Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterttd22/house-price dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Detailed Real Estate Data for Predicting House Prices and Analyzing Market Trends
This dataset contains information on 21,613 properties, making it a comprehensive resource for exploring real estate market trends and building predictive models for house prices. The data includes various features capturing property details, location, and market conditions, providing ample opportunities for data exploration, visualization, and machine learning applications.
General Information:
id: Unique identifier for each property. date: Date of sale. Price Details:
price: Sale price of the house. Property Features:
bedrooms: Number of bedrooms. bathrooms: Number of bathrooms (including partials as fractions). sqft_living: Living space area in square feet. sqft_lot: Lot size in square feet. floors: Number of floors. waterfront: Whether the property has a waterfront view. view: Quality of the view rating. condition: Overall condition of the house. grade: Grade of construction and design (scale of 1–13). Additional Metrics:
sqft_above: Square footage of the property above ground. sqft_basement: Basement area in square feet. yr_built: Year the property was built. yr_renovated: Year of last renovation. Location Coordinates:
zipcode: ZIP code of the property. lat and long: Latitude and longitude coordinates. Neighbor Comparisons:
sqft_living15: Average living space of 15 nearest properties. sqft_lot15: Average lot size of 15 nearest properties. This dataset is a valuable resource for anyone interested in real estate analytics, machine learning, or geographic data visualization.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual house price data based on a sub-sample of the Regulated Mortgage Survey.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average House Prices in the United States increased to 534100 USD in August from 478200 USD in July of 2025. This dataset includes a chart with historical data for the United States New Home Average Sales Price.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterThe U.S. housing market has seen significant price growth since 2011, with the median sales price of existing single-family homes reaching a record high of ******* U.S. dollars in 2024. This represents a substantial increase of ******* over the past five years, highlighting the rapid appreciation of home values across the country. The trend of rising prices can also be observed in the new homes sold. Regional variations and housing shortage While the national median price provides a broad overview, regional differences in home prices are notable. The West remains the most expensive region, with prices twice higher than in the more affordable Midwest. This disparity persists despite efforts to increase housing supply. In 2024, approximately ******* building permits for single-family housing units were granted, showing a slight increase from previous years but still well below the 2005 peak of **** million permits. The ongoing housing shortage continues to drive prices upward across all regions. Market dynamics and future outlook The number of existing home sales has plummeted since 2020, reflecting the growing cost of homeownership. Factors such as high home prices, unfavorable economic conditions, and aggressive increases in mortgage rates have contributed to affordability challenges for many potential homebuyers. Despite these challenges, forecasts suggest a potential recovery in the housing market by 2025, though transaction volumes are expected to remain below long-term averages.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Median Home Sale Price: All Residential: Bridgeport, CT data was reported at 493.000 USD th in Jul 2020. This records an increase from the previous number of 485.000 USD th for Jun 2020. Median Home Sale Price: All Residential: Bridgeport, CT data is updated monthly, averaging 385.000 USD th from Feb 2015 (Median) to Jul 2020, with 66 observations. The data reached an all-time high of 493.000 USD th in Jul 2020 and a record low of 336.000 USD th in Feb 2019. Median Home Sale Price: All Residential: Bridgeport, CT data remains active status in CEIC and is reported by Redfin. The data is categorized under Global Database’s United States – Table US.EB056: Median Home Sale Price: by Metropolitan Areas.
