, wages, median, real, employment, and USA.

  11. U.S. female workers median hourly earnings 2023, by age

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. female workers median hourly earnings 2023, by age [Dataset]. https://www.statista.com/statistics/185362/median-hourly-earnings-of-female-wage-and-salary-workers-by-age/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the median hourly rate of a female wageworker in the United States between 20 and 24 years old was 15.88 current U.S. dollars. Women between the ages of 35 and 44 years old made the most in that year, with a median hourly wage of 19.84 current U.S. dollars.

  12. đź’¸ Hourly Earnings of Female and Male Employees

    • kaggle.com
    Updated Aug 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    efimpolianskii (2023). đź’¸ Hourly Earnings of Female and Male Employees [Dataset]. https://www.kaggle.com/datasets/timmofeyy/hourly-earnings-of-female-and-male-employees
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 18, 2023
    Dataset provided by
    Kaggle
    Authors
    efimpolianskii
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This comprehensive indicator offers detailed insights into the average hourly earnings derived from paid employment across various dimensions, including sex, occupation, age, and disability status. By examining the interplay of these factors, the indicator provides a nuanced understanding of wage differentials within the workforce. This information is invaluable for assessing patterns of income inequality, identifying potential areas for policy intervention, and fostering a more inclusive and equitable employment environment. Through its multifaceted approach, the indicator enables a thorough analysis of how various demographic variables intersect with earnings, thereby contributing to a more holistic comprehension of labor market dynamics and the socioeconomic landscape.

    PS I hope this dataset will answer many of your questions and will be trigger to many new ones. I will read every comment and notebooks as I do it every time and hope to see your mind blowing conclusions. Good luck and thank you for being here

  13. F

    Employed full time: Median usual weekly nominal earnings (second quartile):...

    • fred.stlouisfed.org
    json
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Median usual weekly nominal earnings (second quartile): Wage and salary workers: 16 to 24 years: Women [Dataset]. https://fred.stlouisfed.org/series/LEU0252883000Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Median usual weekly nominal earnings (second quartile): Wage and salary workers: 16 to 24 years: Women (LEU0252883000Q) from Q1 2000 to Q2 2025 about 16 to 24 years, second quartile, full-time, females, salaries, workers, earnings, wages, median, employment, and USA.

  14. F

    Employed full time: Wage and salary workers: Bachelor's degree and higher:...

    • fred.stlouisfed.org
    json
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Wage and salary workers: Bachelor's degree and higher: 25 years and over: Black or African American: Women [Dataset]. https://fred.stlouisfed.org/series/LEU0252943800A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Wage and salary workers: Bachelor's degree and higher: 25 years and over: Black or African American: Women (LEU0252943800A) from 2000 to 2024 about African-American, 25 years +, tertiary schooling, full-time, females, salaries, workers, education, wages, employment, and USA.

  15. g

    Women’s median salary as a percentage of men’s median wage, employees of the...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Women’s median salary as a percentage of men’s median wage, employees of the region, share (%) [Dataset]. https://gimi9.com/dataset/eu_http-api-kolada-se-v2-kpi-n00958
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Median pay for women employed by the region as a percentage of median pay for men employed by the region. All salary reported is calculated as full-time salary, SEK/month. Full-time salary includes basic salary plus variable allowances and benefits. For employees aged 18-66 (until 2013 18-64 years) who are monthly or hourly paid. Employees of municipal-owned companies are not included.

  16. N

    Washington, DC annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Washington, DC annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/washington-dc-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Washington
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Washington. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Washington, the median income for all workers aged 15 years and older, regardless of work hours, was $77,818 for males and $64,201 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 17% between the median incomes of males and females in Washington. With women, regardless of work hours, earning 83 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Washington.

    - Full-time workers, aged 15 years and older: In Washington, among full-time, year-round workers aged 15 years and older, males earned a median income of $110,582, while females earned $95,422, resulting in a 14% gender pay gap among full-time workers. This illustrates that women earn 86 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Washington.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Washington.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Washington median household income by race. You can refer the same here

  17. Percentages of annual wages Woman's salary with respect to man's salary by...

    • ine.es
    csv, html, json +4
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de EstadĂ­stica (2024). Percentages of annual wages Woman's salary with respect to man's salary by period. [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=10902&L=1
    Explore at:
    txt, csv, html, xlsx, text/pc-axis, json, xlsAvailable download formats
    Dataset updated
    Feb 13, 2024
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de EstadĂ­stica
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2009 - Jan 1, 2021
    Variables measured
    Gender gap, Percentiles, Type of data, National Total, Salary/Labour Line Items
    Description

    Women and Men in Spain: Percentages of annual wages Woman's salary with respect to man's salary by period. Annual. National.

