100+ datasets found
  1. d

    Warehouse and Retail Sales

    • catalog.data.gov
    • data.montgomerycountymd.gov
    • +3more
    Updated Oct 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.montgomerycountymd.gov (2025). Warehouse and Retail Sales [Dataset]. https://catalog.data.gov/dataset/warehouse-and-retail-sales
    Explore at:
    Dataset updated
    Oct 11, 2025
    Dataset provided by
    data.montgomerycountymd.gov
    Description

    This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly

  2. Scooter Sales - Excel Project

    • kaggle.com
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ann Truong (2023). Scooter Sales - Excel Project [Dataset]. https://www.kaggle.com/datasets/bvanntruong/scooter-sales-excel-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Kaggle
    Authors
    Ann Truong
    Description

    The link for the Excel project to download can be found on GitHub here. It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt=""> The link for the Tableau adjusted dashboard can be found here.

    A screenshot of the interactive Excel dashboard is also included below for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">

  3. Dairy Supply Chain Sales Dataset

    • zenodo.org
    • data.niaid.nih.gov
    pdf, zip
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dimitris Iatropoulos; Konstantinos Georgakidis; Konstantinos Georgakidis; Ilias Siniosoglou; Ilias Siniosoglou; Christos Chaschatzis; Christos Chaschatzis; Anna Triantafyllou; Anna Triantafyllou; Athanasios Liatifis; Athanasios Liatifis; Dimitrios Pliatsios; Dimitrios Pliatsios; Thomas Lagkas; Thomas Lagkas; Vasileios Argyriou; Vasileios Argyriou; Panagiotis Sarigiannidis; Panagiotis Sarigiannidis; Dimitris Iatropoulos (2024). Dairy Supply Chain Sales Dataset [Dataset]. http://doi.org/10.21227/smv6-z405
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Dimitris Iatropoulos; Konstantinos Georgakidis; Konstantinos Georgakidis; Ilias Siniosoglou; Ilias Siniosoglou; Christos Chaschatzis; Christos Chaschatzis; Anna Triantafyllou; Anna Triantafyllou; Athanasios Liatifis; Athanasios Liatifis; Dimitrios Pliatsios; Dimitrios Pliatsios; Thomas Lagkas; Thomas Lagkas; Vasileios Argyriou; Vasileios Argyriou; Panagiotis Sarigiannidis; Panagiotis Sarigiannidis; Dimitris Iatropoulos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1.Introduction

    Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.

    One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.

    This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.

    2. Citation

    Please cite the following papers when using this dataset:

    1. I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted

    3. Dataset Modalities

    The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.

    3.1 Data Collection

    The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.

    The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.

    Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.

    It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.

    The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).

    File

    Period

    Number of Samples (days)

    product 1 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 1 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 1 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 2 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 2 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 2 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 3 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 3 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 3 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 4 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 4 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 4 2022.xlsx

    01/01/2022–31/12/2022

    364

    product 5 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 5 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 5 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 6 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 6 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 6 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 7 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 7 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 7 2022.xlsx

    01/01/2022–31/12/2022

    365

    3.2 Dataset Overview

    The following table enumerates and explains the features included across all of the included files.

    Feature

    Description

    Unit

    Day

    day of the month

    -

    Month

    Month

    -

    Year

    Year

    -

    daily_unit_sales

    Daily sales - the amount of products, measured in units, that during that specific day were sold

    units

    previous_year_daily_unit_sales

    Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year

    units

    percentage_difference_daily_unit_sales

    The percentage difference between the two above values

    %

    daily_unit_sales_kg

    The amount of products, measured in kilograms, that during that specific day were sold

    kg

    previous_year_daily_unit_sales_kg

    Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year

    kg

    percentage_difference_daily_unit_sales_kg

    The percentage difference between the two above values

    kg

    daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned

    %

    previous_year_daily_unit_returns_kg

    The percentage of the products that were shipped to

  4. g

    Online Sales Dataset

    • gts.ai
    json
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). Online Sales Dataset [Dataset]. https://gts.ai/dataset-download/online-sales-dataset/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 25, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Online Sales Dataset provides a detailed overview of global online sales transactions across various product categories. It includes transaction details such as order ID, date, product category, product name, quantity, unit price, total price, region, and payment method.

