Facebook
TwitterThis is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.
Facebook
TwitterThe link for the Excel project to download can be found on GitHub here.
It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt="">
The link for the Tableau adjusted dashboard can be found here.
A screenshot of the interactive Excel dashboard is also included below for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains video game sales data prepared for an Excel data analysis and dashboard project.
It includes detailed information on:
Game titles
Platforms
Genres
Publishers
Regional and global sales
The dataset was cleaned, structured, and analyzed in Microsoft Excel to explore patterns in the global video game market. It can be used to:
Practice data cleaning and pivot tables
Build interactive dashboards
Perform sales comparisons across regions and genres
Develop business insights from entertainment data
đź§© File Information
Format: .xlsx (Excel Workbook)
Columns: Name, Platform, Year, Genre, Publisher, NA_Sales, EU_Sales, JP_Sales, Other_Sales, Global_Sales
đź’ˇ Use Cases
Excel dashboard and chart creation
Data visualization and storytelling
Business and market analysis practice
Portfolio or learning projects
👤 Prepared by
Adewale Lateef W — for data analysis and Excel dashboard learning purposes.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
About Datasets:
Domain : Sales Project: Coca Cola Sales Analysis Datasets: Power BI Dataset vF Dataset Type: Excel Data Dataset Size: 52k+ records
KPI's: 1. Analyze Profit Margins per Brand 2. Sales by Region 3. Price per unit 4. Operating Profit 5. Additional Analysis
Process: 1. Understanding the problem 2. Data Collection 3. Exploring and analyzing the data 4. Interpreting the results
This data contains Power Query, Q&A visual, Key influencers visual, map chart, matrix, dynamic timeline, dashboard, formatting, text box.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is the Car sales data set which include information about different cars . This data set is being taken from the Analytixlabs for the purpose of prediction In this we have to see two things
First we have see which feature has more impact on car sales and carry out result of this
Secondly we have to train the classifier and to predict car sales and check the accuracy of the prediction.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
The Superstore Sales Data dataset, available in an Excel format as "Superstore.xlsx," is a comprehensive collection of sales and customer-related information from a retail superstore. This dataset comprises* three distinct tables*, each providing specific insights into the store's operations and customer interactions.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Dirty Retail Store Sales dataset contains 12,575 rows of synthetic data representing sales transactions from a retail store. The dataset includes eight product categories with 25 items per category, each having static prices. It is designed to simulate real-world sales data, including intentional "dirtiness" such as missing or inconsistent values. This dataset is suitable for practicing data cleaning, exploratory data analysis (EDA), and feature engineering.
retail_store_sales.csv| Column Name | Description | Example Values |
|---|---|---|
Transaction ID | A unique identifier for each transaction. Always present and unique. | TXN_1234567 |
Customer ID | A unique identifier for each customer. 25 unique customers. | CUST_01 |
Category | The category of the purchased item. | Food, Furniture |
Item | The name of the purchased item. May contain missing values or None. | Item_1_FOOD, None |
Price Per Unit | The static price of a single unit of the item. May contain missing or None values. | 4.00, None |
Quantity | The quantity of the item purchased. May contain missing or None values. | 1, None |
Total Spent | The total amount spent on the transaction. Calculated as Quantity * Price Per Unit. | 8.00, None |
Payment Method | The method of payment used. May contain missing or invalid values. | Cash, Credit Card |
Location | The location where the transaction occurred. May contain missing or invalid values. | In-store, Online |
Transaction Date | The date of the transaction. Always present and valid. | 2023-01-15 |
Discount Applied | Indicates if a discount was applied to the transaction. May contain missing values. | True, False, None |
The dataset includes the following categories, each containing 25 items with corresponding codes, names, and static prices:
| Item Code | Item Name | Price |
|---|---|---|
| Item_1_EHE | Blender | 5.0 |
| Item_2_EHE | Microwave | 6.5 |
| Item_3_EHE | Toaster | 8.0 |
| Item_4_EHE | Vacuum Cleaner | 9.5 |
| Item_5_EHE | Air Purifier | 11.0 |
| Item_6_EHE | Electric Kettle | 12.5 |
| Item_7_EHE | Rice Cooker | 14.0 |
| Item_8_EHE | Iron | 15.5 |
| Item_9_EHE | Ceiling Fan | 17.0 |
| Item_10_EHE | Table Fan | 18.5 |
| Item_11_EHE | Hair Dryer | 20.0 |
| Item_12_EHE | Heater | 21.5 |
| Item_13_EHE | Humidifier | 23.0 |
| Item_14_EHE | Dehumidifier | 24.5 |
| Item_15_EHE | Coffee Maker | 26.0 |
| Item_16_EHE | Portable AC | 27.5 |
| Item_17_EHE | Electric Stove | 29.0 |
| Item_18_EHE | Pressure Cooker | 30.5 |
| Item_19_EHE | Induction Cooktop | 32.0 |
| Item_20_EHE | Water Dispenser | 33.5 |
| Item_21_EHE | Hand Blender | 35.0 |
| Item_22_EHE | Mixer Grinder | 36.5 |
| Item_23_EHE | Sandwich Maker | 38.0 |
| Item_24_EHE | Air Fryer | 39.5 |
| Item_25_EHE | Juicer | 41.0 |
| Item Code | Item Name | Price |
|---|---|---|
| Item_1_FUR | Office Chair | 5.0 |
| Item_2_FUR | Sofa | 6.5 |
| Item_3_FUR | Coffee Table | 8.0 |
| Item_4_FUR | Dining Table | 9.5 |
| Item_5_FUR | Bookshelf | 11.0 |
| Item_6_FUR | Bed F... |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 200,000 synthetic sales records simulating real-world product transactions across different U.S. regions. It is designed for data analysis, business intelligence, and machine learning projects, especially in the areas of sales forecasting, customer segmentation, profitability analysis, and regional trend evaluation.