Facebook
TwitterThe average home in the U.S. sold for several percent below its asking price in December 2022, as a result of the housing market slowing. Just a few months before that, In the second quarter of 2022, the so-called sale-to-list price ratio went above ***. This reflected the high housing demand and the need of prospective home buyers to bid above the asking price. Housing demand - as measured in pending home sales - went up, as mortgage rates were historically low and plummeted once rates were increased.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Median Home Sale Price: All Residential: Bonham, TX data was reported at 209.000 USD th in Jul 2020. This records an increase from the previous number of 167.000 USD th for Jun 2020. Median Home Sale Price: All Residential: Bonham, TX data is updated monthly, averaging 115.000 USD th from Feb 2012 (Median) to Jul 2020, with 102 observations. The data reached an all-time high of 209.000 USD th in Jul 2020 and a record low of 46.000 USD th in Jan 2013. Median Home Sale Price: All Residential: Bonham, TX data remains active status in CEIC and is reported by Redfin. The data is categorized under Global Database’s United States – Table US.EB056: Median Home Sale Price: by Metropolitan Areas.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Median Home Sale Price: All Residential: Brenham, TX data was reported at 275.000 USD th in Jul 2020. This records an increase from the previous number of 231.000 USD th for Jun 2020. Median Home Sale Price: All Residential: Brenham, TX data is updated monthly, averaging 211.000 USD th from Feb 2012 (Median) to Jul 2020, with 102 observations. The data reached an all-time high of 319.000 USD th in Mar 2019 and a record low of 115.000 USD th in Feb 2013. Median Home Sale Price: All Residential: Brenham, TX data remains active status in CEIC and is reported by Redfin. The data is categorized under Global Database’s United States – Table US.EB056: Median Home Sale Price: by Metropolitan Areas.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Median Sales Price of Houses Sold for the United States was 410800.00000 $ in April of 2025, according to the United States Federal Reserve. Historically, Median Sales Price of Houses Sold for the United States reached a record high of 442600.00000 in October of 2022 and a record low of 17800.00000 in January of 1963. Trading Economics provides the current actual value, an historical data chart and related indicators for Median Sales Price of Houses Sold for the United States - last updated from the United States Federal Reserve on December of 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Median Home Sale Price: All Residential: Bend, OR data was reported at 470.000 USD th in Jul 2020. This records an increase from the previous number of 430.000 USD th for Jun 2020. Median Home Sale Price: All Residential: Bend, OR data is updated monthly, averaging 331.000 USD th from Feb 2012 (Median) to Jul 2020, with 102 observations. The data reached an all-time high of 470.000 USD th in Jul 2020 and a record low of 170.000 USD th in Mar 2012. Median Home Sale Price: All Residential: Bend, OR data remains active status in CEIC and is reported by Redfin. The data is categorized under Global Database’s United States – Table US.EB056: Median Home Sale Price: by Metropolitan Areas.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains 2,000 entries of house price data from all states in Malaysia, providing a comprehensive overview of the country’s real estate market for 2025. Sourced from Brickz, a trusted platform for property transaction insights, it includes detailed information such as property location, tenure, type, median prices, and transaction counts. This dataset is ideal for real estate market analysis, predictive modeling, and exploring trends across Malaysia’s diverse property market.
https://encrypted-tbn1.gstatic.com/licensed-image?q=tbn:ANd9GcR8ttDRWTx7dIxuUegBTsggS4a6tQrnNA6DEW_HJu2DphQNsverV0PYsSkdbSdqm4qRaRuBOh4Txbv11yXMxIKWqh-_WAkeTuQI8Diu-Q" alt="Kuala Lumpur, Malaysia">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Median Home Sale Price: All Residential: Columbus, OH data was reported at 255.000 USD th in Jul 2020. This records an increase from the previous number of 250.000 USD th for Jun 2020. Median Home Sale Price: All Residential: Columbus, OH data is updated monthly, averaging 172.000 USD th from Feb 2012 (Median) to Jul 2020, with 102 observations. The data reached an all-time high of 255.000 USD th in Jul 2020 and a record low of 122.000 USD th in Jan 2013. Median Home Sale Price: All Residential: Columbus, OH data remains active status in CEIC and is reported by Redfin. The data is categorized under Global Database’s United States – Table US.EB056: Median Home Sale Price: by Metropolitan Areas.
Facebook
TwitterThis dataset is designed for beginners to practice regression problems, particularly in the context of predicting house prices. It contains 1000 rows, with each row representing a house and various attributes that influence its price. The dataset is well-suited for learning basic to intermediate-level regression modeling techniques.
Beginner Regression Projects: This dataset can be used to practice building regression models such as Linear Regression, Decision Trees, or Random Forests. The target variable (house price) is continuous, making this an ideal problem for supervised learning techniques.
Feature Engineering Practice: Learners can create new features by combining existing ones, such as the price per square foot or age of the house, providing an opportunity to experiment with feature transformations.
Exploratory Data Analysis (EDA): You can explore how different features (e.g., square footage, number of bedrooms) correlate with the target variable, making it a great dataset for learning about data visualization and summary statistics.
Model Evaluation: The dataset allows for various model evaluation techniques such as cross-validation, R-squared, and Mean Absolute Error (MAE). These metrics can be used to compare the effectiveness of different models.
The dataset is highly versatile for a range of machine learning tasks. You can apply simple linear models to predict house prices based on one or two features, or use more complex models like Random Forest or Gradient Boosting Machines to understand interactions between variables.
It can also be used for dimensionality reduction techniques like PCA or to practice handling categorical variables (e.g., neighborhood quality) through encoding techniques like one-hot encoding.
This dataset is ideal for anyone wanting to gain practical experience in building regression models while working with real-world features.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Median Sales Price of Existing Single-Family Homes (HSFMEDUSM052N) from Oct 2024 to Oct 2025 about 1-unit structures, family, sales, median, housing, price, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.