  5. Furniture Sales Data

    • kaggle.com
    Updated Aug 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RAJ AGRAWAL (2024). Furniture Sales Data [Dataset]. http://doi.org/10.34740/kaggle/dsv/9253879
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    RAJ AGRAWAL
    Description

    This dataset is generated for the purpose of analyzing furniture sales data using multiple regression techniques. It contains 2,500 rows with 15 columns, including 7 numerical columns and 7 categorical columns, along with a target variable (revenue) which represents the total revenue generated from furniture sales. The dataset captures various aspects of furniture sales, such as pricing, cost, sales volume, discount percentage, inventory levels, delivery time, and different categorical attributes like furniture type, material, color, and store location.

    Guys please upload your notebook of this dataset so that others can also learn from your work

  6. E-Commerce Sales Dataset

    • kaggle.com
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). E-Commerce Sales Dataset [Dataset]. https://www.kaggle.com/datasets/thedevastator/unlock-profits-with-e-commerce-sales-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    Description

    E-Commerce Sales Dataset

    Analyzing and Maximizing Online Business Performance

    By ANil [source]

    About this dataset

    This dataset provides an in-depth look at the profitability of e-commerce sales. It contains data on a variety of sales channels, including Shiprocket and INCREFF, as well as financial information on related expenses and profits. The columns contain data such as SKU codes, design numbers, stock levels, product categories, sizes and colors. In addition to this we have included the MRPs across multiple stores like Ajio MRP , Amazon MRP , Amazon FBA MRP , Flipkart MRP , Limeroad MRP Myntra MRP and PaytmMRP along with other key parameters like amount paid by customer for the purchase , rate per piece for every individual transaction Also we have added transactional parameters like Date of sale months category fulfilledby B2b Status Qty Currency Gross amt . This is a must-have dataset for anyone trying to uncover the profitability of e-commerce sales in today's marketplace

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides a comprehensive overview of e-commerce sales data from different channels covering a variety of products. Using this dataset, retailers and digital marketers can measure the performance of their campaigns more accurately and efficiently.

    The following steps help users make the most out of this dataset: - Analyze the general sales trends by examining info such as month, category, currency, stock level, and customer for each sale. This will give you an idea about how your e-commerce business is performing in each channel.
    - Review the Shiprocket and INCREF data to compare and analyze profitability via different fulfilment methods. This comparison would enable you to make better decisions towards maximizing profit while minimizing costs associated with each method’s referral fees and fulfillment rates.
    - Compare prices between various channels such as Amazon FBA MRP, Myntra MRP, Ajio MRP etc using the corresponding columns for each store (Amazon MRP etc). You can judge which stores are offering more profitable margins without compromising on quality by analyzing these pricing points in combination with other information related to product sales (TP1/TP2 - cost per piece).
    - Look at customer specific data such as TP 1/TP 2 combination wise Gross Amount or Rate info in terms price per piece or total gross amount generated by any SKU dispersed over multiple customers with relevant dates associated to track individual item performance relative to others within its category over time periods shortlisted/filtered appropriately.. Have an eye on items commonly utilized against offers or promotional discounts offered hence crafting strategies towards inventory optimization leading up-selling operations.?
    - Finally Use Overall ‘Stock’ details along all the P & L Data including Yearly Expenses_IIGF information record for takeaways which might be aimed towards essential cost cutting measures like switching amongst delivery options carefully chosen out of Shiprocket & INCREFF leadings away from manual inspections catering savings under support personnel outsourcing structures.?