The dataset provides detailed transactional data including customer names, product categories, pricing, and revenue details, making it highly versatile for both beginners and advanced analysts.
business · sales · profitability · forecasting · customer analysis · retail
This dataset is synthetic and created for educational and analytical purposes. You are free to use, modify, and share it under the CC BY 4.0 License.
This dataset was generated to provide a realistic foundation for learning and practicing Data Analytics, Power BI, Tableau, Python, and Excel projects.
Facebook
TwitterTool: Microsoft Excel
Dataset: Coffee Sales
Process: 1. Data Cleaning: • Remove duplicates and blanks. • Standardize date and currency formats.
Data Manipulation:
• Sorting and filtering function to work
with interest subsets of data.
• Use XLOOKUP, INDEX-MATCH and IF
formula for efficient data manipulation,
such as retrieving, matching and
organising information in spreadsheets
Data Analysis: • Create Pivot Tables and Pivot Charts with the formatting to visualize trends.
Dashboard Development: • Insert Slicers with the formatting for easy filtering and dynamic updates.
Highlights: This project aims to understand coffee sales trends by country, roast type, and year, which could help identify marketing opportunities and customer segments.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
About Datasets:
Domain : Sales Project: McDonalds Sales Analysis Project Dataset: START-Dashboard Dataset Type: Excel Data Dataset Size: 100 records
KPI's: 1. Customer Satisfaction 2. Sales by Country 2022 3. 2021-2022 Sales Trend 4. Sales 5. Profit 6. Customers
Process: 1. Understanding the problem 2. Data Collection 3. Exploring and analyzing the data 4. Interpreting the results
This data contains dashboard, hyperlink, shapes, icons, map, radar chart, line chart, doughnut chart, KPIs, formatting.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
his dataset contains transactional grocery data from BlinkIT, a grocery delivery platform. It includes product names, categories, prices, units sold, and potentially order or date-based features (depending on the columns in the file
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
This dataset was created by AndrĂ©s Armando Sánchez MartĂn
Released under Community Data License Agreement - Sharing - Version 1.0
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset simulates sales transactions for mobile phones and laptops, including product specifications, customer details, and sales information. It contains 50,000 rows of randomly generated data to help analyze product sales trends, customer purchasing behavior, and regional distribution of sales.
Dataset Overview
Purpose of the Dataset
This dataset can be used for:
✅ Sales Analysis – Understanding product demand and pricing trends.
✅ Customer Behavior Analysis– Identifying buying patterns across locations.
✅ Inventory Management – Monitoring inward and dispatched product movements.
✅ Machine Learning & AI – Predicting sales trends, customer preferences, and stock management.
Key Features in the Dataset
Product Information
Sales & Pricing Details
Customer & Location Details
Technical Specifications
-Core Specification (For Laptops): Includes processor models like i3, i5, i7, i9, Ryzen 3-9.
-Processor Specification (For Mobiles): Includes processors like Snapdragon, Exynos, Apple A-Series, and MediaTek Dimensity.
-RAM: Randomly assigned memory sizes (4GB to 32GB).
-ROM: Storage capacity (64GB to 1TB).
-SSD (For Laptops): Additional storage (256GB to 2TB), "N/A" for mobile phones.
Potential Use Cases:
Business Intelligence Dashboards
Market Trend Analysis
Supply Chain Optimization
Customer Segmentation
Machine Learning Model Training (Sales Prediction, Price Optimization, etc.)
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides detailed insights into retail sales, featuring a range of factors that influence sales performance. It includes records on sales revenue, units sold, discount percentages, marketing spend, and the impact of seasonal trends and holidays.