  18. N

    Hennepin County, MN annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Hennepin County, MN annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/hennepin-county-mn-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hennepin County, Minnesota
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Hennepin County. The dataset can be utilized to gain insights into gender-based income distribution within the Hennepin County population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Hennepin County, among individuals aged 15 years and older with income, there were 482.13 thousand men and 476.72 thousand women in the workforce. Among them, 274.00 thousand men were engaged in full-time, year-round employment, while 216,290 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 4.29% fell within the income range of under $24,999, while 5% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 40.47% of men in full-time roles earned incomes exceeding $100,000, while 28.57% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Hennepin County median household income by race. You can refer the same here

  19. T

    United States - Employed full time: Wage and salary workers: 25 to 34 years:...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). United States - Employed full time: Wage and salary workers: 25 to 34 years: Women [Dataset]. https://tradingeconomics.com/united-states/employed-full-time-wage-and-salary-workers-25-to-34-years-women-thous-of-persons-fed-data.html
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    Apr 26, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    United States - Employed full time: Wage and salary workers: 25 to 34 years: Women was 13366.00000 Thous. of Persons in April of 2025, according to the United States Federal Reserve. Historically, United States - Employed full time: Wage and salary workers: 25 to 34 years: Women reached a record high of 13524.00000 in April of 2023 and a record low of 10215.00000 in January of 2011. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Employed full time: Wage and salary workers: 25 to 34 years: Women - last updated from the United States Federal Reserve on November of 2025.

  20. I

    Indonesia Monthly Average Wage: Female

    • ceicdata.com
    Updated May 15, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Indonesia Monthly Average Wage: Female [Dataset]. https://www.ceicdata.com/en/indonesia/monthly-average-wage-by-industry/monthly-average-wage-female
    Explore at:
    Dataset updated
    May 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 1, 2007 - Aug 1, 2018
    Area covered
    Indonesia
    Variables measured
    Wage/Earnings
    Description

    Indonesia Monthly Average Wage: Female data was reported at 2,178,134.000 IDR in 2018. This records an increase from the previous number of 2,070,274.000 IDR for 2017. Indonesia Monthly Average Wage: Female data is updated yearly, averaging 720,632.000 IDR from Aug 1994 (Median) to 2018, with 24 observations. The data reached an all-time high of 2,178,134.000 IDR in 2018 and a record low of 113,497.000 IDR in 1994. Indonesia Monthly Average Wage: Female data remains active status in CEIC and is reported by Central Bureau of Statistics. The data is categorized under Global Database’s Indonesia – Table ID.GBB002: Monthly Average Wage: by Industry.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
fedesoriano (2022). Gender Pay Gap Dataset [Dataset]. https://www.kaggle.com/datasets/fedesoriano/gender-pay-gap-dataset
Organization logo

Gender Pay Gap Dataset

The Gender Wage Gap: Extent, Trends, and Explanations for differences in Salary

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
zip(61650632 bytes)Available download formats
Dataset updated
Feb 2, 2022
Authors
fedesoriano
Description

Similar Datasets

  • Company Bankruptcy Prediction: LINK
  • The Boston House-Price Data: LINK
  • California Housing Prices Data (5 new features!): LINK
  • Spanish Wine Quality Dataset: LINK

Context

The gender pay gap or gender wage gap is the average difference between the remuneration for men and women who are working. Women are generally considered to be paid less than men. There are two distinct numbers regarding the pay gap: non-adjusted versus adjusted pay gap. The latter typically takes into account differences in hours worked, occupations were chosen, education, and job experience. In the United States, for example, the non-adjusted average female's annual salary is 79% of the average male salary, compared to 95% for the adjusted average salary.

The reasons link to legal, social, and economic factors, and extend beyond "equal pay for equal work".

The gender pay gap can be a problem from a public policy perspective because it reduces economic output and means that women are more likely to be dependent upon welfare payments, especially in old age.

This dataset aims to replicate the data used in the famous paper "The Gender Wage Gap: Extent, Trends, and Explanations", which provides new empirical evidence on the extent of and trends in the gender wage gap, which declined considerably during the 1980–2010 period.