    By employing a comprehensive understanding on how our internal subsidiaries perform globally unless attached respective audits may provide us remarkably lower operational costs servicing confidence; costing far lesser than being incurred taking into account entire pallet shipments tracking sheets representing current level supply chains efficiencies achieved internally., then one may finally scale profits exponentially increases cut down unseen losses followed up introducing newer marketing campaigns necessarily tailored according playing around multiple goods based spectrums due powerful backing suitable transportation boundaries set carefully

    Research Ideas

    • Analysing the difference in profitability between sales made through Shiprocket and INCREFF. This data can be used to see where the biggest profit margins lie, and strategize accordingly.
    • Examining the Complete Cost structure of a product with all its components and their contribution towards revenue or profitability, i.e., TP 1 & 2, MRP Old & Final MRP Old together with Platform based MRP - Amazon, Myntra and Paytm etc., Currency based Profit Margin etc.
    • Building a predictive model using Machine Learning by leveraging historical data to predict future sales volume and profits for e-commerce products across multiple categories/devices/platforms such as Amazon, Flipkart, Myntra etc as well providing m...
  7. o

    Retail sales quality tables

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Sep 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Retail sales quality tables [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/retailindustry/datasets/retailsalesqualitytables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 19, 2025
    Dataset provided by
    Office for National Statistics
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Standard error reference tables for the Retail Sales Index in Great Britain.

  8. F

    Index of Department Store Sales for United States

    • fred.stlouisfed.org
    json
    Updated Aug 17, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Index of Department Store Sales for United States [Dataset]. https://fred.stlouisfed.org/series/M06F2BUSM350NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 17, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Index of Department Store Sales for United States (M06F2BUSM350NNBR) from Jan 1919 to Dec 1963 about retail trade, sales, retail, indexes, and USA.

  9. F

    Monthly State Retail Sales: Total Retail Sales Excluding Nonstore Retailers...

    • fred.stlouisfed.org
    json
    Updated Sep 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Monthly State Retail Sales: Total Retail Sales Excluding Nonstore Retailers in California [Dataset]. https://fred.stlouisfed.org/series/MSRSCATOTAL
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 29, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    California
    Description

    Graph and download economic data for Monthly State Retail Sales: Total Retail Sales Excluding Nonstore Retailers in California (MSRSCATOTAL) from Jan 2019 to Jun 2025 about retail trade, CA, sales, retail, and USA.

  10. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  11. UK House Price Index: data downloads September 2021

    • gov.uk
    Updated Nov 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2021). UK House Price Index: data downloads September 2021 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-september-2021
    Explore at:
    Dataset updated
    Nov 17, 2021
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Area covered
    United Kingdom
    Description

    The UK House Price Index is a National Statistic.

    Create your report

    Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_17_11_21" class="govuk-link">create your own bespoke reports.

    Download the data

    Datasets are available as CSV files. Find out about republishing and making use of the data.

    Google Chrome is blocking downloads of our UK HPI data files (Chrome 88 onwards). Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.

    Full file

    This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

    Download the full UK HPI background file:

    Individual attributes files

    If you are interested in a specific attribute, we have separated them into these CSV files:

  12. Adventure Works Sales

    • kaggle.com
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sam Olkin (2023). Adventure Works Sales [Dataset]. https://www.kaggle.com/datasets/samolkin/adventure-works-sales
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sam Olkin
    Description

    Dataset

    This dataset was created by Sam Olkin

    Contents

  13. F

    E-Commerce Retail Sales

    • fred.stlouisfed.org
    json
    Updated Aug 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). E-Commerce Retail Sales [Dataset]. https://fred.stlouisfed.org/series/ECOMSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 19, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for E-Commerce Retail Sales (ECOMSA) from Q4 1999 to Q2 2025 about e-commerce, retail trade, sales, retail, and USA.

  14. 50Million Rows Turkish Market Sales Dataset(MSSQL)

    • kaggle.com
    Updated Aug 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Omer Colakoglu (2023). 50Million Rows Turkish Market Sales Dataset(MSSQL) [Dataset]. https://www.kaggle.com/datasets/omercolakoglu/50million-rows-turkish-market-sales-datasetmssql
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 31, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Omer Colakoglu
    Description

    50 Million Rows MSSQL Backup File with Clustered Columnstore Index.

    This dataset contains -27K categorized Turkish supermarket items. -81 stores (Every city of Turkey has a store) -100K real Turkish names customer, address -10M rows sales data generated randomly. -All data has a near real price with influation factor by the time.