This dataset is synthetic and generated for analysis purposes. It reflects typical retail sales patterns and is designed to support a wide range of data science and business analytics projects.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Advertisement Sales dataset is a collection of data points used to analyze the impact of advertising on sales. This dataset consists of 200 entries, each representing a unique observation with data on various types of media advertising and corresponding sales figures.
Key Features: ID: A unique identifier for each observation. TV: The amount of money spent on TV advertising (in thousands of dollars). Radio: The amount of money spent on Radio advertising (in thousands of dollars). Newspaper: The amount of money spent on Newspaper advertising (in thousands of dollars). Sales: The sales figures for the product (in thousands of units).
Summary Statistics: TV advertising: Ranges from $0.7k to $296.4k, with an average spend of $147.03k. Radio advertising: Ranges from $0k to $49.6k, with an average spend of $23.29k. Newspaper advertising: Ranges from $0.3k to $114k, with an average spend of $30.55k. Sales: Ranges from 1.6k to 27k units, with an average of 14.04k units.
Use Cases: Advertising Strategy: Businesses can use this dataset to understand the effectiveness of different advertising channels (TV, Radio, Newspaper) on sales performance. Predictive Modeling: Analysts can build predictive models to forecast sales based on advertising spend across different media.
ROI Analysis: Marketers can calculate the return on investment (ROI) for each advertising channel to optimize their budgets. Correlation Studies: Researchers can study the correlation between advertising spend and sales to derive insights on consumer behavior.
Potential Analyses: Regression Analysis: Determine how changes in advertising budgets influence sales. Comparative Analysis: Compare the effectiveness of different advertising mediums. Trend Analysis: Identify trends in advertising spending and sales performance over time.
This dataset provides a robust foundation for exploring the relationships between advertising expenditures and sales outcomes, enabling data-driven decision-making for marketing strategies. ​
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains a list of sales and movement data by item and department appended monthly.
It is rich in information that can be leveraged for various data science applications. For instance, analyzing this dataset can offer insights into consumer behavior, such as preferences for specific types of beverages (e.g., wine, beer) during different times of the year. Furthermore, the dataset can be used to identify trends in sales and transfers, highlighting seasonal effects or the impact of certain suppliers on the market.
One could start with exploratory data analysis (EDA) to understand the basic distribution of sales and transfers across different item types and suppliers. Time series analysis can provide insights into seasonal trends and sales forecasts. Cluster analysis might reveal groups of suppliers or items with similar sales patterns, which can be useful for targeted marketing and inventory management.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The sales data for the first two products (P1 and P2) are weekly and data was collected until November 10, 2019. Products P3 and P4 are daily and might be related. For product P4, the company has provided potential explanatory variables X1 (price) and X2 (weather forecast of temperature in °C) that may be helpful for forecasting these two products. The sales data for products P3 and P4 was collected until November 24, 2019. Data for product P5 is weekly and was collected until August 30, 2019.
Visualization - https://public.tableau.com/views/ProductSales_16457072047730/Dashboard1?:language=en-US&publish=yes&:display_count=n&:origin=viz_share_link
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Retail_Analysis_with_Walmart/main/Wallmart1.jpg" alt="">
One of the leading retail stores in the US, Walmart, would like to predict the sales and demand accurately. There are certain events and holidays which impact sales on each day. There are sales data available for 45 stores of Walmart. The business is facing a challenge due to unforeseen demands and runs out of stock some times, due to the inappropriate machine learning algorithm. An ideal ML algorithm will predict demand accurately and ingest factors like economic conditions including CPI, Unemployment Index, etc.
Walmart runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of all, which are the Super Bowl, Labour Day, Thanksgiving, and Christmas. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks. Part of the challenge presented by this competition is modeling the effects of markdowns on these holiday weeks in the absence of complete/ideal historical data. Historical sales data for 45 Walmart stores located in different regions are available.
The dataset is taken from Kaggle.
Facebook
TwitterThis dataset contains a list of video games with sales greater than 100,000 copies. It was generated by a scrape of vgchartz.com.
Fields include
Rank - Ranking of overall sales
Name - The games name
Platform - Platform of the games release (i.e. PC,PS4, etc.)
Year - Year of the game's release
Genre - Genre of the game
Publisher - Publisher of the game
NA_Sales - Sales in North America (in millions)
EU_Sales - Sales in Europe (in millions)
JP_Sales - Sales in Japan (in millions)
Other_Sales - Sales in the rest of the world (in millions)
Global_Sales - Total worldwide sales.
The script to scrape the data is available at https://github.com/GregorUT/vgchartzScrape. It is based on BeautifulSoup using Python. There are 16,598 records. 2 records were dropped due to incomplete information.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Leveraging the power of PivotTables in Microsoft Excel, we will delve into a comprehensive approach to transforming raw sales data into compelling visual representations. By mastering PivotTable techniques, we will gain insights into employee sales trends, identify top performers, and uncover regional sales patterns.
Facebook
TwitterThis is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.