Citation

fedesoriano. (January 2022). Gender Pay Gap Dataset. Retrieved [Date Retrieved] from https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset.

Content

There are 2 files in this dataset: a) the Panel Study of Income Dynamics (PSID) microdata over the 1980-2010 period, and b) the Current Population Survey (CPS) to provide some additional US national data on the gender pay gap.

PSID variables:

NOTES: THE VARIABLES WITH fz ADDED TO THEIR NAME REFER TO EXPERIENCE WHERE WE HAVE FILLED IN SOME ZEROS IN THE MISSING PSID YEARS WITH DATA FROM THE RESPONDENTS’ ANSWERS TO QUESTIONS ABOUT JOBS WORKED ON DURING THESE MISSING YEARS. THE fz variables WERE USED IN THE REGRESSION ANALYSES THE VARIABLES WITH A predict PREFIX REFER TO THE COMPUTATION OF ACTUAL EXPERIENCE ACCUMULATED DURING THE YEARS IN WHICH THE PSID DID NOT SURVEY THE RESPONDENTS. THERE ARE MORE PREDICTED EXPERIENCE LEVELS THAT ARE NEEDED TO IMPUTE EXPERIENCE IN THE MISSING YEARS IN SOME CASES. NOTE THAT THE VARIABLES yrsexpf, yrsexpfsz, etc., INCLUDE THESE COMPUTATIONS, SO THAT IF YOU WANT TO USE FULL TIME OR PART TIME EXPERIENCE, YOU DON’T NEED TO ADD THESE PREDICT VARIABLES IN. THEY ARE INCLUDED IN THE DATA SET TO ILLUSTRATE THE RESULTS OF THE COMPUTATION PROCESS. THE VARIABLES WITH AN orig PREFIX ARE THE ORIGINAL PSID VARIABLES. THESE HAVE BEEN PROCESSED AND IN SOME CASES RENAMED FOR CONVENIENCE. THE hd SUFFIX MEANS THAT THE VARIABLE REFERS TO THE HEAD OF THE FAMILY, AND THE wf SUFFIX MEANS THAT IT REFERS TO THE WIFE OR FEMALE COHABITOR IF THERE IS ONE. AS SHOWN IN THE ACCOMPANYING REGRESSION PROGRAM, THESE orig VARIABLES AREN’T USED DIRECTLY IN THE REGRESSIONS. THERE ARE MORE OF THE ORIGINAL PSID VARIABLES, WHICH WERE USED TO CONSTRUCT THE VARIABLES USED IN THE REGRESSIONS. HD MEANS HEAD AND WF MEANS WIFE OR FEMALE COHABITOR.

  1. intnum68: 1968 INTERVIEW NUMBER
  2. pernum68: PERSON NUMBER 68
  3. wave: Current Wave of the PSID
  4. sex: gender SEX OF INDIVIDUAL (1=male, 2=female)
  5. intnum: Wave-specific Interview Number
  6. farminc: Farm Income
  7. region: regLab Region of Current Interview
  8. famwgt: this is the PSID’s family weight, which is used in all analyses
  9. relhead: ER34103L this is the relation to the head of household (10=head; 20=legally married wife; 22=cohabiting partner)
  10. age: Age
  11. employed: ER34116L Whether or not employed or on temp leave (everyone gets a 1 for this variable, since our wage analyses use only the currently employed)
  12. sch: schLbl Highest Year of Schooling
  13. annhrs: Annual Hours Worked
  14. annlabinc: Annual Labor Income
  15. occ: 3 Digit Occupation 2000 codes
  16. ind: 3 Digit Industry 2000 codes
  17. white: White, nonhispanic dummy variable
  18. black: Black, nonhispanic dummy variable
  19. hisp: Hispanic dummy variable
  20. othrace: Other Race dummy variable
  21. degree: degreeLbl Agent's Degree Status (0=no college degree; 1=bachelor’s without advanced degree; 2=advanced degree)
  22. degupd: degreeLbl Agent's Degree Status (Updated with 2009 values)
  23. schupd: schLbl Schooling (updated years of schooling)
  24. annwks: Annual Weeks Worked
  25. unjob: unJobLbl Union Coverage dummy variable
  26. usualhrwk: Usual Hrs Worked Per Week
  27. labincbus: Labor Income from...
Search
Clear search
Close search
Google apps
Main menu