    All the data generated randomly. So the usernames have been generated with real Turkish names and surnames but they are not real people. The sale data generated randomly. But it has some rules. For example, every order can contains 1-9 kind of item. Every orderline amount can be 1-9 pieces. The randomise function works according to population of the city. So the number of orders for Istanbul (the biggest city of Turkey) is about 20% of all data and another city for example orders for the Gaziantep (the population is 2.5% of Turkey population) is about 2.5% off all data. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1611072%2F9442f2a1dbae7f05ead4fde9e1033ac6%2Finbox_1611072_135236e39b79d6fae8830dec3fca4961_1.png?generation=1693509562300174&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1611072%2F1c39195270db87250e59d9f2917ccea1%2Finbox_1611072_b73d9ca432dae956564cfa5bfe42268c_3.png?generation=1693509575061587&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1611072%2Fa908389f33ae5c983e383d17f0d9a763%2Finbox_1611072_c5d349aa1f33c0fc4fc74b79b7167d3a_F3za81TXkAA1Il4.png?generation=1693509586158658&alt=media" alt="">

  15. F

    Advance Retail Sales: Retail Trade

    • fred.stlouisfed.org
    json
    Updated Sep 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Advance Retail Sales: Retail Trade [Dataset]. https://fred.stlouisfed.org/series/RSXFS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 16, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Advance Retail Sales: Retail Trade (RSXFS) from Jan 1992 to Aug 2025 about retail trade, sales, retail, services, and USA.

  16. C

    Property Sales Data

    • data.milwaukee.gov
    csv
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Assessor's Office (2025). Property Sales Data [Dataset]. https://data.milwaukee.gov/dataset/property-sales-data
    Explore at:
    csv(949709), csv(635017), csv(19324), csv(42822), csv(229224), csv(34325), csv(507943), csv(425413), csv(3975005), csv(50434), csv(775983), csv(26978), csv(201294), csv(338764), csv(20614), csv(557038), csv(816529), csv(340253), csv(892761), csv(34804), csv(868351), csv(315750), csv(219127), csv(742724), csv(233505)Available download formats
    Dataset updated
    Sep 17, 2025
    Dataset authored and provided by
    Assessor's Office
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Update Frequency: Yearly

    Access to Residential, Condominium, Commercial, Apartment properties and vacant land sales history data.

    To download XML and JSON files, click the CSV option below and click the down arrow next to the Download button in the upper right on its page.

  17. F

    Data from: Existing Home Sales

    • fred.stlouisfed.org
    json
    Updated Oct 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Existing Home Sales [Dataset]. https://fred.stlouisfed.org/series/EXHOSLUSM495N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 6, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Existing Home Sales (EXHOSLUSM495N) from Aug 2024 to Aug 2025 about sales, housing, and USA.

  18. w

    2008-09 LENNON sales data download

    • data.wu.ac.at
    • data.europa.eu
    Updated Aug 30, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Transport (2013). 2008-09 LENNON sales data download [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/OWE3YjYwZTEtYWJkOS00MWY4LWFmOTItNWE0NGVkZWQ1ZmY2
    Explore at:
    Dataset updated
    Aug 30, 2013
    Dataset provided by
    Department for Transport
    Description

    Rail Service Analysis (RSA) 2008-09 LENNON sales data download. Data collection ceased.

  19. T

    ITC - Sales Revenues

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). ITC - Sales Revenues [Dataset]. https://tradingeconomics.com/itc:in:sales
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Oct 19, 2025
    Area covered
    India
    Description

    ITC reported INR180.2B in Sales Revenues for its fiscal quarter ending in June of 2025. Data for ITC - Sales Revenues including historical, tables and charts were last updated by Trading Economics this last October in 2025.

  20. Music Sales by Format and Year

    • kaggle.com
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Music Sales by Format and Year [Dataset]. https://www.kaggle.com/datasets/thedevastator/music-sales-by-format-and-year
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 19, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    Description

    Music Sales by Format and Year

    Sales data for music industry by format and year

    By Charlie Hutcheson [source]

    About this dataset

    The Music Industry Sales by Format and Year dataset provides comprehensive information on the sales data for different music formats over a span of 40 years. The dataset aims to analyze and visualize the trends in music industry sales, specifically focusing on various formats and metrics used to measure these sales.

    The dataset includes several key columns to facilitate data analysis, including Format which represents the different formats of music sales such as physical (CDs, vinyl) or digital (downloads, streaming). Additionally, the column Metric indicates the specific measure used to quantify the sales data, such as units sold or revenue generated. The column Year specifies the particular year in which the sales data was recorded.

    To provide a more comprehensive understanding of each combination of format, metric, and year, additional columns are included. The Number of Records column denotes the total number of entries or records available for each unique combination. This information helps assess sample size reliability for further analysis. Moreover, there is an Actual Value column that presents precise numerical values representing the actual recorded sales figure corresponding to each format-metric-year combination.

    This dataset is obtained from credible sources including RIAA's U.S Sales Database and was originally presented through a visualization by Visual Capitalist. It offers insights into historical trends in music industry sales patterns across different formats over four decades.

    In order to enhance this dataset visual representation and further explore its potential insights accurately, it would be necessary to perform an exploratory analysis assessing: seasonal patterns within each format; changes in market share across multiple years; growth rates comparison between physical and digital formats; etc. These analyses can help identify emerging trends in consumer preferences along with underlying factors driving shifts in market dynamics. Additionally,the presentation media (such as charts or graphs) could benefit from improvements such as clearer labeling, more detailed annotations,captions that allow viewers to easily interpret visualized information,and arrangement providing a logical flow conducive to understanding the data

    How to use the dataset

    Dataset Overview

    The dataset consists of the following columns:

    • Format: The format of the music sales, such as physical (CDs, vinyl) or digital (downloads, streaming).
    • Metric: The metric used to measure the sales, such as units sold or revenue generated.
    • Year: The year in which the sales data was recorded.
    • Number of Records: The number of records or entries for each combination of format, metric and year.
    • Value (Actual): The actual value of the sales for each combination of format, metric and year.

    Key Considerations

    Before diving into analyzing this dataset, here are some key points to consider:

    • Categorical Variables: Both Format and Metric columns contain categorical variables that represent different aspects related to music industry sales.
    • Numeric Variables: Year, Number of Records, and Value (Actual) are numeric variables providing chronological information about record counts and actual sale values.

    Interpreting Insights

    To make meaningful interpretations using this data set:

    Analyzing Different Formats:

    • You can compare different formats' popularity over time based on units sold/revenue generated.
    • Explore how digital formats have influenced physical format sales over time.
    • Understand which formats have experienced growth or decline in specific years.

    Evaluating Different Metrics:

    • Analyze revenue trends compared to unit count trends for different formats each year.
    • Identify metrics showing exceptional growth/decline compared across differing years/formats.

    Understanding Sales Trends:

    • Examine the relationship between the number of records and actual sales value each year.
    • Identify periods where significant changes in music industry sales occurred.
    • Observe trends and fluctuations based on different formats/metrics.

    Visualizing Data

    To enhance your analysis, create visualizations using this dataset:

    • Time Series Analysis: Create line plots to visualize the trend in music sales for different formats over time.
    • Comparative Analysis: Generate bar charts or grouped bar plots...
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.montgomerycountymd.gov (2025). Warehouse and Retail Sales [Dataset]. https://catalog.data.gov/dataset/warehouse-and-retail-sales

Warehouse and Retail Sales

Explore at:
Dataset updated
Oct 11, 2025
Dataset provided by
data.montgomerycountymd.gov
Description

This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly

Search
Clear search
Close search
Google apps
Main menu